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ABSTRACT 
How much is information worth?  In the context of decisions, the 
value of information is the expected increase in utility of the 
decision as a result of having the information.  When the 
information might be noisy, the model is slightly more 
complicated.  We develop a model of the value of noisy 
information in the context of a plausible intelligence information 
gathering and decision making scenario.   

Categories and Subject Descriptors 
H.4.2 [Information Systems Applications]: Types of Systems – 
decision support; G.3 [Probability and Statistics]; I.2.3 
[Artificial Intelligence]: Deduction and Theorem Proving – 
uncertainty and probabilistic reasoning.  

General Terms 
Economics, Management, Theory. 

Keywords 
Value of information, Uncertainty, Noise, Economic Utility, 
Decision Theory, Intelligence Analysis. 

1. INTRODUCTION 
In this paper we describe a method for evaluating the value of 
information with respect to making a decision.  The method 
answers the question, if paying more for information ensures 
better information, how much should I pay?  Or, what is the value 
of corrupted or noisy information?  Our goal is to develop a 
rational theory of intelligence information gathering as it relates to 
decision-making, particularly in scenarios where information 
quality depends on the amount of resources spent.  We develop 
this model within statistical decision theory, which combines 
probability, statistics and utility theory to provide a coherent 
framework for evaluating and choosing actions under conditions 
of uncertainty [20, 13, 15, 11].  Here we consider a class of 
decision-theoretic models made up of three components: a 
probabilistic model of the states of the world and their causal 
relations, decisions that link actions to consequences, and a 

system of values assigned to those consequences.  We review the 
standard framework for assessing the value of information, 
develop the model of the value of noisy information, and provide 
an example of its use in an intelligence information gathering and 
decision scenario.  

2. OLYMPIC SECURITY 
Consider the following scenario.  You are the head of security for 
the 2004 Olympic Games in Athens, Greece.  You have been 
tasked with protecting the games from potential terrorist attacks.  
You have the authority to raise a terrorist threat alert that will 
mobilize special forces and implement extreme counter-terrorism 
measures.  If you raise the alert just prior to an actual attack, the 
attack will be thwarted and your security firm will be awarded a 
handsome sum.  However, raising the alert is costly, especially if 
it is a false alarm – it will disrupt the games and your security firm 
will be held accountable for the resulting loss of potential 
revenue.  On the other hand, not raising the alert prior to an attack 
will be devastating.  The city will be unprepared, lives will be lost 
and the security firm will be held accountable for a very large sum 
of money.  If no attack is imminent and you do not raise the alert, 
you are assumed to be doing your job and will be paid as per your 
contract.   

At your disposal you have a team of agents to collect information; 
each piece of information must be purchased.  Suppose one piece 
of information is the location of terrorist group members, and 
another is about how prepared they are (in the sense of having the 
right materials and manpower) to carry out an attack.  Based on 
your experience, you have developed a model of how knowledge 
of the location or level of preparedness will affect your belief in 
the likelihood of an attack.  You have been provided a fixed 
budget and it is up to you to manage your information-gathering 
resources and make the decision about the terror alert.  You must 
decide which information to pay for (if any) while minimizing 
overall expenditures and still make the right decision about the 
alert level.  

3. A DECISION MODEL 
The value of information is always relative to some target 
decision.  In the Olympic Security scenario, the target decision is 
a choice among the actions of raising or not raising the terror 
alert.  The target decision is associated with a target hypothesis T, 
a state of the world that has a direct bearing on the outcome of the 
target decision.  The target hypothesis for our security firm is 
whether an attack is about to take place.  In a probabilistic model, 
T is a random variable with possible states t, and the available 
actions a are represented by a decision variable A.  In general, the 
states and actions of T and A are the domain of the variables T and 
A.  A random variable has a probability distribution over its 
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possible states, while a decision variable is assumed to be 
deterministically controlled by the decision maker. 

The outcomes of actions taken in the context of world states may 
be assigned values or utilities, which represent the relative 
desirability of outcomes.  In the Olympic scenario, the outcome of 
deciding whether to raise the terror alert is represented in terms of 
money being gained or lost, depending on whether an attack is or 
is not about to happen.  More generally, a utility function U(a,t) 
maps action a and a target hypothesis state t to a utility value.  
Given a target hypothesis, a set of actions and a mapping of target 
states and actions to utilities, we can frame the target decision 
problem.  Under a widely accepted characterization of rational 
decision making [20, 15], the optimal decision is to take the action 
that maximizes the expected utility given beliefs about the target 
state of the world.  Given a distribution over the possible values t 
of target state T, the expected utility of taking action a is 

 

! 

EU(T) = P(t)U(a,t)
t"T

# .1 (1) 

Some actions may yield a higher expected utility than others.  The 
utility of taking the optimal action out of the possible action 
choices in A is the utility of taking the action that maximizes 
expected utility, expressed as follows: 

 
 

! 

MEU(T) =
max
a " A

P(t)U(a,t)
t"T

# . (2)  

4. UTILITY-BASED VALUE OF 
INFORMATION 
In this section we present the standard approach to assessing the 
value of information with available utilities.  In Section 5 we 
develop the value of noisy information out of this basic 
framework. 
In many situations, we cannot simply observe the state of the 
target hypothesis T and make our decision.  Instead, we must rely 
on other states, which are observable, and (we hope) tell us 
something about the state of the target.  The Olympic Security 
scenario describes two potential sources of information that have 
some relation to the target hypothesis about whether there is an 
imminent terrorist attack: the proximity of terrorists to Athens and 
the capabilities or readiness of the terrorists to commit a terrorist 
act.  These information sources are also about states of the world 
(e.g., how far away the terrorists are from the Games) and may 
themselves be represented by random variables (e.g., a 
distribution over whether the terrorists are within the city limits, 
in the country, or outside of the country).  We use the generic 
term indicator variable for a variable that has some relationship 
with a target hypothesis.  We denote an indicator random variable 
by I, which represents a distribution over possible states i.  We 
also assume we have a complete joint probability distribution 
representing the relationship between I and T.  This means that we 

                                                                    
1 A note about notation: All of the probability terms in this paper are 

assumed to be in the context of all currently available evidence.  That is, 
P(t) could be expressed as P(t|E) where E is the set of all other known 
variables, some of which are known to be in specific states.  For clarity, 
we omit E from our equations.  Similarly, all utility calculations are 
assumed to be in the context of a particular decision variable A and we 
will only explicitly note A in the context of maximization functions. 

have the information required to derive prior probabilities over I 
and T, as well as their conditional relationships, P(I|T) and P(T|I).  
In practice, joint distributions are efficiently represented as 
Bayesian belief networks, and algorithms exist for effectively 
deriving and estimating probability distributions from them [15, 
11]. 
Usually the state of our target hypothesis is not directly 
observable.  Instead, we may need to rely on one or more 
indicators, and determining their state may come at a cost, CI.  In 
this case we are faced with an information gathering decision, 
which is to be made in the service of our target decision.  Out of 
the set of available indicators, which should we spend resources 
on?  Making this decision requires assessing the value of the 
information the indicators may provide about the target 
hypothesis. 

The value of any information source is defined as the difference 
between the utilities of two decision strategies, one in which we 
choose the optimal action after finding out the state an indicator 
variable is in, the other choosing the optimal action without that 
information [10, 13, 15, 8, 11, 12].  The expected utility of taking 
the optimal action given the outcome i of indicator variable I is 

 
 

! 

MEU(T | i) =
max
a " A

P(t | i)U(a,t)
t"T

#  (3) 

Since the outcome of I is not known ahead of time, we can 
calculate the expected utility of having evidence I by 
marginalizing over the possible values of I: 

 

! 

MEU(T | I) = P(i)MEU(T | i)
i"I

#  (4) 

 

! 

VOI(T | I) = MEU(T | I) "MEU(T) . (5) 

Taking into account the cost CI of acquiring the information about 
the state of I, the net value or expected profit of purchasing the 
information is 

 

! 

netVOI(T | I) =VOI(T | I) "C
I
. (6) 

If the net value is greater than zero, then the information is worth 
paying for.  

4.1 Myopic Value of Information 
Equations 3 through 6 allow us to calculate the value of 
information about a particular indicator given our current state of 
knowledge.  However, once we consult one source of information, 
our state of knowledge may change, affecting what we may learn 
from other information sources, and this in turn affects their value. 
In general, when considering sequences of information gathering 
decisions, every permutation of the available information sources 
must be considered [15, 8, 11].  A myopic approximation of 
information value assesses each information source independently 
of the others.  The myopic assessment is made as if the 
information source were the only one available, and under the 
assumption that immediately after gathering the information a 
final decision is made that incurs some utility [15].  While not 
perfect, this method has been found to perform well in medical 
diagnostic systems [7, 9, 14].  Heckerman, Horvitz and Middleton 
[8] have proposed an approximate nonmyopic method for 
computing information value given certain constraints.  In this 
paper we will consider only myopic value of information.  
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5. THE VALUE OF NOISY INFORMATION 
We now add another wrinkle to the story, one that has been 
alluded to [10, 15, 16], but to our knowledge has not received 
extended treatment, except in very different terms in the 
economics literature [1, 6]. Suppose the amount you pay affects 
the quality of information you receive from an information source 
and the more you pay the more accurate the information is.  Now 
our information gathering decision is to determine which level of 
payment is optimal for this potentially noisy information.  We 
start by considering paying for reports at a particular cost level 
and then present the more general formulation of the choice of 
cost level. 
We use RC to represent a distribution over possible reports about 
the state of an indicator I at a particular cost level C.  We 
emphasize that what we are paying for at this cost level is not a 
particular report, but a distribution over reports, as the report we 
receive depends on both the state of I as well as the probabilistic, 
and therefore noisy, relationship P(RC|I) we are paying for.   

Assessing the expected utility of paying for possible reports RC 
about the state of I is no different than the standard Value of 
Information calculation presented as Equations 3 through 6 in 
Section 4.  Only now we’re considering the state of RC as an 
indicator of state I, which in turn is an indicator of our target 
hypothesis T.  That is, we could re-write Equations 3 through 6 by 
replacing RC for I.  Nonetheless, it is useful to highlight the 
relationship between RC and I because, again, it is this relationship 
we are paying for.   

The following recasts the VOI calculation in terms that make the 
relation between R and I explicit: 

 

! 

MEU(T | R
C
) = P(r)max

a"A
P(t | i)P(i | r)U(a, t)

t"T

#
i"I

#
$ 

% 
& 

' 

( 
) 

r"R
C

#  (7) 

 
All we have done is add a term that conditions the probability of i 
on r, and marginalized the effects of r on expected utility by 
multiplying by and summing over P(r).  In other words, Eq. 7 
represents the expected maximum utility given that our only 
source of information is r.  

Equations 8 and 9 express the expected benefit and profit of 
paying for noisy reports at cost C. 

 

! 

VONI(T | R
C
) = MEU(T | R

C
) "MEU(T) (8) 

 

! 

netVONI(T | R
C
) = MEU(T | R

C
) "MEU(T) "C  (9) 

With netVONI(T|RC) we can now determine the report distribution 
RC at cost level C that yields the highest expected utility:  

 

! 

maxVONI(T | R
C
) = max

R
C
"#

netVONI(T | R
C
)[ ] , (10) 

where ℜ is a set of sources, R, of information about I, each with 
its own distribution Pr(I|R), distinguished only by how much R 
costs.  

5.1 A Simple Model of Noisy Reports 
There are many possible representations of the relationship 
between I and R.  This is a general topic for intelligence analysis 
and modeling research and will depend on the domain being 
represented.  To demonstrate the value of noisy information in the 

Olympic Security scenario, we provide a simple linear noise 
model to generate RC. 

We define a “noise level” as a real-valued number between 0.0 
and 1.0 (inclusive), where 0.0 means perfect information (no 
noise) and 1.0 means complete noise. Suppose the reports we are 
paying for are about an indicator with possible states {close, near, 
far}.  For each possible state of I that report r could say I is in, 
given that the indicator is actually in state i, we determine the 
probability P(RC=r|i) as follows: 

 

! 

P(R
C

= r | i) =
1

m
" d

# 

$ 
% 

& 

' 
( ) noise

# 

$ 
% 

& 

' 
( + d  , (11) 

where m is the number of possible states of the indicator and d = 1 
when r reports the same as the target state value i of the indicator, 
otherwise d = 0.  We repeat this for each state of I to arrive at 
P(RC|I), the conditional probability distribution over reports given 
the states of I at a particular noise level.  Finally, we provide a 
cost function that maps costs to noise levels, so that given a 
particular payment C, we can generate P(RC|I).  Under the 
assumption that information becomes exponentially more 
expensive with accuracy, we chose the cost function depicted in 
Figure 1. 
 

   
Figure 1. An exponential cost function mapping noise levels to 
costs of information in dollars. 
 

5.2 Back to the Olympics 
Figure 2 shows a decision graph representing the Olympic 
Security scenario.  A decision graph is a useful formalism for 
representing relationships between variables in decision problems.  
In the graph, decision variables are represented by squares, utility 
functions by diamonds, and random variables by circles.  A 
directed arrow indicates that the state of a parent node participates 
in determining the state of a child node (where the child is the 
node being “pointed to”).  The labels in the nodes represent 
random variables, and we have included text near the nodes 
indicating which part of the Olympic Security decision problem 
the variable corresponds to.  To complete the specification of the 
model, we need the prior and conditional probability relationship 
between random variables as well as a utility function.  The tables 
on either side of the graph in the figure provide this information. 

36



In this scenario, we consider purchasing a distribution over reports 
about the capabilities of the terrorists.  With all of the information 
represented in Figure 2, we can calculate the value of noisy 
information of a report about terrorist capabilities at a given level 
of noise (Eq. 8).  Figure 3 does this for noise levels ranging from 
1.0 (complete noise) down to 0.0 (no noise).  The state of 
knowledge about proximity affects the value of information, and 
proximity can be in one of four states (unobserved, close, near or 
far).  Because of this, Figure 3 plots four different curves 
representing the value of information across noise levels given 
that proximity is in one of its four possible states.  Figure 4 factors 
in the cost of information for the net value of information (Eq 9).  
The max value of noisy information, Equation 10, provides us 
with a strategy by selecting the cost level at which the expected 
utility peaks on each curve. We should select the level of payment 
for a noisy report according to the noise level that yields the 
greatest expected utility. 
 

 
Figure 2. Decision graph and probability and utility tables 
characterizing the Olympic Security scenario. 
 

  
Figure 3. The VONI at varying noise levels.  Each curve 
represents VONI given a state of proximity. 
 

As Figure 4 shows, whether to pay for reports, and if so, how 
much, depends on our belief about the proximity of terrorists to 
the Games.  When proximity is unobserved, paying for a report 
has the greatest benefit.  In particular, the benefit is maximized in 
the peak of the curve, when noise level is 0.10, costing $60.  

When proximity is near, the benefit of paying for a report peaks at 
noise level 0.15, with a cost of $40.  When proximity is either 
close or far, a report is simply not worth paying for at any level.  
When proximity is known to be far, it is likely that an attack is not 
about to take place; when proximity is close, then an attack is 
almost certain.  Under these conditions, paying for more 
information is simply not worth it.  However, as Figure 4 shows, 
when proximity is unknown or near, then knowing about the state 
of the terrorists capabilities is useful in determining whether an 
attack is about to occur, and paying the price of perfect 
information is not as cost effective as paying less for somewhat 
degraded information. 
 

 
Figure 4. The netVONI at varying noise levels (as represented 
by their cost) given proximity. 
  

6. CONCLUSION 
We have presented a decision model based on the value of 
information and demonstrated its use in a simple intelligence 
analysis decision scenario.  We demonstrated that with VONI we 
can determine the optimal amount to pay for information where 
the amount of effort or cost invested affects information quality.  
The value of noisy information is an incremental extension to the 
standard value of information framework, making it possible to 
assess the value of reports about an indicator that informs a target 
decision. 

As we noted in Section 5.1, the representation of the relationship 
between and indicator variable I and possible reports R about the 
indicator is a general topic for intelligence analysis and modeling 
research.  Our simple linear noise model is just one example.  
Robust models of these relationships will depend on specific 
scenarios, the expertise of trained analysts, and possibly learned 
from collected data. 

Although we have not presented this framework in terms of 
machine learning, there are connections between the VONI 
framework and recent work in cost-sensitive [11, 19] and active 
[6, 10, 17, 18] learning.  In particular, VONI makes explicit the 
role of data acquisition costs and the impact that acquiring costly 
information has on decision-making.  Recently, [18] explicitly 
argues for the importance of making active learning decision-
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centric, demonstrating in an active learning scenario that simply 
improving the accuracy of the target classification on which a 
decision is based does not necessarily lead to overall improvement 
in decision-making.  An important next step in the VONI model is 
to explore how a model of the noisy relationship between reports 
and indicators can be learned.  

7. ACKNOWLEDGEMENTS 
We thank Jafar Adibi and Aram Galstyan for stimulating 
discussions about portions of the model presented.  Work on this 
project was funded by the Air Force Research Laboratory, account 
number 53-4540-0588. 

8. REFERENCES 
[1] Athey, S. C. and Levin, J. D.  2001.  The value of 

information in monotonic decision problems.  MIT 
Department of Economics Working Papers. 

[2] Ben-Bassat, M.  1978.  Myopic policies in sequential 
classification.  IEEE Transactions of Computing 27: 170-
174. 

[3] Cohn, D. A., Atlas, L. and Ladner, R. E.  (1994).  Improving 
Generalization with Active Learning. 

[4] Cohn, D. A., Ghahramani, Z. and Jordan, M. I.  (1996).  
Active Learning with Statistical Models.  Journal of 
Artificial Intelligence Research, 4: 129-145. 

[5] Elkan, C.  (2001).  The Foundations of Cost-Sensitive 
Learning.  Proceedings of the Seventeenth International Joint 
Conference on Artificial Intelligence (IJCAI'01). 

[6] Gauthier, L. and Morellec, E.  1997, June.  Noisy 
information and investment decisions: A note.  MIT 
Department of Economics Working Papers. 

[7] Gorry, G. and Barnett, G.  1968.  Experience with a model of 
sequential diagnosis.  Computer and Biomedical Research 1: 
490-507. 

[8] Heckerman, D, Horvitz, E. and Middleton, B.  1993.  An 
approximate nonmyopic computation for value of 
information.  IEEE Transactions on Pattern Analysis and 
Machine Intelligence 15(3): 292-298. 

[9] Heckerman, D., Horvitz, E. and Nathwani.  1992.  Toward 
normative expert systems: Part i.  the pathfinder project.  
Methods Inform. Med. 31: 90-105. 

[10] Howard, R. A.  1966.  Information value theory.  IEEE 
Transactions on System Science and Cybernetics 2(1): 22-26. 

[11] Jensen, F.  2001.  Bayesian networks and decision graphs.  
New York: Springer. 

[12] Jensen, F. and Liang, J.  1994.  A system for value of 
information in Bayesian networks.  In Proceedings of the 
1994 Conference on Information Processing and 
Management of Uncertainty in Knowledge-Based Systems, 
178-183. 

[13] Lindley, D. V.  1971.  Making Decisions.  New York: John 
Wiley & Sons. 

[14] Mussi, S.  2004.  Putting value of information theory into 
practice: a methodology for building sequential decision 
support systems.  Expert Systems 21(2): 92-103. 

[15] Pearl, J.  1988.  Probabilistic Reasoning in Intelligent 
Systems: Networks of Plausible Inference.  Los Altos, CA: 
Morgan-Kaufman. 

[16] Russell, S. J. and Norvig, P.  2003.  Artificial Intelligence: A 
Modern Approach.  New Jersey: Prentice Hall. 

[17] Saar-Tsechansky, M. and Provost, F. 2004. Active Sampling 
for Class Probability Estimation and Ranking. Machine 
Learning 54(2), 153-178. 

[18] Saar-Tsechansky, M. and Provost, F.  Active Learning for 
Decision-Making. Working paper (CeDER-04-06, Stern 
School of Business, New York University) .  Available at 
http://www.mccombs.utexas.edu/faculty/Maytal.Saar-
Tsechansky/home/GOAL.pdf 

[19] Turney, P.  (2000).  Types of Cost in Inductive Concept 
Learning.  Proceedings of the Cost-Sensitive Learning 
Workshop at the 17th ICML-2000 Conference, Stanford, CA.  
pp.15-21. 

[20] Von Neumann, J. and Morgenstein, O.  1953.  Theory of 
Games and Economic Behavior.  3rd Ed.  New York: John 
Wiley & Sons., 

 
 

 
 

38


