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ABSTRACT
In this talk, I will describe a number of machine learning
paradigms that are relevant to utility-based data mining,
and review some key techniques and results in each.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction; H.2.8
[Database Management]: Applications - Data Mining

General Terms
Algorithms

Keywords
Machine Learning, Cost-sensitive Learning, Reinforcement
Learning, Active Learning, Data Mining

There are a number of ways to introduce utility in machine
learning, depending on the application scenario. One nat-
ural way to introduce utility is in terms of the cost assigned
to misclassification errors, and this is the so-called cost sen-
sitive learning [4]. Another way in which utility can be in-
troduced is by considering the cost of data acquisition. This
aspect has been rigorously formulated as Economic Machine
Learning by Provost (c.f. [7].) One paradigm of machine
learning that pays special attention to the cost of data acqui-
sition, in addition to the predictive quality of the obtained
hypotheses, is active/query learning [2]. The standard active
learning paradigm assumes, in effect, that acquiring each
example is equally costly, but it readily admits generaliza-
tions to accout for general cost structure. Another machine
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learning paradigm, which we might collectively refer to as
active on-line learning addresses the issue of optimizing the
combination, and trade-off, of losses incurred during data
acquisition, and those associated with the predictive quality
of the final hypothesis. Some examples of learning para-
digms that fall within this general class include the classic
bandit problem [3] and its generalizations and associative
reinforcement learning [5, 1]. Theories have been developed
on these learning paradigms, which provide learning strate-
gies that come with theoretical guarantee on the total losses,
inclusive of the two types of losses. Finally, a comprehensive
paradigm of machine learning, which includes all of the ones
mentioned so far as special cases, is reinforcement learning.
Indeed, some authors have embedded instances of utility-
based data mining problems within the MDP framework
(e.g. [6]). While the MDP formulation is the most general,
it does not necessarily follow that it will be the most effec-
tive in practice. When the problem at hand falls into one of
the special cases discussed, the theory and methodology in
that special case may be the most effective. I hope to draw
some examples of real world applications, for which some of
these special cases have indeed proved to be satisfactory.
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