Timeweaver: a Genetic Algorithm for |dentifying Predictive
Patternsin Sequences of Events

Gary M. Weiss

Rutgers University and AT& T Labs
101 JFK Parkway
Short Hills, NJ 07078

Abstract

Learning to predict future events from sequences
of past events is an important, rea-world,
problem that arises in many contexts. This paper
describes Timeweaver, a genetic-based machine
learning system that solves the event prediction
problem by identifying predictive tempora and
sequential patterns within data. Timeweaver is
applied to the task of learning to predict
telecommunication equipment failures from
250,000 alarm messages and is shown to
outperform existing methods.

1 INTRODUCTION

Data is being generated and stored at an ever-increasing
pace, and, partly as a consegquence of this, there has been
increased interest in how machine learning and statistical
techniques can be employed to extract useful knowledge
from this data. When this data is time-series data, it is
often important to be able to predict future behavior based
on past data. In this paper weareinterested in the problem
of predicting specific types of rare future events, which
we refer to as target events, from sequences of
timestamped events. We restrict ourselves to domains
where the events are described by categorical (i.e., hon-
numerical) features, since statistical methods already exist
that can solve time-series prediction problems with
numerical features. We call the class of problems we
address in this paper rare event prediction problems. For
these prediction problems, every time an event is
received, a prediction procedure is applied which, based
on the past events, determines whether the target event
will occur in the near future. The problem of predicting
telecommunication equipment failures from logs of alarm
messages is one example of this type of prediction
problem. In this case, prediction of a failure might cause
one to replace, or at least route phone traffic around, the
suspect piece of equipment. Other examples of rare event
prediction problems include predicting fraudulent credit
card transactions and the start of transcription in DNA
sequences.

Machine learning and statistical methods have been used

to solve problems similar to the rare event prediction
problem, but most of these methods are not applicable to

this class of problems. The statistical methods do not
apply because they require numerical features (Brockwell

& Davis, 1996). The many machine learning methods

that perform classification do not apply because they
assume unordered examples—not time-ordered events.
Thus, these methods cannot learn from sequential or
temporal relationshipdetween events. The machine
learning methods that are useful for modeling sequences
are also not appropriate, since we do not need to model
the entire sequence—we only neegbtedictone specific
typeof event withinawindow of time.

Our approach to solving the event prediction problem
involves using a genetic algorithm directly search for
predictive patterns in the data. Our system will learn a set
of rules of the fornpattern O target event, and hence may

be considered a classifier system. However, because our
system does not provide any form of internal memory or
chaining of rules, and because the rules all have a
common right-hand side, it is more appropriate to view
our system as a genetic-based machine learning system.
We feel our work shares much in common with other
such systems, most notably COGIN (Greene & Smith,
1993) and GABIL (De Jong, Spears & Gordon, 1993).

The event prediction problem has been described in an
earlier paper, but only a very brief description of the
genetic algorithm was provided (Weiss & Hirsh, 1998).

In this paper we provide a detailed description of
Timeweaver,our genetic-based machine learning system
that solves the rare event prediction problems by
identifying predictive patterns in the data. The event
prediction problem has some interesting characteristics
that affect the design of our genetic algorithm. First,
because we expect to encounter very large datasets, the
GA must minimize the number of patterns that it
evaluates. Second, because the events we are interested
in predicting are typically rare and difficult to predict,
predictive accuracy is not an appropriate fithess
measure—the strategy of never predicting any target
events would often maximize predictive accuracy. To
avoid this problem, we base our fithess function on recall
and precision, two measures from the information



retrieval literature. Recall will measure the percentage of
target events that are successfully predicted and precision
the percentage of predictionsthat are correct. By factoring
in recall, we can ensure that a prediction strategy is
developed that predicts the mgjority of the target events.

2 THE EVENT PREDICTION PROBLEM

In this section we provide a formal description of the
event prediction problem. An event Et is a timestamped
observation occurring at time t that is described by a set
of feature-value pairs. An event sequence is a time-
ordered sequence of events, S = Eti, Etz, ..., Etn. The
target event is the specific type of event we would like to
learn to predict. The event prediction problem is to learn
a prediction procedure that, given a sequence of
timestamped events, correctly predicts whether the target
event will occur in the “near future”.

simply forming a solution from all of the individuals in
the population, we employ a second step. This step orders
the patterns from best to worst, based primarily on the
precision of their predictions, and prunes redundant
patterns (i.e., those patterns that do not predict any target
events not already predicted by some “better” pattern). A
family of prediction strategies is then formed by
incrementally adding one pattern at a time and a
precision/recall curve is generated based on these
strategies. A user can then use this curve, and the relative
cost of false predictions versus missed (i.e., not predicted)
target events, to determine the optimal prediction strategy.

Our GA uses steady-state reproduction, where only a few
individuals are replaced at once, rather than generational
reproduction, where a significant percentage of the
population is replaced. We chose to use steady-state
reproduction because it makes newly created members

In this paper we immediately available for use, whereas with generational

assume the prediction procedure involves matching a seéproduction, the new individuals cannot be used until the

of learned patterns against the data and predicting theext generation (Syswerda, 1990).
occurrence of a target event if the match succeeds. Wiatasets will

say a prediction occurring at time ti, Bs correct if a
target event occurs within itprediction period. As

Given that large
make it computationally expensive to
evaluate each new pattern, we believe it is very important
that new individuals are made immediately available.

shown below, the prediction period is defined by a

warning time, W, and a monitoring time, M.

__ prediction period

| = L |

I I I
Pt t+W t+M

The warning time is the “lead time” necessary for

prediction to be useful and the monitoring

4 THE GENETIC ALGORITHM

This section describes a genetic algorithm that searches
for patterns that successfully predict the future occurrence
of target events. The basic steps in our steady-state GA

I 85318 shown below:
time

determines how far into the future the prediction extendsl.

Initialize population
while stopping criteria not met

While the value of the warning time is critically 2.
dependent on the problem domain (e.g., how long it take$.
to replace a piece of equipment), there is generally a lot &f.
flexibility in assigning the monitoring time. The larger
the value of the monitoring time, the easier the predictio®.
problem, but the less meaningful the prediction. 6

select 2 individuals from the population

apply the crossover operator with probability P
and mutation operator with probability, P

evaluate the 2 newly formed individuals

replace 2 existing individuals with the new ones

A target event is correctly predicted @ least one 7. done

prediction is made within its prediction period. The Since we are using a Michigan-style GA, the performance
prediction period of target event X, occurring at time t, isof the population cannot be accurately estimated based on
shown below: the performance of individual members of the population.
_prediction period Evaluating the performance based on all of the patterns
| would also be misleading, since there may be some very
' poor rules in the population. To accurately estimate the
performance of the GA, we apply our “second step” every

t-M
250 iterations of the GA. This forms a complete
3 THE GENERAL APPROACH prediction strategy using the best patterns in the

Our approach to solving the event prediction problenPOPulation (as described in detail in Section 5).

involves two steps. In the first step, a genetic algorithm i¥he remainder of this section describes the most
used to search the space of prediction patterns, in orderitoportant aspects of the GA. In particular, much
identify a set of patterns that individually do well at attention is devoted to the fitness function and diversity
predicting a subset of the target events and collectivelgnaintenance strategy, since these account for much of the
predict most of the target events. This is a Michigan-styleomplexity of our system. We use a niching strategy
GA, since each individual pattern is only part of acalled sharing to ensure that diversity is preserved and
complete solution. Other GA-based systems have usebat the prediction patterns in the population cover a
this approach to learn disjunctive concepts from examplesiajority of the target events. The niching strategy results
(Giordana, Saitta & Zini, 1994; Greene & Smith, 1993;in a new measureshared fitness, which factors in both
McCallum & Spackman, 1990). However, rather thanfitness and diversity considerations. It is this shared

t-W Xt

-tV

v



fitness measure that is used to implement the selection is read into our system. A prediction pattern with

and replacement strategies. In particular, individuals are  events, each described byeatures, is represented by a

selected proportional to their shared fitness and removed  string containingn(f+1)+1 integers, since there is one

inversely proportional to their shared fitness. integer-valued ordering primitive per event and one
pattern duration per prediction pattern.

4.1 REPRESENTATION
Each individual in our GA is a prediction pattern—a“"2 INITIALIZATION OF THE POPULATION

pattern used to predict target events. The language us@&tlie population is initialized by generating prediction
to describe these patterns is similar to the language usedtterns which contain only a single event, where the
to represent the raw event sequences. A predictiofeature values in this event are set 50% of the time to the
pattern is a sequence of events in which consecutiweildcard value and the remaining time to a randomly
events are connected by an ordering primitive that defineselected valid feature value. The patterns are generated in
ordering constraints between these events. The followinthis manner so that they will not start off overly
ordering primitives are supported: specific—in which case they might not match any events
: o i in the training data, which would prevent the GA from
* thewildcard ™" primitive matchei any number of oftectively exploring the search space. The crossover
events so the prediction pattern A*D matches ABCD gperator, described in the next section, will allow these
« the next “.” primitive matches no events so the single-event patterns to grow, as necessary. A future
prediction pattern A.B.C only matches ABC enhancement might be to seed some of the initial patterns
based on the training data—although this approach could

* the parallel “|” primitive allows events to occur in r9ver|y bias the search.

any order and is commutative so that the predictio

pattern A|B|C will match, amongst others, CBA.
43 GENETIC OPERATORS

The “|” primitive has highest precedence so the pattern. .
I P 9 b b Ehmeweaver employs a crossover and mutation operator.

“A.B*C|D|E” matches an A, followed immediately by a C . lished vi iable lenath
B, followed sometime later by a C, D and E, in any order,”'0SSOVET IS acCOmpliShed via a variable 1ength crossover
perator, as shown in Figure 1. The first parent, P1, has a

Each feature in an event is permitted to take on any of & dicti tt ith 4 i d th d h
predefined list of valid feature values, as well as th r2e |k(]:|on pa ef{‘h"g etvensEanh e ?econt _par?n,
wildcard (“?”) value, which matches any feature value, < @S On€ wi events.  Each event contains two
For example, if events in a domain are described by threfgatures and the ordering primitive is stored in the third

features, then the event <?, ?, b> would match any eveﬂﬁs't'on' tFor SaCh pacrie?g, an evgnt|W|th|r]n ea:;:h'pfttern 'St
in which the third feature has the value “b”. Finally, eachCHOS€N at random an €n a singe, shared, Intra-even

prediction pattern also includes pattern duration. A offset is selected, to specify the powithin the events at

I s which the crossover takes place (in Figure 1 this occurs
prediction pattermmatches a sequence of events within an . -
event sequence if: 1) the events within the predictiofflte! the first feature). Then, the portion to the left of

pattern match events within the event sequence, 2) t ch crossover pqint Is joined with thg portion_ to th? right
' the other individual’'s crossover point. This variable-

ordering constraints expressed in the prediction patter h " I the lenaths of th
are obeyed, and 3) the events in the event sequen gth crossover operator allows the lengths o €
offspring to differ from that of their parents, so that over

involved in this match occur within a period not time the GA ; dicti it f .
exceeding the pattern duration. Once a match succeeds '™q€ the can generate prediction patterns ot any size.

target event is predicted.

This  lan . coroeranfti2lal | (bl bl Jlelc[* ] [d]d]] ]
guage enables flexible and noise-toleran

prediction rules to be constructed, such as theifbsor  p2:[x | x[* | [y | y] * |

more) A events and 3 (or more) B events occur within an

hour, then predict the target event. This rule can be C1:|x | b| ] | |c | c| * | EIEIII

expressed using the pattern “1 hoMJA|B|B|B”, or any = *

permutation of this pattern, such that there are a total of exlalal* | [ x[* | [y[y[* |

A’s and 3 B’s. This language was designed to provide a

small set of features useful for many real-world prediction Figure 1: Variable Length Crossover

tasks. In partlcular(,jthls Ie}Pgulflge dtc_)es npttlncIL:de tregglatrhe pattern duration associated with each pattern is also
expressions nor does It alow Ume ntervals 1o D84 1eq in the crossover process, but is handled in a

SZE(;':fsd bﬁg’veeegr'ng'\t’édnusatlmivte:tfh.'sn I;Ee gr(zdlctcl)or; ifferent manner. Each child is evaluated on the training
P : wever, ex : ' guage woulaiy using the pattern duration from P1, P2, and the

require onlyafew, verylocalized,change$o Timeweaver. average of these two values. The pattern duration

Prediction patterns are encoded as variable length integgielding the best fitnessl, is then tentatively selected. If
strings in our GA. If features are used to describe eachd is the average of P1 and P2 then the child’s pattern
event, then each event is encoded usingegers; each duration is set to this value; otherwise, one additional
feature value is mapped to an integer value when the datalue is evaluated before the best value is selected for the



child. The additional value is chosen as follows: if d is
the smaller pattern duration of P1 and P2, then a value
randomly chosen between 0 and d is evaluated; otherwise
a random value between d and 2d is evaluated. This
procedure alows new pattern duration values to be
introduced.

The mutation operator modifies the value of either the
pattern duration, the feature values in the events, or the
ordering primitives.  In each case, mutation causes a
valid random value to be selected. Note that this allows
more general or specific patterns to be formed. For
example, when a feature value is mutated, 50% of the
time it will be set to the wildcard value and 50% of the
time to a randomly selected feature value. Mutation of a
pattern duration with value d results in a random value
between 0 and 2d being generated.

44 THE FITNESSFUNCTION

The fitness function must take an individual pattern and
return a value indicating how good the pattern is at
predicting target events. As mentioned earlier, predictive
accuracy is not a good measure of fitness since the target
events may occur very infrequently and because we are
using the Michigan approach where each pattern is only
part of the tota solution. Consequently, recall and
precision form the basis of our fitness function. These
information retrieval measures, which are described in
detail below, are appropriate for measuring the fitness of
individual patterns or collections of patterns. These
measures are summarized in Figure 2. For our problem,
recall is the fraction of the target events that are
successfully predicted and precision is the fraction of the
(positive) predictions that are correct. The negative
predictions are not factored in because they are aways

periods. The reduced precision measure replaces the
number of false positive predictions with the number of
complete, non-overlapping, prediction periods associated
with a false prediction. Thus, two false predictions
occurring a half-monitoring period apart yields 1Y%
“discounted” false positives. For the remainder of this
paper, the term precision will refer to reduced precision.

# Target Events Predicted
Total Target Events
# Target Events Predicted

# Target Events Predicted + FP

TP
P+ FP

Recall =

Precision =
T

Normalized Precision =

# Target Events Predicted
# Target Events Predicted + Discounted FP

Reduced Precision =

TP = True Positive Prediction FP = False Positive Prediction

Figure 2: Evaluation Measures for Event Prediction

The fitness of a pattern is based on both its precision and
recall. However, there are many ways in which these two
measures can be combined to form the fitness function.
Extensive testing was done on synthetic data to evaluate
alternative strategies for combining these two measures.
Different fixed weighting schemes were tried, but all
yielded poor results. Typically, the resulting population
of patterns contained either very precise patterns that each
covered only a few target events or very imprecise
patterns that covered many of the target events. That is,
the GA tended to optimize for precision or recall, but not
both, no matter how the relative weighting of these two
measures was adjusteliventhe strategy of progressively
increasing the relative importance of precision did not
eliminate this problem. These fitness functions even
performed poorly on synthetic data where a single pattern

ignored—only the presence or absence of a positivexisted that yielded 100% precision and 100% recall.
prediction is used to determine whether to predict th@hus, it is clear that these fithess functions prevent us
future occurrence (or non-occurrence) of a target event. from effectively searching the search space.

As described in Section 2, a target event may be predictéthe solution we adopted is to modify the relative
whenever an event is received; thus, multiple validmportance of precision and recall after each iteration of
predictions of a single target event may occur. Precisiothe GA. Specifically, we use an information retrieval
is a misleading measure since it counts these multiplmeasure known as the F-measure, which is defined below

predictions multiple times. Since the user is expected tm equation 1 (Van Rijsbergen, 1979).
take action upon seeing thierst positive prediction,

The valueBof
which controls the relative importance of precision to

counting the subsequent predictions in the precisionecall, was changed each iteration of the GA, so that it

measure is improper. Thenormalized precision

cyclesthrough thevaluesbetween @nd1 usingastep-size

eliminates this multiple counting by replacing the numbeiof .10.

of correct (positive) predictions with the number of target

events correctly predicted.

(B? + 1) precision (fecall

fitness >
B precision + recall

D

Normalized precision still does not account for the fact

that n incorrect positive predictions located closely
together may not be as harmful as the same numb

4> DIVERSITY MAINTENANCE STRATEGY

spread out over time (depending on the nature of th&he diversity maintenance strategy must ensure that a few
actions taken in response to the prediction of a targegirediction patterns do not dominate the population and
event). We useeduced precision to remedy this. A that collectively the individuals in the population predict
prediction is considered “active” for a period equal to itsmost, if not all, of the target events in the training set.
monitoring time, since the target event should occuOur challenge is to maintain diversity without making the
somewhere during that period. Two false predictionsearch too unfocused and to assess diversity efficiently,
located close together will have overlapping activeusing a minimal amount of global information that can be



efficiently computed. We use a niching strategy called small fraction of the time required to evaluate the new
sharing to maintain a diverse population (Goldberg, individuals.

1989). Diversity is encouraged by selecting individuals
proportional to their shared fitness, a measure that factors

in an individual’s fitness as well as its similarity to other

As mentioned earlier, new individuals are selected with a
probability proportional to their shared fitness, where the
individuals in the population. The degree of similarity c)frelatlve vaIu_e of precision and recall depends on the value

: of Bfor that iteration. The replacement strategy also uses

an individual i to the n individuals comprising the .shared fitness, but in this case individuals are chosen

population is measured by the niche count, defined Irihverselyproportional taheirshareditness. Furthermore,

equation 2. Experiments using synthetic data led us Hr replacement, the fithess component is computed by

choose a value of 3 far. averaging together the F-measure of equation 1 @ith
values of 0, %2, and 1, so that patterns that perform poorly

n
. = _ . . . a
hiche count= Z(l distance(i,)) 2 on both precisioand recall are most likely to be deleted.

=
The similarity of two individuals is measured using a
phenotypic distance measure that measures distance bafed CREATING PREDICTION RULES

on the performance of the individuals at predicting targ?his section describes an efficient algorithm for ordering

o L he prediction patterns returned by the genetic algorithm
by a Boolean prediction vector of lengtithat indicates and pruning “redundant” patterns. The algorithm utilizes

which of the t target events in the training set thethe recision, recall, and prediction vector returned by the
individual correctly predicts. The distance between twg P ' ' P y

individuals is the fraction of the target events for whichGAI‘ tfor eSacfh patternt. fThed%lgtO”thTt for f(c:Jrr_nlngh a
the two individuals have different predictions, which cansolu 'O_n’ » Irom a Set of candidate patterns, &, 1S shown
be computed from the number of bit differences in thé’e ow-

prediction vectors. The more similar an individual to thel. C = patterns returned from the GA; S = {};

rest of the individuals in the population, the smaller the2. while Cz 0O do

events.The performance of each individual is represente

distances and the greater the niche count value; if ah forcOC do

individual is identical to every other individual in the 4. if (increase_recall(S+c, S) < THRESHOLD)
population, then the niche count will be equal to thes. thenC=C-c;

population size Theshared fitnessis definedasthe fithess 6. else c.score = PF x (c.precision - S.precision) +
divided by the niche count. 7. increase_recall(S+c, S);

Note that the distance measure focuses on which tarqgt gonte_ 0c. Ox0c S
events are successfully predicted—false predictions a 0 Sef S‘ |{|Cbest-l CX_ C|_cbzggre_x.score}
not represented in the prediction vectors. This is not & " rec_:om uteé re_cision on‘trainin set:
major concern because false predictions are alrea L' done P P g set

penalized in the fitness function. Our approach exploits~

the fact that for many applications the target events arghis algorithm incrementally builds solutions with

rare, which greatly reduces the time required to computiacreasing recall by heuristically selecting the “best”
the distance measures. prediction pattern remaining in the set of candidate

We can calculate the number of bit-wise prediction vectoPalterns, using the formula on lines 6 and 7 as an

; ; ; ; valuation function. Prediction patterns that do not
comparisons required in order to keep the niche coun .
current. Since two new individuals are introduced intgncreaseherecallof thesolutionby atleastTHRESHOLD

the population each iteration, we must calculate the nich@/€ discarded, in order to prevent overfitting of the data.
counts of these two new individuals from scratch eacH NiS Step will also remove ‘redundant” patterns that do
iteration, andupdate the niche counts of the remaining NOt Predict any target events not already predicted. The
individuals, due to the changes in the popmaﬂonevaluat_mn func_tl_on rewards t_hose candidate patterns that
Assuming there are P individuals in the population, thé“"“’e high precision and predict many O.f the target events
niche count for each of the two new individuals requireé]Ot already pred|.cted' by S. The Predlqtlpn Factor (PF)
P-1 prediction vector comparisons, since each patterfPntrols the relative importance of precision and recall,
must be compared to all other patterns. The niche counfdld Increasing it will reduce the complexity of the learned
of the remaining individuals can be incrementally update(ﬁ’red'c.t'on rule.  Experimental result_s |nd|_cgte t_hat
by considering, for each individual, the number of new biS€/eCting patterns solely based on their precision yields
differences added/eliminated as a result of replacing twESults only slightly worse than those produced using the
old individualswith two newindividuals. This incremental ~ current evaluation function, where PF is set to 10.

update requires 4 prediction vector comparisons PpeThis algorithm is quite efficient: ip candidate patterns
individual.  Thus, a total of 2(P-1) + 4(P-2), or 6P-10,are returned by the GA (i.em,is the population size), then
prediction vector comparisons are required each iterationhe algorithm requires @f) computations of the
instead of the P(P-1) that would be required without thevaluation function and @) evaluations on the training
incremental updates. For the domains we haveata (step 11). If we assume that there is much more
investigated, the time required to do these updates is justmining data than individuals in the population and that



target events are rare (this affects the time to compute the
evaluation function), then the running time of the
algorithm is bounded by the time to evaluate the patterns
on the training data, which is O(ps), where sis the size of
the training set. In practice, much less than n iterations of
the for loop will be necessary, since the mgjority of the
prediction patterns will not pass the test on line 4.

6 RESULTS

This section describes the results of applying Timeweaver
to the problem of predicting tel ecommunication equipment
failures and predicting the next command in a sequence of
UNIX commands. The default value of 1% for
THRESHOLD and 10 for PF are used for al experiments.
All results are based on evaluation on an independent test
set, and, unless otherwise noted, on 2000 iterations of the
GA. Precision is measured using reduced precision for
the eguipment failure problem, except in Figure 5 where

These results are notable—the “baseline” strategy of
predicting a failure every warning time (20 seconds)
yields a precision of 3% and a recall of 63%. The curves
generated by Timeweaver all converge to this value, since
Timeweaver essentially mimics this “baseline” strategy to
maximize recall. A recall greater than 63% is never
achieved since 37% of the failures have no events in their
prediction period. The prediction pattern corresponding
to thefirst data point for the “Best 2000” curire Figure 3

is: 351:<TMSP,?,MJ>*<?,?,MJ>*<?,?,MN>. This pattern
indicates that a major severity alarm occurs on a TMSP
device, followed sometime later by a major alarm and
then by a minor alarm, all within a 351-second interval.

Experiments were run to vary the warning and monitoring
times, in order to assess the sensitivity of the problem to
these problem parameters. The results for varying the
warning time, shown in Figure 4, demonstrate that it is
much easier to predict failures when only a short warning
time is required. This effect is understandable since one

“simple” precision is used to allow comparison with otherwould expect the alarms most indicative of a failure to

approaches. For the UNIX command prediction problemgccur shortly before the failure.

The problem was not

reduced and simple precision are identical, since thaearly as sensitive to the value of the monitoring time.

monitoring period is equal to 1.

6.1 PREDICTING EQUIPMENT FAILURES

The problem is to predict telecommunication equipment 100 4
failures from historical alarm data. The data contains
250,000 alarms reported from 75 4EBSwitches, of

which 1200 of the alarms indicate distinct equipment

failures. Except when specified otherwise,

experiments have a 20-second warning time and an
hour monitoring time. The alarm data was broken up into8
a training set with 75% of the alarms and a test set with
25% of the alarms (each data set contains alarms from
different 4ESS switches¥igure3 showsthe performance

of the learned prediction rules, generated at different
points during the execution of the GA. The curve labeled 0

5
8

Increasing this value led only to modésiprovements in
precision until the value reached hours—beyond which
only minimal improvements were seen.

80 +

60 1%

T a0l

20 +

“Best 2000” was generated by combining the “best” 0 0 20 30 40 50 60 70 80

prediction patterns from the first 2000 iterations.

Improvements were not found after iteration 2000.

100 +

90 1| (4.4,90.0)

80 + — Iteration 0

704+ % ] Iteration 500
c ' - - i
Sel Iteration 1000
K2} ' ——Best 2000
g50+
o1 Mo

0+ AL N

20 1, N Y

10 + " O .

0 1 1 1 1 1 1
0 10 20 30 40 50 60

Recall

Figure 3: Learning to Predict Equipment Failures

The
figure shows that the performance improves with time.

Figure 4: Effect of Warning Time on Learning

6.2 COMPARISONWITH OTHER METHODS

The performance of Timeweaver on the equipment failure
prediction problem will now be compared against two
rule induction systems, C4.5rules (Quinlan, 1993) and
RIPPER (Cohen, 1995), and FOIL, a system that learns
Horn clauses from ground literals (Quinlan, 1990). In
order to use the “example-based” rule induction systems,
the event sequence data is first transformed by sliding a
window of sizen over the data and combining thme
events within the window into a single example by
“concatenating” the features. With a window size of 2,
examples are generated with the features: devicel,
severityl, codel, device2, severity2 and code2. The
classification assigned to each example is still based on
the event sequence data and the values of the warning and
monitoring times. Since the equipment failures are so
rare, the generated examples have an extremely skewed



class distribution. As a result, neither C4.5rules nor is undoubtedly due to the fact that Timeweaver's pattern
RIPPER predicts any failures when their default language is much more expressive than a simple
parameters are used. To compensate for the skewed  thresholding language.

distribution, various values of misclassification cost (i.e., 17
the relative cost of false negatives to false positives) were 16 4 9in1day
tried and only the best results are shown in Figure 5. 151 sinld .
. 4 N —o—threshold d 14 h
Note that in Figure 5 the number after the w indicates the 141 e F'Z in fy hrs +:h:$hzl d dz:z:f;: ‘1‘ d;y
window size and the number after the m the S134 3in4hrs
misclassification cost. :g 4 R
FOIL is a more natural learning system for event T 11+ 7indhrs f
prediction problems, since it can represent seguence 10+ _ . _
information using relations such as successor (E1, E2) and 9T 4m1day. T Linterrupt in 4 hours
after(El, E2), and therefore does not require any 8 3inlday 2in1 day
significant transformation of the data. FOIL provides no [ 1interruptindKay'
way for the user to modify the misclassification cost, so 6 * * * * *
the “default” value of 1 is used. 0 10 20 o 40 50
Recall
100 + — timeweaver Figure 6: Using Thresholds to Predict Failures
90 + -- - 4.5 (W3 mS)
80 T - rF'gFIJ‘Ef (W3 m20) 6.3 PREDICTING UNIX COMMANDS
70 + — )
5 60 4 In order to demonstrate the effectiveness of our system
% 50 - across multiple domains, we applied our system to the
& 4 task of predicting whether theext UNIX command in a
20 log of commands is the target command. The time at
20 which each command was executed is not available, so
this is a sequence prediction problem (thus the warning
104 and monitoring times are both set to 1). Note that

0 . 2 21 25 :3 Timeweaver can solve sequence prediction tasks because

Recall they may be considered a special case of an event
. . . rediction task. The dataset contains 34,490 UNIX

Figure 5: Comparison with Other ML Methods Eommands from a single user. Figure 7 shows the results
C4.5rules required 10 hours to run for a window size of 3for 4 target commands. Timeweaver does better, and
RIPPER was significantly faster and could handle &xcept for themore command much better, than a non-
window size up to 4; however, peak performance waicremental version of IPAM, a probabilistic method that
achieved with a window size of 3. FOIL produced resultpredicts the most likely next command based on the
that were generally inferior to the other methods. Allprevious command (Davison & Hirsh, 1998). The results
three learning systems achieved only low levels of recafrom IPAM are shown as individual data points. The first
(note the limited range on the x-axis). For C4.5rules angrediction pattern in the prediction strategy generated by
RIPPER, increasing the misclassification cost beyond th&imeweaver to predict thés command is the pattern:
values shown caused a single rule to be generated—a rileed.?.cd.?.cd (the pattern duration of 6 means the match
that always predicted the target event. Timeweavemust occur within 6 events). This pattern matches the
produces significantly better results than these othesequence cd Is cd Is cd, which is likely to be followed by
learning methods and also achieves higher levels of recalhnotheds command.

Timeweaver can also be compared against ANSWER, the
expert system responsible for handling the 4ESS alarms 70 7 |
(Weiss, Ros & Singhal, 1998). ANSWER uses a simple 4, | ||
thresholding strategy to generateaert whenever more "
than a specified number of interrupt alarms occur within a _50 1
specified time period. These alerts can be interpreted as & ,, |
prediction that the device generating the alarms is going
to fail. Various thresholding strategies were tried and the &30
thresholdgieneratinghebestresultsareshownin Figure6.

Each data point represents a thresholding strategy. Note
that increasing the number of interrupts required to hit the 10 -
threshold decreases the recall and tends to increase the
precision. By comparing these results with those of 0 10 20 30 40 50 60 70 8 90 100
Timeweaver in Figure 3, one can see that Timeweaver Recall

yields superior results, with a precision often 3-5 times . o

higher for a given recall valuéuch of this improvement Figure 7: Predicting UNIX Commands




7 RELATED RESEARCH

Our system performs prediction, which may be viewed as
atype of classification task, and hence our system shares
much in common with classifier systems (Goldberg,
1989). However, due to the simplicity of our rules, we
feel our work has more in common with other genetic-
based systems that use similarly simple rules to classify
examples (Greene & Smith, 1993; De Jong, Spears &
Gordon, 1993; McCalum & Spackman, 1990), as well as
evolutionary methods that build decision trees to classify
examples (Marmelstein & Lamont, 1998; Ryan &
Rayward-Smith, 1998).

Transforming the event sequence data into an unordered
set of examples permits existing concept-learning
programs to be used (Dietterich & Michalski, 1985).
These programs handle categorical features and we used
this technique in Section 6 so that C4.5 and RIPPER, two
popular machine learning program, could be applied to
the event prediction problem. This approach has also
been used within the telecommunication industry to
identify recurring transient network faults (Sasisekharan,
Seshadri & Weiss, 1996) and to predict catastrophic
equipment failures (Weiss, Eddy & Weiss, 1998). The
problem with these techniques is that the transformation
process will lose some sequence and temporal information
and one does not know aprioi what information is useful.

8 CONCLUSION

This paper investigated the problem of predicting rare
events with categorical features from event sequence data.
We showed how the rare event prediction problem could
be formulated as a machine learning problem and how
Timeweaver, a genetic-based machine learning system,
could solve this class of problems by identifying
predictive temporal and sequential patterns directly in the
unmodified event sequence data. This approach was
compared to other machine learning approaches and
shown to outperform them.

Acknowledgments

Thanks to members of the Rutgers machine learning
research group, and especially Haym Hirsh, for feedback
on this work.

References

Brockwell, P. J., and Davis, R. 1996. Introduction to
Time-Series and Forecasting. Springer-Verlag.

Cohen, W. 1995. Fast Effective Rule Induction. In
Proceedings of the Twelfth International Conference on
Machine Learning, 115-123.

Davison, B., and Hirsh, H. 1998. Probabilistic Online
Action Prediction. In Proceedings of the AAAI Spring
Symposium on Intelligent Environments.

De Jong, G. A., Spears, W. M., and Gordon, D. 1993.
Using Genetic Algorithms for Concept Learning.
Machine Learning. 13:161-188.

Dietterich, T., and Michaski, R. 1985. Discovering
patterns in sequences of Events, Artificial Intelligence,
25:187-232.

Giordana, A., Saitta, L., and Zini, F. 1994. Learning
Digjunctive Concepts by Means of Genetic Algorithms.
In  Proceedings of the Eleventh International
Conference on Machine Learning, 96-104.

Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley.

Greeng, D. P, and Smith, S. F. 1993. Competition-Based
Induction of Decision Models from Examples. Machine
Learning. 13: 229-257.

Marmelstein, R, and Lamont, G. 1998. Pattern
Classification using a Hybrid Genetic Program-Decision
Tree Approach. In Proceedings of the Third Annual
Genetic Programming Conference, 223-231.

McCalum, R., and Spackman, K. 1990. Using genetic
algorithms to learn digunctive rules from examples. In
Proceedings of the Seventh International Conference on
Machine Learning, 149-152.

Neri, F. & Saitta, L., 1996. An analysis of the Universal
Selection Suffrage Operator. Evolutionary Computation,
4(1): 87-107.

Quinlan, J. R. 1993. C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R., 1990. Learning Logical Definitions from
Relations, Machine Learning, 5: 239-266.

Ryan, M. D., and Rayward-Smith, V. J. 1998. The
evolution of decision trees. In Proceedings of the Third
Annual Genetic Programming Conference, 350-358.

Sasisekharan, R., Seshadri, V., and Weiss, S. 1996. Data
mining and forecasting in large-scale telecommunication
networks, |EEE Expert, 11(1): 37-43.

Syswerda, G. 1990. In the First Workshop on the
Foundations of Genetic Algorithms and Classification
Systems, Morgan Kaufmann.

Van Rijsbergen, C. J. 1979. Information Retrieval,
Butterworth, London, second edition.

Weiss, G. M., Eddy, J., Weiss, S., and Dube., R. 1998.
Intelligent Technologies for Telecommunications. In
Intelligent Engineering Applications, Chapter 8, CRC
Press, 249-275.

Weiss, G. M., Ros J. P, and Singha, A. 1998.
ANSWER: Network Monitoring using Object-Oriented
Rules. In Proceedings of the Tenth Conference on
Innovative Applications of Artificial Intelligence,
Madison, Wisconsin.

Weiss, G. M., and Hirsh, H. 1998. Learning to Predict
Rare Events in Event Sequences. In Proceedings of the
Fourth International Conference on Knowledge
Discovery and Data Mining, AAAI Press, 359-363.



