
Timeweaver: a Genetic Algorithm for Identifying Predictive
Patterns in Sequences of Events

Gary M. Weiss

Rutgers University and AT&T Labs
101 JFK Parkway

Short Hills, NJ 07078

Abstract

Learning to predict future events from sequences
of past events is an important, real-world,
problem that arises in many contexts. This paper
describes Timeweaver, a genetic-based machine
learning system that solves the event prediction
problem by identifying predictive temporal and
sequential patterns within data. Timeweaver is
applied to the task of learning to predict
telecommunication equipment failures from
250,000 alarm messages and is shown to
outperform existing methods.

1 INTRODUCTION

Data is being generated and stored at an ever-increasing
pace, and, partly as a consequence of this, there has been
increased interest in how machine learning and statistical
techniques can be employed to extract useful knowledge
from this data. When this data is time-series data, it is
often important to be able to predict future behavior based
on past data. In this paper we are interested in the problem
of predicting specific types of rare future events, which
we refer to as target events, from sequences of
timestamped events. We restrict ourselves to domains
where the events are described by categorical (i.e., non-
numerical) features, since statistical methods already exist
that can solve time-series prediction problems with
numerical features. We call the class of problems we
address in this paper rare event prediction problems. For
these prediction problems, every time an event is
received, a prediction procedure is applied which, based
on the past events, determines whether the target event
will occur in the near future. The problem of predicting
telecommunication equipment failures from logs of alarm
messages is one example of this type of prediction
problem. In this case, prediction of a failure might cause
one to replace, or at least route phone traffic around, the
suspect piece of equipment. Other examples of rare event
prediction problems include predicting fraudulent credit
card transactions and the start of transcription in DNA
sequences.

Machine learning and statistical methods have been used
to solve problems similar to the rare event prediction
problem, but most of these methods are not applicable to
this class of problems. The statistical methods do not
apply because they require numerical features (Brockwell
& Davis, 1996). The many machine learning methods
that perform classification do not apply because they
assume unordered examples—not time-ordered events.
Thus, these methods cannot learn from sequential or
temporal relationships between events. The machine
learning methods that are useful for modeling sequences
are also not appropriate, since we do not need to model
the entire sequence—we only need to predict one specific
type of event within a window of time.

Our approach to solving the event prediction problem
involves using a genetic algorithm to directly search for
predictive patterns in the data. Our system will learn a set
of rules of the form pattern ⇒ target event, and hence may
be considered a classifier system. However, because our
system does not provide any form of internal memory or
chaining of rules, and because the rules all have a
common right-hand side, it is more appropriate to view
our system as a genetic-based machine learning system.
We feel our work shares much in common with other
such systems, most notably COGIN (Greene & Smith,
1993) and GABIL (De Jong, Spears & Gordon, 1993).

The event prediction problem has been described in an
earlier paper, but only a very brief description of the
genetic algorithm was provided (Weiss & Hirsh, 1998).
In this paper we provide a detailed description of
Timeweaver, our genetic-based machine learning system
that solves the rare event prediction problems by
identifying predictive patterns in the data. The event
prediction problem has some interesting characteristics
that affect the design of our genetic algorithm. First,
because we expect to encounter very large datasets, the
GA must minimize the number of patterns that it
evaluates. Second, because the events we are interested
in predicting are typically rare and difficult to predict,
predictive accuracy is not an appropriate fitness
measure—the strategy of never predicting any target
events would often maximize predictive accuracy. To
avoid this problem, we base our fitness function on recall
and precision, two measures from the information

retrieval literature. Recall will measure the percentage of
target events that are successfully predicted and precision
the percentage of predictions that are correct. By factoring
in recall, we can ensure that a prediction strategy is
developed that predicts the majority of the target events.

2 THE EVENT PREDICTION PROBLEM

In this section we provide a formal description of the
event prediction problem. An event Et is a timestamped
observation occurring at time t that is described by a set
of feature-value pairs. An event sequence is a time-
ordered sequence of events, S = Et1, Et2, ..., Etn. The
target event is the specific type of event we would like to
learn to predict. The event prediction problem is to learn
a prediction procedure that, given a sequence of
timestamped events, correctly predicts whether the target
event will occur in the “near future”. In this paper we
assume the prediction procedure involves matching a set
of learned patterns against the data and predicting the
occurrence of a target event if the match succeeds. We
say a prediction occurring at time t, Pt, is correct if a
target event occurs within its prediction period. As
shown below, the prediction period is defined by a
warning time, W, and a monitoring time, M.

The warning time is the “lead time” necessary for a
prediction to be useful and the monitoring time
determines how far into the future the prediction extends.
While the value of the warning time is critically
dependent on the problem domain (e.g., how long it takes
to replace a piece of equipment), there is generally a lot of
flexibility in assigning the monitoring time. The larger
the value of the monitoring time, the easier the prediction
problem, but the less meaningful the prediction.

A target event is correctly predicted if at least one
prediction is made within its prediction period. The
prediction period of target event X, occurring at time t, is
shown below:

3 THE GENERAL APPROACH

Our approach to solving the event prediction problem
involves two steps. In the first step, a genetic algorithm is
used to search the space of prediction patterns, in order to
identify a set of patterns that individually do well at
predicting a subset of the target events and collectively
predict most of the target events. This is a Michigan-style
GA, since each individual pattern is only part of a
complete solution. Other GA-based systems have used
this approach to learn disjunctive concepts from examples
(Giordana, Saitta & Zini, 1994; Greene & Smith, 1993;
McCallum & Spackman, 1990). However, rather than

simply forming a solution from all of the individuals in
the population, we employ a second step. This step orders
the patterns from best to worst, based primarily on the
precision of their predictions, and prunes redundant
patterns (i.e., those patterns that do not predict any target
events not already predicted by some “better” pattern). A
family of prediction strategies is then formed by
incrementally adding one pattern at a time and a
precision/recall curve is generated based on these
strategies. A user can then use this curve, and the relative
cost of false predictions versus missed (i.e., not predicted)
target events, to determine the optimal prediction strategy.

Our GA uses steady-state reproduction, where only a few
individuals are replaced at once, rather than generational
reproduction, where a significant percentage of the
population is replaced. We chose to use steady-state
reproduction because it makes newly created members
immediately available for use, whereas with generational
reproduction, the new individuals cannot be used until the
next generation (Syswerda, 1990). Given that large
datasets will make it computationally expensive to
evaluate each new pattern, we believe it is very important
that new individuals are made immediately available.

4 THE GENETIC ALGORITHM

This section describes a genetic algorithm that searches
for patterns that successfully predict the future occurrence
of target events. The basic steps in our steady-state GA
are shown below:

1. Initialize population
2. while stopping criteria not met
3. select 2 individuals from the population
4. apply the crossover operator with probability PC

and mutation operator with probability PM

5. evaluate the 2 newly formed individuals
6. replace 2 existing individuals with the new ones
7. done

Since we are using a Michigan-style GA, the performance
of the population cannot be accurately estimated based on
the performance of individual members of the population.
Evaluating the performance based on all of the patterns
would also be misleading, since there may be some very
poor rules in the population. To accurately estimate the
performance of the GA, we apply our “second step” every
250 iterations of the GA. This forms a complete
prediction strategy using the best patterns in the
population (as described in detail in Section 5).

The remainder of this section describes the most
important aspects of the GA. In particular, much
attention is devoted to the fitness function and diversity
maintenance strategy, since these account for much of the
complexity of our system. We use a niching strategy
called sharing to ensure that diversity is preserved and
that the prediction patterns in the population cover a
majority of the target events. The niching strategy results
in a new measure, shared fitness, which factors in both
fitness and diversity considerations. It is this shared

Xtt - Wt - M

prediction period

t + WPt

prediction period

t + M

fitness measure that is used to implement the selection
and replacement strategies. In particular, individuals are
selected proportional to their shared fitness and removed
inversely proportional to their shared fitness.

4.1 REPRESENTATION

Each individual in our GA is a prediction pattern—a
pattern used to predict target events. The language used
to describe these patterns is similar to the language used
to represent the raw event sequences. A prediction
pattern is a sequence of events in which consecutive
events are connected by an ordering primitive that defines
ordering constraints between these events. The following
ordering primitives are supported:

• the wildcard “*” primitive matches any number of
events so the prediction pattern A*D matches ABCD

• the next “.” primitive matches no events so the
prediction pattern A.B.C only matches ABC

• the parallel “|” primitive allows events to occur in
any order and is commutative so that the prediction
pattern A|B|C will match, amongst others, CBA.

The “|” primitive has highest precedence so the pattern
“A.B*C|D|E” matches an A, followed immediately by a
B, followed sometime later by a C, D and E, in any order.
Each feature in an event is permitted to take on any of a
predefined list of valid feature values, as well as the
wildcard (“?”) value, which matches any feature value.
For example, if events in a domain are described by three
features, then the event <?, ?, b> would match any event
in which the third feature has the value “b”. Finally, each
prediction pattern also includes a pattern duration. A
prediction pattern matches a sequence of events within an
event sequence if: 1) the events within the prediction
pattern match events within the event sequence, 2) the
ordering constraints expressed in the prediction pattern
are obeyed, and 3) the events in the event sequence
involved in this match occur within a period not
exceeding the pattern duration. Once a match succeeds, a
target event is predicted.

This language enables flexible and noise-tolerant
prediction rules to be constructed, such as the rule: if 2 (or
more) A events and 3 (or more) B events occur within an
hour, then predict the target event. This rule can be
expressed using the pattern “1 hour: A|A|B|B|B”, or any
permutation of this pattern, such that there are a total of 2
A’s and 3 B’s. This language was designed to provide a
small set of features useful for many real-world prediction
tasks. In particular, this language does not include regular
expressions nor does it allow time intervals to be
specified between individual events in the prediction
patterns. However, extensions to this language would
require only a few, very localized, changes to Timeweaver.

Prediction patterns are encoded as variable length integer
strings in our GA. If f features are used to describe each
event, then each event is encoded using f integers; each
feature value is mapped to an integer value when the data

is read into our system. A prediction pattern with n
events, each described by f features, is represented by a
string containing n(f+1)+1 integers, since there is one
integer-valued ordering primitive per event and one
pattern duration per prediction pattern.

4.2 INITIALIZATION OF THE POPULATION

The population is initialized by generating prediction
patterns which contain only a single event, where the
feature values in this event are set 50% of the time to the
wildcard value and the remaining time to a randomly
selected valid feature value. The patterns are generated in
this manner so that they will not start off overly
specific—in which case they might not match any events
in the training data, which would prevent the GA from
effectively exploring the search space. The crossover
operator, described in the next section, will allow these
single-event patterns to grow, as necessary. A future
enhancement might be to seed some of the initial patterns
based on the training data—although this approach could
overly bias the search.

4.3 GENETIC OPERATORS

Timeweaver employs a crossover and mutation operator.
Crossover is accomplished via a variable length crossover
operator, as shown in Figure 1. The first parent, P1, has a
prediction pattern with 4 events and the second parent,
P2, has one with 2 events. Each event contains two
features and the ordering primitive is stored in the third
position. For each parent, an event within each pattern is
chosen at random and then a single, shared, intra-event
offset is selected, to specify the point within the events at
which the crossover takes place (in Figure 1 this occurs
after the first feature). Then, the portion to the left of
each crossover point is joined with the portion to the right
of the other individual’s crossover point. This variable-
length crossover operator allows the lengths of the
offspring to differ from that of their parents, so that over
time the GA can generate prediction patterns of any size.

P1:

P2:

C1:

C2:

Figure 1: Variable Length Crossover

The pattern duration associated with each pattern is also
involved in the crossover process, but is handled in a
different manner. Each child is evaluated on the training
data using the pattern duration from P1, P2, and the
average of these two values. The pattern duration
yielding the best fitness, d, is then tentatively selected. If
d is the average of P1 and P2 then the child’s pattern
duration is set to this value; otherwise, one additional
value is evaluated before the best value is selected for the

x x *

d d |b b . c c *a a *

y y *

x b . c c * d d |

a a * b x * y y *

child. The additional value is chosen as follows: if d is
the smaller pattern duration of P1 and P2, then a value
randomly chosen between 0 and d is evaluated; otherwise
a random value between d and 2d is evaluated. This
procedure allows new pattern duration values to be
introduced.

The mutation operator modifies the value of either the
pattern duration, the feature values in the events, or the
ordering primitives. In each case, mutation causes a
valid random value to be selected. Note that this allows
more general or specific patterns to be formed. For
example, when a feature value is mutated, 50% of the
time it will be set to the wildcard value and 50% of the
time to a randomly selected feature value. Mutation of a
pattern duration with value d results in a random value
between 0 and 2d being generated.

4.4 THE FITNESS FUNCTION

The fitness function must take an individual pattern and
return a value indicating how good the pattern is at
predicting target events. As mentioned earlier, predictive
accuracy is not a good measure of fitness since the target
events may occur very infrequently and because we are
using the Michigan approach where each pattern is only
part of the total solution. Consequently, recall and
precision form the basis of our fitness function. These
information retrieval measures, which are described in
detail below, are appropriate for measuring the fitness of
individual patterns or collections of patterns. These
measures are summarized in Figure 2. For our problem,
recall is the fraction of the target events that are
successfully predicted and precision is the fraction of the
(positive) predictions that are correct. The negative
predictions are not factored in because they are always
ignored—only the presence or absence of a positive
prediction is used to determine whether to predict the
future occurrence (or non-occurrence) of a target event.

As described in Section 2, a target event may be predicted
whenever an event is received; thus, multiple valid
predictions of a single target event may occur. Precision
is a misleading measure since it counts these multiple
predictions multiple times. Since the user is expected to
take action upon seeing the first positive prediction,
counting the subsequent predictions in the precision
measure is improper. The normalized precision
eliminates this multiple counting by replacing the number
of correct (positive) predictions with the number of target
events correctly predicted.

Normalized precision still does not account for the fact
that n incorrect positive predictions located closely
together may not be as harmful as the same number
spread out over time (depending on the nature of the
actions taken in response to the prediction of a target
event). We use reduced precision to remedy this. A
prediction is considered “active” for a period equal to its
monitoring time, since the target event should occur
somewhere during that period. Two false predictions
located close together will have overlapping active

periods. The reduced precision measure replaces the
number of false positive predictions with the number of
complete, non-overlapping, prediction periods associated
with a false prediction. Thus, two false predictions
occurring a half-monitoring period apart yields 1½
“discounted” false positives. For the remainder of this
paper, the term precision will refer to reduced precision.

Recall ≡ # Target Events Predicted

 Total Target Events
, Precision ≡ TP

TP + FP

Normalized Precision ≡ # Target Events Predicted

Target Events Predicted + FP

Reduced Precision ≡ # Target Events Predicted

Target Events Predicted + Discounted FP

TP = True Positive Prediction FP = False Positive Prediction

Figure 2: Evaluation Measures for Event Prediction

The fitness of a pattern is based on both its precision and
recall. However, there are many ways in which these two
measures can be combined to form the fitness function.
Extensive testing was done on synthetic data to evaluate
alternative strategies for combining these two measures.
Different fixed weighting schemes were tried, but all
yielded poor results. Typically, the resulting population
of patterns contained either very precise patterns that each
covered only a few target events or very imprecise
patterns that covered many of the target events. That is,
the GA tended to optimize for precision or recall, but not
both, no matter how the relative weighting of these two
measures was adjusted. Even the strategy of progressively
increasing the relative importance of precision did not
eliminate this problem. These fitness functions even
performed poorly on synthetic data where a single pattern
existed that yielded 100% precision and 100% recall.
Thus, it is clear that these fitness functions prevent us
from effectively searching the search space.

The solution we adopted is to modify the relative
importance of precision and recall after each iteration of
the GA. Specifically, we use an information retrieval
measure known as the F-measure, which is defined below
in equation 1 (Van Rijsbergen, 1979). The value of β,
which controls the relative importance of precision to
recall, was changed each iteration of the GA, so that it
cycles through the values between 0 and 1 using a step-size
of .10.

 fitness=
(β

β

2

2

 + 1) precision recall

precision + recall

⋅
 (1)

4.5 DIVERSITY MAINTENANCE STRATEGY

The diversity maintenance strategy must ensure that a few
prediction patterns do not dominate the population and
that collectively the individuals in the population predict
most, if not all, of the target events in the training set.
Our challenge is to maintain diversity without making the
search too unfocused and to assess diversity efficiently,
using a minimal amount of global information that can be

efficiently computed. We use a niching strategy called
sharing to maintain a diverse population (Goldberg,
1989). Diversity is encouraged by selecting individuals
proportional to their shared fitness, a measure that factors
in an individual’s fitness as well as its similarity to other
individuals in the population. The degree of similarity of
an individual i to the n individuals comprising the
population is measured by the niche count, defined in
equation 2. Experiments using synthetic data led us to
choose a value of 3 for α.

 niche counti ≡ ∑
=

n

j 1

j)),distance(i - (1 α (2)

The similarity of two individuals is measured using a
phenotypic distance measure that measures distance based
on the performance of the individuals at predicting target
events. The performance of each individual is represented
by a Boolean prediction vector of length t that indicates
which of the t target events in the training set the
individual correctly predicts. The distance between two
individuals is the fraction of the target events for which
the two individuals have different predictions, which can
be computed from the number of bit differences in the
prediction vectors. The more similar an individual to the
rest of the individuals in the population, the smaller the
distances and the greater the niche count value; if an
individual is identical to every other individual in the
population, then the niche count will be equal to the
population size. The shared fitness is defined as the fitness
divided by the niche count.

Note that the distance measure focuses on which target
events are successfully predicted—false predictions are
not represented in the prediction vectors. This is not a
major concern because false predictions are already
penalized in the fitness function. Our approach exploits
the fact that for many applications the target events are
rare, which greatly reduces the time required to compute
the distance measures.

We can calculate the number of bit-wise prediction vector
comparisons required in order to keep the niche counts
current. Since two new individuals are introduced into
the population each iteration, we must calculate the niche
counts of these two new individuals from scratch each
iteration, and update the niche counts of the remaining
individuals, due to the changes in the population.
Assuming there are P individuals in the population, the
niche count for each of the two new individuals requires
P-1 prediction vector comparisons, since each pattern
must be compared to all other patterns. The niche counts
of the remaining individuals can be incrementally updated
by considering, for each individual, the number of new bit
differences added/eliminated as a result of replacing two
old individuals with two new individuals. This incremental
update requires 4 prediction vector comparisons per
individual. Thus, a total of 2(P-1) + 4(P-2), or 6P-10,
prediction vector comparisons are required each iteration,
instead of the P(P-1) that would be required without the
incremental updates. For the domains we have
investigated, the time required to do these updates is just a

small fraction of the time required to evaluate the new
individuals.

As mentioned earlier, new individuals are selected with a
probability proportional to their shared fitness, where the
relative value of precision and recall depends on the value
of β for that iteration. The replacement strategy also uses
shared fitness, but in this case individuals are chosen
inversely proportional to their shared fitness. Furthermore,
for replacement, the fitness component is computed by
averaging together the F-measure of equation 1 with β
values of 0, ½, and 1, so that patterns that perform poorly
on both precision and recall are most likely to be deleted.

5 CREATING PREDICTION RULES

This section describes an efficient algorithm for ordering
the prediction patterns returned by the genetic algorithm
and pruning “redundant” patterns. The algorithm utilizes
the precision, recall, and prediction vector returned by the
GA for each pattern. The algorithm for forming a
solution, S, from a set of candidate patterns, C, is shown
below:

1. C = patterns returned from the GA; S = {};
2. while C ≠ ∅ do
3. for c ∈C do
4. if (increase_recall(S+c, S) ≤ THRESHOLD)
5. then C = C - c;
6. else c.score = PF × (c.precision - S.precision) +
7. increase_recall(S+c, S);
8. done
9. best = {c ∈C, ∀x∈C| c.score ≥ x.score}
10. S = S || best; C = C - best;
11. recompute S.precision on training set;
12. done

This algorithm incrementally builds solutions with
increasing recall by heuristically selecting the “best”
prediction pattern remaining in the set of candidate
patterns, using the formula on lines 6 and 7 as an
evaluation function. Prediction patterns that do not
increase the recall of the solution by at least THRESHOLD
are discarded, in order to prevent overfitting of the data.
This step will also remove “redundant” patterns that do
not predict any target events not already predicted. The
evaluation function rewards those candidate patterns that
have high precision and predict many of the target events
not already predicted by S. The Prediction Factor (PF)
controls the relative importance of precision and recall,
and increasing it will reduce the complexity of the learned
prediction rule. Experimental results indicate that
selecting patterns solely based on their precision yields
results only slightly worse than those produced using the
current evaluation function, where PF is set to 10.

This algorithm is quite efficient: if p candidate patterns
are returned by the GA (i.e., p is the population size), then
the algorithm requires O(p2) computations of the
evaluation function and O(p) evaluations on the training
data (step 11). If we assume that there is much more
training data than individuals in the population and that

target events are rare (this affects the time to compute the
evaluation function), then the running time of the
algorithm is bounded by the time to evaluate the patterns
on the training data, which is O(ps), where s is the size of
the training set. In practice, much less than n iterations of
the for loop will be necessary, since the majority of the
prediction patterns will not pass the test on line 4.

6 RESULTS

This section describes the results of applying Timeweaver
to the problem of predicting telecommunication equipment
failures and predicting the next command in a sequence of
UNIX commands. The default value of 1% for
THRESHOLD and 10 for PF are used for all experiments.
All results are based on evaluation on an independent test
set, and, unless otherwise noted, on 2000 iterations of the
GA. Precision is measured using reduced precision for
the equipment failure problem, except in Figure 5 where
“simple” precision is used to allow comparison with other
approaches. For the UNIX command prediction problem,
reduced and simple precision are identical, since the
monitoring period is equal to 1.

6.1 PREDICTING EQUIPMENT FAILURES

The problem is to predict telecommunication equipment
failures from historical alarm data. The data contains
250,000 alarms reported from 75 4ESS switches, of
which 1200 of the alarms indicate distinct equipment
failures. Except when specified otherwise, all
experiments have a 20-second warning time and an 8-
hour monitoring time. The alarm data was broken up into
a training set with 75% of the alarms and a test set with
25% of the alarms (each data set contains alarms from
different 4ESS switches). Figure 3 shows the performance
of the learned prediction rules, generated at different
points during the execution of the GA. The curve labeled
“Best 2000” was generated by combining the “best”
prediction patterns from the first 2000 iterations. The
figure shows that the performance improves with time.
Improvements were not found after iteration 2000.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60
Recall

 P
re

ci
si

on

Iteration 0
Iteration 500
Iteration 1000
Best 2000

(4.4,90.0)

Figure 3: Learning to Predict Equipment Failures

These results are notable—the “baseline” strategy of
predicting a failure every warning time (20 seconds)
yields a precision of 3% and a recall of 63%. The curves
generated by Timeweaver all converge to this value, since
Timeweaver essentially mimics this “baseline” strategy to
maximize recall. A recall greater than 63% is never
achieved since 37% of the failures have no events in their
prediction period. The prediction pattern corresponding
to the first data point for the “Best 2000” curve in Figure 3
is: 351:<TMSP,?,MJ>*<?,?,MJ>*<?,?,MN>. This pattern
indicates that a major severity alarm occurs on a TMSP
device, followed sometime later by a major alarm and
then by a minor alarm, all within a 351-second interval.

Experiments were run to vary the warning and monitoring
times, in order to assess the sensitivity of the problem to
these problem parameters. The results for varying the
warning time, shown in Figure 4, demonstrate that it is
much easier to predict failures when only a short warning
time is required. This effect is understandable since one
would expect the alarms most indicative of a failure to
occur shortly before the failure. The problem was not
nearly as sensitive to the value of the monitoring time.
Increasing this value led only to modest improvements in
precision until the value reached hours—beyond which
only minimal improvements were seen.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80
Recall

Pr
ec

is
io

n

1sec.
10 sec.
20 sec.
10 min.
30 min.

Figure 4: Effect of Warning Time on Learning

6.2 COMPARISON WITH OTHER METHODS

The performance of Timeweaver on the equipment failure
prediction problem will now be compared against two
rule induction systems, C4.5rules (Quinlan, 1993) and
RIPPER (Cohen, 1995), and FOIL, a system that learns
Horn clauses from ground literals (Quinlan, 1990). In
order to use the “example-based” rule induction systems,
the event sequence data is first transformed by sliding a
window of size n over the data and combining the n
events within the window into a single example by
“concatenating” the features. With a window size of 2,
examples are generated with the features: device1,
severity1, code1, device2, severity2 and code2. The
classification assigned to each example is still based on
the event sequence data and the values of the warning and
monitoring times. Since the equipment failures are so
rare, the generated examples have an extremely skewed

class distribution. As a result, neither C4.5rules nor
RIPPER predicts any failures when their default
parameters are used. To compensate for the skewed
distribution, various values of misclassification cost (i.e.,
the relative cost of false negatives to false positives) were
tried and only the best results are shown in Figure 5.
Note that in Figure 5 the number after the w indicates the
window size and the number after the m the
misclassification cost.

FOIL is a more natural learning system for event
prediction problems, since it can represent sequence
information using relations such as successor(E1, E2) and
after(E1, E2), and therefore does not require any
significant transformation of the data. FOIL provides no
way for the user to modify the misclassification cost, so
the “default” value of 1 is used.

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8
Recall

P
re

ci
si

on

 timeweaver
c4.5 (w3 m5)
ripper (w3 m20)
FOIL

Figure 5: Comparison with Other ML Methods

C4.5rules required 10 hours to run for a window size of 3.
RIPPER was significantly faster and could handle a
window size up to 4; however, peak performance was
achieved with a window size of 3. FOIL produced results
that were generally inferior to the other methods. All
three learning systems achieved only low levels of recall
(note the limited range on the x-axis). For C4.5rules and
RIPPER, increasing the misclassification cost beyond the
values shown caused a single rule to be generated—a rule
that always predicted the target event. Timeweaver
produces significantly better results than these other
learning methods and also achieves higher levels of recall.

Timeweaver can also be compared against ANSWER, the
expert system responsible for handling the 4ESS alarms
(Weiss, Ros & Singhal, 1998). ANSWER uses a simple
thresholding strategy to generate an alert whenever more
than a specified number of interrupt alarms occur within a
specified time period. These alerts can be interpreted as a
prediction that the device generating the alarms is going
to fail. Various thresholding strategies were tried and the
thresholds generating the best results are shown in Figure 6.
Each data point represents a thresholding strategy. Note
that increasing the number of interrupts required to hit the
threshold decreases the recall and tends to increase the
precision. By comparing these results with those of
Timeweaver in Figure 3, one can see that Timeweaver
yields superior results, with a precision often 3-5 times
higher for a given recall value. Much of this improvement

is undoubtedly due to the fact that Timeweaver’s pattern
language is much more expressive than a simple
thresholding language.

6

7

8

9

10

11

12

13

14

15

16

17

0 10 20 30 40 50
Recall

P
re

ci
si

on

threshold duration: 4 hr

threshold duration: 1 day

2 in 1 day
3 in 1 day

4 in 1 day

1 interrupt in 1 day

1 interrupt in 4 hours

2 in 4 hrs

9 in 1 day

3 in 4 hrs

6 in 1 day
4 in 4 hrs

7 in 4 hrs

Figure 6: Using Thresholds to Predict Failures

6.3 PREDICTING UNIX COMMANDS

In order to demonstrate the effectiveness of our system
across multiple domains, we applied our system to the
task of predicting whether the next UNIX command in a
log of commands is the target command. The time at
which each command was executed is not available, so
this is a sequence prediction problem (thus the warning
and monitoring times are both set to 1). Note that
Timeweaver can solve sequence prediction tasks because
they may be considered a special case of an event
prediction task. The dataset contains 34,490 UNIX
commands from a single user. Figure 7 shows the results
for 4 target commands. Timeweaver does better, and
except for the more command much better, than a non-
incremental version of IPAM, a probabilistic method that
predicts the most likely next command based on the
previous command (Davison & Hirsh, 1998). The results
from IPAM are shown as individual data points. The first
prediction pattern in the prediction strategy generated by
Timeweaver to predict the ls command is the pattern:
6:cd.?.cd.?.cd (the pattern duration of 6 means the match
must occur within 6 events). This pattern matches the
sequence cd ls cd ls cd, which is likely to be followed by
another ls command.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100
Recall

P
re

ci
si

on

cd
more
ls
w

w

cd

ls more

Figure 7: Predicting UNIX Commands

7 RELATED RESEARCH

Our system performs prediction, which may be viewed as
a type of classification task, and hence our system shares
much in common with classifier systems (Goldberg,
1989). However, due to the simplicity of our rules, we
feel our work has more in common with other genetic-
based systems that use similarly simple rules to classify
examples (Greene & Smith, 1993; De Jong, Spears &
Gordon, 1993; McCallum & Spackman, 1990), as well as
evolutionary methods that build decision trees to classify
examples (Marmelstein & Lamont, 1998; Ryan &
Rayward-Smith, 1998).

Transforming the event sequence data into an unordered
set of examples permits existing concept-learning
programs to be used (Dietterich & Michalski, 1985).
These programs handle categorical features and we used
this technique in Section 6 so that C4.5 and RIPPER, two
popular machine learning program, could be applied to
the event prediction problem. This approach has also
been used within the telecommunication industry to
identify recurring transient network faults (Sasisekharan,
Seshadri & Weiss, 1996) and to predict catastrophic
equipment failures (Weiss, Eddy & Weiss, 1998). The
problem with these techniques is that the transformation
process will lose some sequence and temporal information
and one does not know aprioi what information is useful.

8 CONCLUSION

This paper investigated the problem of predicting rare
events with categorical features from event sequence data.
We showed how the rare event prediction problem could
be formulated as a machine learning problem and how
Timeweaver, a genetic-based machine learning system,
could solve this class of problems by identifying
predictive temporal and sequential patterns directly in the
unmodified event sequence data. This approach was
compared to other machine learning approaches and
shown to outperform them.

Acknowledgments

Thanks to members of the Rutgers machine learning
research group, and especially Haym Hirsh, for feedback
on this work.

References

Brockwell, P. J., and Davis, R. 1996. Introduction to
Time-Series and Forecasting. Springer-Verlag.

Cohen, W. 1995. Fast Effective Rule Induction. In
Proceedings of the Twelfth International Conference on
Machine Learning, 115-123.

Davison, B., and Hirsh, H. 1998. Probabilistic Online
Action Prediction. In Proceedings of the AAAI Spring
Symposium on Intelligent Environments.

De Jong, G. A., Spears, W. M., and Gordon, D. 1993.
Using Genetic Algorithms for Concept Learning.
Machine Learning. 13:161-188.

Dietterich, T., and Michalski, R. 1985. Discovering
patterns in sequences of Events, Artificial Intelligence,
25:187-232.

Giordana, A., Saitta, L., and Zini, F. 1994. Learning
Disjunctive Concepts by Means of Genetic Algorithms.
In Proceedings of the Eleventh International
Conference on Machine Learning, 96-104.

Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley.

Greene, D. P., and Smith, S. F. 1993. Competition-Based
Induction of Decision Models from Examples. Machine
Learning. 13: 229-257.

Marmelstein, R, and Lamont, G. 1998. Pattern
Classification using a Hybrid Genetic Program-Decision
Tree Approach. In Proceedings of the Third Annual
Genetic Programming Conference, 223-231.

McCallum, R., and Spackman, K. 1990. Using genetic
algorithms to learn disjunctive rules from examples. In
Proceedings of the Seventh International Conference on
Machine Learning, 149-152.

Neri, F. & Saitta, L., 1996. An analysis of the Universal
Selection Suffrage Operator. Evolutionary Computation,
4(1): 87-107.

Quinlan, J. R. 1993. C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R., 1990. Learning Logical Definitions from
Relations, Machine Learning, 5: 239-266.

Ryan, M. D., and Rayward-Smith, V. J. 1998. The
evolution of decision trees. In Proceedings of the Third
Annual Genetic Programming Conference, 350-358.

Sasisekharan, R., Seshadri, V., and Weiss, S. 1996. Data
mining and forecasting in large-scale telecommunication
networks, IEEE Expert, 11(1): 37-43.

Syswerda, G. 1990. In the First Workshop on the
Foundations of Genetic Algorithms and Classification
Systems, Morgan Kaufmann.

Van Rijsbergen, C. J. 1979. Information Retrieval,
Butterworth, London, second edition.

Weiss, G. M., Eddy, J., Weiss, S., and Dube., R. 1998.
Intelligent Technologies for Telecommunications. In
Intelligent Engineering Applications, Chapter 8, CRC
Press, 249-275.

Weiss, G. M., Ros J. P., and Singhal, A. 1998.
ANSWER: Network Monitoring using Object-Oriented
Rules. In Proceedings of the Tenth Conference on
Innovative Applications of Artificial Intelligence,
Madison, Wisconsin.

Weiss, G. M., and Hirsh, H. 1998. Learning to Predict
Rare Events in Event Sequences. In Proceedings of the
Fourth International Conference on Knowledge
Discovery and Data Mining, AAAI Press, 359-363.

