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ABSTRACT 

Smart phones comprise a large and rapidly growing market. These 

devices provide unprecedented opportunities for sensor mining 

since they include a large variety of sensors, including an: accele-

ration sensor (accelerometer), location sensor (GPS), direction 

sensor (compass), audio sensor (microphone), image sensor (cam-

era), proximity sensor, light sensor, and temperature sensor. Com-

bined with the ubiquity and portability of these devices, these 

sensors provide us with an unprecedented view into people’s 

lives—and an excellent opportunity for data mining. But there are 

obstacles to sensor mining applications, due to the severe resource 

limitations (e.g., power, memory, bandwidth) faced by mobile 

devices. In this paper we discuss these limitations, their impact, 

and propose a solution based on our WISDM (WIireless Sensor 

Data Mining) smart phone-based sensor mining architecture.   

Categories and Subject Descriptors 

H.2.8 [Database Applications]: Data Mining 

General Terms 

Performance, Design, Security, Experimentation, Human Factors 

Keywords 

Sensor mining, sensors, smart phone, cell phone, data mining, 

accelerometer, mobile applications. 

1. INTRODUCTION 
Smart phones and other wireless mobile devices, including tablet 

computers, music players, and portable gaming systems, comprise 

a large and rapidly growing market. In fact, since the fourth quar-

ter of 2010 smart phone sales have exceeded those of PCs [11]. 

Smart phones provide unprecedented opportunities for sensor 

mining since they include a variety of sensors, including an: acce-

leration sensor (accelerometer), location sensor (GPS), direction 

sensor (compass), audio sensor (microphone), image sensor (cam-

era), proximity sensor, light sensor, and temperature sensor. The 

ubiquity and portability of these devices, combined with the many 

sensors that they host, provides us with an unprecedented view 

into people’s lives—and great opportunities for data mining. 

Sensor mining applications, however, face many challenges due to 

the severe resource limitations imposed on mobile devices. In this 

paper we discuss these limitations, their design impact, and pro-

pose solutions based on our WISDM (Wireless Sensor Data Min-

ing) smart phone-based sensor mining architecture. The design 

considerations that we identify will be useful to others who build 

smart phone-based data mining applications and can also be used 

to evaluate future smart phone-based sensor mining platforms. 

We briefly introduce a few representative smart phone-based sen-

sor mining applications, since it is difficult to evaluate design 

considerations independent of any applications. One class of sen-

sor mining applications relies mainly on the smart phone’s accele-

rometer to learn what activities (walking, jogging, etc.) a user is 

performing [4, 9, 12, 19]. Such activity recognition applications 

can be used to determine if a user is getting enough physical activ-

ity or to customize smart phone behavior based on context.  Since 

a user’s movements form a distinctive signature, a smart phone’s 

accelerometer can also be used for biometric identification and 

authentication [6, 10]. Location-based sensor data mining is a 

particularly popular and expanding application area, which has 

matured sufficiently to spawn commercial applications. For ex-

ample, Sense Networks [14] provides several location based data 

mining applications, including Citysense™, which identifies hot 

spots and also learns where each user likes to spend time. Other 

applications include Google Maps and Navigator, which identify 

traffic based on real-time GPS location data from large numbers 

of smart-phone users, which is then combined with knowledge 

about historical traffic patterns. Our WISDM research group [17] 

has developed smart phone-based activity recognition [9] and 

biometric [10] applications and is in the process of implementing 

them within our WISDM architecture so that they operate in real-

time. We have chosen to implement our WISDM sensor mining 

architecture using the Android mobile operating system and An-

droid phones for reasons described in Section 3.1, but this archi-

tecture can be adapted to use other mobile operating systems. 

There are many high-level design constraints that a mobile sensor 

mining architecture must satisfy. First, it must be scalable to thou-

sands, if not millions (e.g., Google Navigator), of users. It must 

also generate results in real-time, which means applying any 

learned models to the sensor data in real-time (most activity rec-

ognition systems require this). The architecture must also be able 

to generate predictive models in close to real-time and automati-

cally deploy them, since some sensor mining applications will 

require this. The architecture should also support varying levels of 

distributed processing, where at one extreme the phone acts as a 

“dumb” client and the server is responsible for all data processing 

and mining, while at the other extreme everything is done locally 

on the “smart” client. For a variety of reasons including scalabili-

ty, application independence, and user privacy, it makes sense to 

push processing tasks to the mobile devices, when feasible. But 

some tasks, by their very nature, may require centralized 
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processing of data (e.g., road traffic analysis). Additionally, a 

server-based solution is needed if the application is too compute 

intensive for a smart phone or if the sensor data must be collected 

and saved (a key requirement for much academic research). Thus 

far, we have identified three high level design issues that impact 

the design of a phone-based sensor mining architecture: 

Design Issue 1: Mobile devices have severe resource limitations 

with respect to battery power, computational speed (CPU), mem-

ory, and bandwidth which must be accommodated. 

Design Issue 2: The sensor mining architecture must be scalable 

so that it can accommodate thousands or even millions of users. 

Design Issue 3: Sensor mining applications must often generate 

results in real-time—and sometimes must also be able to learn 

(i.e., build predictive models) in real-time. 

The remainder of this paper is organized as follows. In Section 2 

we describe the sensors available on smart phones and some key 

issues that we have encountered using them. Our WISDM data 

mining architecture is then described in Section 3. Security and 

Privacy, two very important issues for smart phone sensor mining, 

are discussed in Section 4. Resource usage issues are described in 

Section 5 and then Section 6 summarizes our main contributions. 

2. SENSORS 
The sensors contained in smart phones are described in Section 

2.1. Section 2.2 then describes the frequency with which sensor 

information is updated and Section 2.3 discusses how sensor 

usage can interact with normal phone functioning. 

2.1 Description of Sensors 
In this section we describe smart phone sensors, but provide more 

details for the most powerful and complex sensors. One key sen-

sor is the accelerometer, which was initially provided on smart 

phones to handle screen rotation and to support advanced games. 

All Android phones and iPhones include a tri-axial accelerometer 

that measures acceleration in all three spatial dimensions. The 

accelerometer in Android phones varies by manufacturer, but as 

an example, the popular HTC Hero uses Bosch’s BMA150 digital 

acceleration sensor [3] and Apple uses an LIS302DL accelerome-

ter [15] in iPhones and recent iPods. The force of gravity is meas-

ured by most of these accelerometers and this information can be 

used to determine the direction downward (i.e., to Earth). These 

accelerometers tend to produce highly accurate measurements. 

Smart phones also include sensors for determining location. The 

most accurate information is provided by the GPS receiver, which 

can provide location information to within a few meters. This 

functionality relies on triangulation with satellites in Earth orbit 

but typically does not function indoors. When the GPS signal is 

not available, most smart phones rely on other triangulation which 

is much less accurate, and uses the estimated distance to local cell 

phone towers and WiFi networks to calculate location. Such “ar-

tificial GPS” methods can still be quite accurate, however, in 

highly populated areas with many cell and WiFi signals. Smart 

phones are now routinely used by millions of users for mapping 

and route information via services like Google Navigator.   

The audio sensor (i.e., microphone) can be used to monitor speech 

and background noise. Speech-to-text capabilities provide the 

opportunity for interesting (and perhaps troubling) sensor mining 

applications, but even gross measurements like sound level can 

provide clues about a user’s environment or activity. For example, 

one application uses the microphone to help determine if a user is 

at a party [12]. The image sensor (i.e., camera) can also be useful, 

especially as the quality of the cameras improves. These sensors 

can be combined with image mining programs to perform face 

recognition and automatically identify objects and places. Unfor-

tunately, the camera cannot be used for continuous monitoring 

since it is typically obstructed when the phone is not in active use.  

Smart phones contain what we refer to as secondary sensors, 

which provide only limited capabilities. One such sensor is the 

light sensor, which measures the intensity of ambient light. The 

main purpose of this sensor is to determine appropriate screen 

brightness. It only operates when the smart phone is open, limit-

ing its usage for other purposes. The proximity sensor determines 

the distance of an obstruction from the phone and the main in-

tended purpose is to determine if the phone is pressed against 

one’s ear, in which case the screen is turned off to save battery 

power. Some proximity sensors measure distance while others 

only support a binary measurement (near or far). Additionally, 

some proximity sensors use an infrared signal while others are 

only a “pseudo-sensor” implemented using the light sensor. Smart 

phones also often include a magnetic compass, which measures 

the Earth’s magnetic field. While these secondary sensors may be 

limited in their function, they still could provide useful informa-

tion to augment sensor mining applications. Additionally, smart 

phones can be connected to external sensors (e.g., we are experi-

menting with a Zephyr HxM Bluetooth heart rate monitor [20]). 

2.2 Sensor Polling and Sensing Rates 
A two-stage process is involved in providing sensor values to 

smart phone applications. In the first stage, the sensor hardware 

stores measurements from the sensors in shared memory, based on 

the sensing rate, Sr. In the second stage, the application requests 

the sensor measurement and the value is returned to the applica-

tion. Assuming that the application continuously monitors the 

sensor, the rate at which the value is requested is the polling rate, 

Pr. The two rates may differ for each sensor. Only the polling rate 

is under programmer control. It is important that Pr should not be 

more frequent than Sr, to preserve limited resources. 

 
Figure 1. Accelerometer data using different polling rates 

Figure 1 shows actual accelerometer data from an Android phone. 

When values are polled at 20 ms intervals, there is significant 

repetition—between two and six values will repeat, with the va-

riance most likely due to system load. As we decrease Pr, the repe-

titions decrease until at 50 ms the application reliably returns 

unique values for each consecutive sample. This indicates that in 

practice, for the accelerometer on this phone Sr is 50ms and thus 

Pr should never be set more frequent that this. 

Design Issue 4: The sensing rate Sr may sometimes not provide 

sufficient granularity for some sensor mining applications, and 

the application will have to take this into account.  



For our activity recognition work, Sr is not sufficient to provide 

smooth curves for repetitive activities such as walking, jogging, 

and climbing stairs. The repetitive patterns can be approximated 

by visual inspection, but due to the sparse data (there are only 3 to 

5 data points within a cycle) the peak values cannot be determined 

precisely and thus neither can the frequency of the repetitions. 

Design Issue 5: The polling rate Pr should be configurable by 

application developers and users to match needs of particular 

applications and conserve limited resources.  

One should not poll sensors more frequently than they are needed, 

since this will waste CPU cycles, while not polling them frequent-

ly enough will degrade the performance of the application. Sen-

sors such as GPS need a much lower Pr than the accelerometer, 

because their values change more slowly—people do not move far 

in 50ms but acceleration values do change a great deal in 50ms. 

We address this in our WISDM architecture by providing differ-

ent default Pr values for each sensor and allowing each to be re-

configured via the client’s user interface.  

2.3 Interactions with Normal Phone Function 
Sensor mining is not the primary function of smart phones. Other 

functions, namely making and receiving phone calls, have much 

higher priority and thus sensor mining applications cannot unduly 

impact these other functions. A good sensor mining architecture 

must use shared resources very carefully. This topic is addressed 

in Section 4 and in this section we focus on other interactions. 

While developing our client Data Collector application we en-

countered several software issues. These occurred because sensor 

applications were not a key issue in the design and testing of the 

phone and the Android operating system. Some of the problems 

that we found, which were also encountered by other sensor de-

velopers, only occurred for specific models of the phone and An-

droid version. Specifically, when the phone’s screen rotated while 

our Data Collector application was running, our application 

crashed. After we implemented a temporary workaround to auto-

matically restart the application, we found that rotating the screen 

swapped the spatial axes of the accelerometer data—something 

which we had not anticipated. We then disabled the automatic 

screen rotation function while our application is running, as a 

workaround. Ultimately, however, our application must be coded 

to handle the screen rotation changes properly. This demonstrates 

the need for understanding and testing phone interactions. 

Design Issue 6: Sensor mining development must carefully con-

sider interactions with normal phone functioning and incorporate 

this into the testing process. 

A second issue involved the device’s hibernation mode, which is 

entered when the phone is inactive, in order to extend battery life. 

This mode normally shuts off the screen and changes the operat-

ing mode of the CPU. This causes a “sensor freeze” so that the 

sensor data that we collect contains repeated values. Clearly this is 

a critical, and fundamental, issue. We found that this problem 

occurred with some Android models but not others and some 

Android OS versions but not others. An Internet search revealed 

that many sensor developers were struggling with this problem. 

But there was not even universal agreement that this was a bug, 

since the functionality protected battery life. Ultimately, we ad-

dressed this problem by inserting a “Wake Lock” that keeps the 

CPU active when the phone is in hibernation mode. This demon-

strates the issue of using a resource-constrained device for pur-

poses that were not originally deemed important. 

Design Issue 7: Smart phones are designed to conserve resources 

and this sometimes conflicts with the needs of sensor mining. 

3. THE WISDM ARCHITECTURE 
Data mining is generally done offline, but most sensor mining 

applications require results to be generated in real-time and poten-

tially for a large number of users.  For example, our ActiTracker 

activity recognition system [1] is being designed to support thou-

sands of users and provide real-time results via a web interface. 

Similar real time and scalability constraints exist for many other 

sensor mining applications, including map navigation, traffic 

analysis, and biometric authentication. Some applications, such as 

navigation, even require large numbers of users to generate useful 

results, since traffic information is inferred directly from the users. 

Finally, applications must also run on mobile devices with inhe-

rently limited resources.  These were our primary architectural 

concerns when designing the WISDM sensor mining architecture.  

The sensor mining process involves several steps. First the raw 

time-series data from the phone’s sensors must be collected and 

stored locally. Since traditional predictive data mining algorithms 

(e.g., decision trees) do not operate directly on time-series data, 

the next step for traditional methods involves transforming the 

time-series data into examples that summarize the data over a 

fixed time period. For our current activity recognition and biome-

tric applications [9, 10] we generate one example, with 43 fea-

tures, from each 10 seconds of accelerometer data. Next, pre-built 

classifiers are used to generate predictions (our architecture also 

supports the dynamic creation of classifiers). The final step in-

volves reporting the results back to the user, by sending them to 

the phone and/or making them available via the Web. 

3.1 Mobile Operating System and Platform 
The WISDM sensor mining architecture is designed for smart 

phones and mobile devices running the Android operating system. 

Our reasons for choosing Android [2] over Apple iOS [8] are 

summarized in Table 1 and include the fact that Android uses a 

more popular programming language, provides multiprocessing, 

has free and well documented developer tools, is open source, has 

competitive market share, makes it easy to publish applications on 

the marketplace, and is supported by multiple hardware vendors—

which should encourage innovation and result in lower costs. 

Table 1. Mobile Operating System Comparison 

Criterion Apple iOS Android 

Language Objective C Java 

Language Popularity Low (Difficult) High 

Multiprocessing No Yes 

Developer Tools 
  

     Free No Yes 

     Documentation Limited Extensive 

Open Source No Yes 

App Approval Strict Oversight None 

Market Share [8] 13.80% 14.50% 

Hardware Venders Apple Many  

Design Issue 8: The platform’s mobile operating system should be 

easy to develop for: it should use a common programming lan-

guage, have a well documented and inexpensive software devel-

opment kit (SDK), and ideally it should be open source. 



 

 

Figure 2. The WISDM Sensor Mining Architecture 
 
 

There were some problems, however, with using Android. Name-

ly, when we started the project, Android was not very polished 

and was not stable (in 3½ years the Android OS has been up-

graded 8 times). This led to complications including which An-

droid version to develop for, since each Android version provides 

different functionality. We decided to program the application for 

an older version (version 1.5) in order to ensure maximum compa-

tibility with existing Android smart phones. Also, unlike the Ap-

ple iPhone, there are dozens of Android models, which compli-

cates the process of compatibility testing. In fact, in Section 2.3 

we noted several bugs that only occurred for some versions of 

Android and some phone models. 

3.2 Sensor Mining Process Overview 
Our architecture uses a client-server model to perform the steps 

identified at the start of this section. The client application pro-

vides a graphical interface for collecting sensor data from user’s 

phones and for reporting results back from the server. The server 

is built to receive raw sensor data, transform it, classify it, and 

store the results and also report the results back to the user, via the 

phone and/or a web interface. As we will discuss, the nature of an 

application determines how (and whether) these tasks should be 

distributed between the client and server. In our simplest “dumb 

client” architecture, the client has minimal responsibilities and 

most of the processing and mining occurs on the server. 

Figure 2 describes the “dumb client” version of our WISDM sys-

tem. The numbers in the diagram refer to the steps in the sensor 

mining process. Step 1 involves the recording of the sensor data 

on the client device. Once the client has collected data, it contacts 

our server (Step 2a) and then in Step 2b the listener on the server 

passes the connection off to a handler thread, which then commu-

nicates with the client (Step 2c) to authenticate a user and accept 

his or her data. This data is aggregated and submitted to the data-

base in batches (Step 2d). As more functionality is pushed to the 

client, Step 2 will need to be performed at a later time—or possi-

bly not at all (see Section 3.3). 

Control then passes to the server. In Step 3 the data is transformed 

to create examples from the time series sensor data (this step may 

not always be required). In Step 3a newly arrived data is periodi-

cally retrieved from the database by a sorting thread, which orga-

nizes the data so that records (i.e. snap shots of the sensor values 

recorded at Pr) that are from the same sensor and cell phone are 

processed together. Related data are stored in a queue until Step 

3b is triggered, which has a grouping thread take the sorted time 

series records and bind them into examples. In our case an exam-

ple represents 10 seconds worth of data, recorded at Pr =50 ms, so 

each example contains 200 sensor readings. The accelerometer 

returns 3 values when it is polled (vis. x, y, and z acceleration) so 

these 200 readings contain 600 values. In Step 3c, a feature gene-

rator thread takes them and transforms the records into an exam-

ple. These examples are saved to two separate queues so that they 

can be stored and processing can also proceed. In Step 5a, exam-

ples are taken from one of these queues, grouped into batches for 

efficiency, and saved to the database. This ensures that we have a 

record of the intermediate stages of our work. These transformed 

examples can also be formed into a data set and shared with other 

researchers. Step 4 has a thread take examples from the other 

queue and run them through a pre-built classifier. The results are 

saved to a final queue and then aggregated into batches and saved 

to the database in Step 5b. With the classification results stored in 

the database, they can later be queried for visualization and pres-

entation to the user via our web interface. 

The scenario that was just described did not cover the dynamic 

construction of classifiers. We believe that sensor mining applica-

tions will need to build personal models for some applications 

(like activity recognition) in order to obtain highly accurate re-

sults. Thus, this capability is necessary and is part of our WISDM 

architecture. But this will also require smart phone applications to 

facilitate self-training. Our WISDM platform will facilitate this 

self-training phase for activity recognition by walking users 

through the process of collecting labeled training activity data. 

Design Issue 9: Some sensor mining applications may require 

self-training to generate personalized models and the sensor min-

ing architecture should support this ability. 

3.3 Client/Server Architectures 
The client and server responsibilities can be apportioned in many 

ways. The two extremes are the “dumb client” architecture, where 

minimal work is done on the client, and a “smart client” architec-

ture, where the client does all of the work and no server is re-

quired. Between these extremes there are several viable interme-

diary architectures. Table 2 summarizes reasonable alternatives.  



Table 2. Possible Client Workloads 

 Client Type: 1/Dumb 2 3 4 5 6/Smart 

Data Collection      

Data Transformation 
 

    

Classification 
  

   

Model Generation 
   


 



Data Storage 
    

 

Data Reporting 
    

 

Currently the WISDM client application, called Data Collector, 

implements the responsibilities of the dumb client, although in the 

future it will be able to be configured to support any of the work-

loads shown in Table 2. The Data Collector has a very simple user 

interface for managing the data collection and data upload 

process. The home screen has username and password fields, and 

buttons to “start recording,” “send data,” and “exit” plus a drop-

down data label chooser so that people can label the data they 

collect for supervised learning applications (e.g. for activity rec-

ognition, the physical activity they are performing). When one 

clicks “Start,” they are brought to a new screen that displays the 

sensor polling rates and notifies the user that it is recording. This 

screen has a “stop collecting” button to stop collection and return 

a user to the home screen. Sensor polling rates and server connec-

tion settings can be modified from within the normal Android 

application settings screen. Very soon, our application will sup-

port the automatic (periodic) upload of data. 

In the future we will migrate additional server functionality to the 

phone, to reduce the workload on the central server. We plan to 

do this for our production application, ActiTracker [2], in order to 

make it scalable. The first stage in moving functionality to the 

client application is to transform the time series sensor data into 

individual examples on the phone (Client Type 2). This process is 

straightforward to implement and only moderately compute inten-

sive. It also means that less data will be transmitted to the server, 

thus saving communication bandwidth. 

The next step is to have the classification process occur on the 

phone using pre-built models (Client Type 3). In most cases im-

plementing this will be quite straightforward. Also, depending on 

the type of model, the amount of computation required may be 

low (e.g., decision tree) or high (nearest neighbor). This architec-

ture is quite scalable, with the phone performing most of the rou-

tine processing, and the server responsible mainly for storing and 

reporting the results. In many ways this may be optimal since the 

client is still relatively simple, the server is offloaded from most 

work, and the client does not need to store large quantities of 

results. This is the target architecture for our ActiTracker applica-

tion, since we want to allow users to view their history of activi-

ties over long periods of time via the Internet. 

Model generation is perhaps the most complex processing step 

and for this reason it will often be performed on the server. Since 

model generation will occur relatively rarely, this may not overly 

impact the scalability of the architecture. But in some cases hav-

ing model generation occur on the application will be desirable, 

and this leads to Client Type 4. It may be much easier to imple-

ment model generation on the phone than one might think, since 

our WISDM platform uses the WEKA data mining suite [18], 

which is written in Java, and Java code can run under Android. 

Also, today’s smart phones do have the processing power to run 

such tools. Even computationally intensive tasks, such as discrete 

Fourier transforms of sound samples, have been shown to be poss-

ible on older smart phones [12].  But since model generation is 

still the most complex step, it still will often be kept on the server. 

In this case we can still move more functionality to the client by 

keeping all of the results and reporting facilities on the phone 

(Client Type 5). In this case, however, since we do not transmit 

the sensor data to the server, we can only use pre-built models, 

which means that personalized models cannot be used. But this is 

fine for many applications. Finally, in the “smart client” extreme 

(Client Type 6), all functionality is on the mobile device.  

Design Issue 10: Smarter clients trade off application scalability 

with limited resources. 

3.4 A Central Database 
Our data is stored in a MySQL database which has tables for raw, 

intermediate, and final data. This allows us to go back and modify 

our methodology, add new tasks, or visualize data which would 

be lost if we kept only the resulting classifications. These are crit-

ical abilities for academic research, but are likely to be unimpor-

tant in many consumer applications. However, there are some 

practical problems with storing large quantities of records in a 

relational database.  

Design Issue 11: Storing large numbers of records in a database 

can make finding specific or related records difficult. 

For our purposes, we needed to process sequential data together in 

blocks in order to translate individual readings into 10 second 

examples of activity. This also means we needed to prevent data 

from multiple users from mixing. Because all records share the 

same form, it is tempting to store them together in a single table. 

If this is done, data from different users, times, and activities will 

be mixed, and the data will have to be sorted back into homoge-

neous groups before evaluation. Even with hash tables and index-

ing, these tables will be difficult to manage, and extracting desired 

and related records will be CPU intensive. This mixing can be 

eliminated and table size reduced by partitioning data in separate 

tables based upon relevant information. Increasing organization 

increases accessibility, but stricter organization also introduces 

application overhead to sort new records outside of the database.  

Design Issue 12: Relational databases are I/O chokepoints which 

can impede real time functionality.  

In the “dumb client” architecture, even a single user will generate 

millions of records per day (e.g., with a 50ms polling rate), which 

will cause most queries to take a long time to run. Even the inser-

tion of our research dataset into the database took hours on a ded-

icated machine because of the overhead involved in relational 

database systems like MySQL. This overhead includes insertion 

times, index updates, permission checks, and locking [5]. If in-

serting new data and querying it back takes longer than processing 

it, then the application will waste time waiting for the database. 

This translates to less responsive “real time” applications and in 

cases where large amounts of data are accepted continuously, it 

may mean that the server becomes severely backlogged and can 

never catch up. It is important, therefore, to limit queries and ap-

plication dependence on a database. Where possible, applications 

should store and process all sensor data in memory and use the 

database for long term storage only. If raw sensor readings must 

be saved, they should be saved independently of their processing.  

3.5 Concurrency 
The massive quantities of data produced by mining sensor data 

from mobile devices makes concurrent processing very attractive. 



As mentioned before, data mining tasks are frequently done se-

quentially, which is inadequate for real time applications. Fortu-

nately, sensor mining is comprised of independent steps and dis-

crete records which lend themselves to concurrent processing. 

There are two important kinds of concurrency for our work: per-

forming the same task on multiple data at once (i.e. parallelism) 

and performing multiple steps of a single procedure (on different 

data) at the same time (i.e. pipelining).  

Design Issue 13: Parallelism requires careful separation of data 

so that no data’s processing depends on the state or content of 

other data. 

Many of the steps in Section 3.2 can be performed in parallel. In 

our server each step is comprised of persistent threads, to avoid 

thread creation overhead after startup. For all steps that can be 

performed on multiple data in parallel (viz. client connections, 

record grouping, feature generation, classification), we use thread 

pools to manage the number of threads and balance the workload. 

Design Issue 14: Pipelining requires careful separation and se-

quencing of tasks to avoid dependencies that can cause unneces-

sary stalls. 

If data must go back and forth between stages, or data from one 

stage is tied to data from another stage, then some stages may end 

up waiting for others. Each stage must be able to proceed regard-

less of the other stages, to ensure that the application does not 

stall. First, this requires separate threads for each task so that the 

steps can proceed independently. This also means using separate 

thread pools for each task so that threads for some steps are not 

queued behind threads of other steps doing unrelated work. 

Second, buffers are needed between the steps because they take 

different amounts of time to complete. We resolve this timing 

problem using queues between steps. When a step finishes, it puts 

its result into one queue and takes the next job from another. If 

the input queue is empty or in use, then the thread waits until 

there is work. Thus, resources can be kept busy. 

To avoid waiting for I/O operations, data to be saved is passed to 

another queue so that processing threads can continue execution. 

Dedicated I/O threads take from each of these queues and com-

bine the data into batch queries, then execute them in mass to 

reduce database overhead. Each I/O thread has its own persistent 

connection to the database, to reduce connection overhead. 

3.6 Language and Operating System 
Data mining applications need to interface with other systems and 

this should affect the choice of programming language for the 

application. Mobile devices have native languages for applica-

tions that must be used to interface with the operating system. 

There may or may not be support for other languages, but the 

quality of that support and the overhead necessary to implement 

non-native code should be evaluated prior to development. Our 

client and server architecture was coded in Java, the primary de-

velopment language for Android. Writing our server program in 

the same language allows for maximum compatibility between 

different code used by the project and even allows us to share 

code between the client and server. 

Design Issue 15: Choice of programming language can have 

significant impact on the performance and integration of sensor 

mining applications. 

Third party data mining algorithms also interface best with appli-

cations written in the same or friendly languages. Our WISDM 

platform uses the WEKA data mining suite [18], which is written 

in Java and can be imported natively into Java applications. Data-

bases interface differently with different languages and so the 

choice of language and database should be coordinated. In our 

case Java has strong support for our MySQL database using JDBC. 

Some languages are more efficient than others and since limited 

computation power is an issue for mobile devices, the choice of 

language is important. Our early work relied on Perl scripts be-

cause they were quick to write, but when we began working on 

automation and integration of the many tasks associated with data 

mining, we realized that any part implemented in Perl would be 

inefficient due to the way Perl works. By implementing our pre-

processing in Java, we were able to reduce the time required by 

several orders of magnitude and a language like C could further 

increase application efficiency. Aside from efficiency, different 

languages may also better support an application’s functionality. 

Mobile sensor mining is inherently a multi-system environment 

and generally involves communication over networks. Choosing a 

language that has strong support for these functions is important, 

which caused us to choose Java. Because it executes within the 

standardized, cross platform Java Virtual Machine, our programs 

will be portable to other systems. Java also provides strong typing 

at compile time and automatic memory management, which make 

applications more robust, and considerable support for secure 

network communication, authentication and cryptography [13]. 

3.7 Web Interface and Data Representation 
The sensor mining results should be available to the user via a 

web interface. In our design, two separate versions will be sup-

ported: one for visitors on a computer and another for mobile 

devices. Due to the possibility of smart phone users visiting the 

full version of the website, the full version will be designed as 

efficiently as possible. This includes taking into account the size 

of all the images and scripts as well as the language the site was 

written in. The images and scripts had to be optimized in order to 

load as quickly as possible and the majority of the site was coded 

in PHP to reduce the load time by caching the headers and footers 

of the pages so that they would only have to be loaded once. The 

data visualization scripts are written in Javascript in order to pro-

vide real-time updates, greater user-interaction and to alleviate the 

load on our server, but this will increase the load on the mobile 

device’s data connection. A possible alternative that we will have 

to consider implementing as we build the mobile website, would 

be PHP-based graphical representation which would shift the data 

rendering to the server just for visitors on mobile devices. 

3.8 Algorithm Efficiency 
A key component in any sensor mining architecture is the data 

mining module. Key questions involve: what data mining algo-

rithms should be used, how and when the predictive models are 

built, how long the training process takes, and how long it takes to 

classify new data using existing models. Efficiency considerations 

are critical when addressing these issues due to the resource limi-

tations placed on mobile devices. 

There is no best data mining algorithm to use, but for real-time 

applications some algorithms are more appropriate than others. In 

particular, instance-based (nearest-neighbor) learning algorithms 

are especially appropriate, since they do not require any training 

time at all. Thus, they are good for applications, like activity rec-

ognition, where personalized models perform best. It is also criti-

cal that new data can be applied to learned models and results can 

be generated quickly. But most algorithms generate models that 



can quickly generate results. While instance-based learning me-

thods may actually take some time to generate results, these me-

thods can be sped up by implementing them directly, independent 

of any learning program, and by exploiting the matrix operations 

supported by modern processor architectures [6].  

Design Issue 16: No single data mining algorithm will always 

perform best for all sensor mining applications and thus multiple 

data mining algorithms should be available. 

Design Issue 17: Data mining algorithms that require little or no 

training time will be ideal for building personalized models. 

Design Issue 18: Due to the speed and memory limitations placed 

on smart phones, data mining algorithms that require low over-

head are most appropriate to run on a smart phone. 

4. SECURITY AND PRIVACY 
Mining mobile sensors provides opportunities to learn a great deal 

about people’s lives and thus user privacy is a significant concern. 

Secure applications will also attract a wider audience [16]. 

4.1 Communication 
One of the biggest concerns for data security is transmission. 

Sending data and communicating provide points of attack on data 

including person-in-the-middle and spoofing as well as on re-

sources through SQL injection and malicious code. 

Design Issue 19: Sensor data must be communicated securely 

over public networks with techniques like public key encryption. 

Mobile devices communicate over many unsecure networks. They 

may be connected to a public WiFi hotspot, a cellular carrier’s 

broadband network, or even a physical tether to a desktop com-

puter. Users move about and may connect to many different and 

untrusted networks, including public networks. Therefore, it is 

critical to keep personal data private while it is being transferred 

over any network. We use public key certificates to verify the 

interaction between a client smart phone and our server. Using 

these certificates, we are able to encrypt all of the communication 

between client and server as an SSL session. These measures pre-

vent a person-in-the-middle attack and keep a user’s data private 

while it is in transit. 

Design Issue 20: Connections from public networks and applica-

tions cannot be trusted to provide safe and accurate data unless it 

is verified and sanitized.  

Because our server must accept sensor data from clients over the 

Internet, it is important to verify our interactions. First, we require 

authentication before any data is accepted, so the first interaction 

after connecting is user authentication or new user creation. This 

ensures that no data is sent anonymously (the user’s identity may 

be anonymous but the data must be bound to a user ID so that it 

can be retrieved later). New users submit a unique user name (an 

email address) and password. When the application is released to 

the public, the unique Android device ID will also be used to 

verify users, but this is not needed in a research setting where 

multiple test subjects may use the same set of devices. 

Second, our server functions as a demilitarized zone (DMZ) be-

tween clients and the database. Specifically, our architecture uses 

predefined strings to signal and communicate with clients. This 

means that the client asks the server to make database requests on 

its behalf and the server sanitizes all database queries. The client 

must know and initiate requests in the proper order for successful 

interaction. Too many failed requests or strings containing dan-

gerous SQL will cause the server to deny and/or disconnect from 

the client. In addition to data verification and database isolation, 

this structure has the added advantage of being able to aggregate 

queries into batches. By using batches of predefined statements to 

execute queries, we reduce database load. 

4.2 Storage 
Other security efforts are meaningless if the data is not stored 

securely. If the application architecture requires storing data local-

ly, potentially malicious applications should be prevented from 

accessing this information. In a centralized storage situation, a key 

aspect in keeping user’s data private is storing it separately from 

their personal information. All data that we store on our central 

server is associated with a unique user ID, which is assigned to 

each user at his or her creation. Users do not know their ID num-

bers; rather, when they authenticate with their username and 

password, the system fetches their user number from the password 

file and uses it internally. Personal data about users is also stored 

separately. This ensures that if all the sensor data and classifica-

tions were released to the public, it would still be impossible to 

identify users or link them with their data (although GPS data 

makes it possible to identify a person based upon their location).  

Design issue 21: Sensor and user data must be stored securely 

both on the mobile device and at any central server. 

Some sensors, like the GPS, can give away significant information 

about a user, ranging from current location and home address to 

habits and routines. The ambient light and magnetic compass 

sensors are unlikely to pose privacy risks of the same magnitude. 

It should be noted, however, that the results of data mining can 

produce information which is a greater security threat than the raw 

data, in the way that ActiTracker [1] will produce detailed activity 

histories from otherwise meaningless acceleration values. 

Design Issue 22: some sensor data, such as audio, image, and 

location data, can be very sensitive, and so extra privacy meas-

ures must be in place to secure it. 

Generally, more information is better for data mining tasks. How-

ever, when designing systems for the general public it is important 

to keep in mind what information is actually needed. For example, 

for ActiTracker there is no need to save everything the phone’s 

microphone records and doing so would needlessly put private 

information at risk. Thus our applications will only save the sen-

sor data that they need. However, applications often involve user 

accounts which can have unnecessary personal information as 

well. Because of this, user passwords are never stored. Instead, 

passwords are repeatedly hashed using SHA-256, and the result is 

compared to the hash value saved in our password file. Even if an 

attacker gained access to the password file, no passwords would 

be exposed. 

Design Issue 23: Storing unnecessary data compromises security. 

4.3 Application Level User Control 
A key component of security is allowing users to control their 

own data, so that they can make informed decisions about their 

privacy. Allowing users to select which sensors are recorded in-

creases their privacy. In our design a user can disable the record-

ing of any sensor. This means that users need to understand what 

is being recorded. When applications are installed on Android 

devices there is a warning showing what the application has 

access to. Unfortunately, these permissions are so broad that most 

applications need access to many of them, so users do not really 



know how an application is using its permissions. As a result, 

users quickly learn to click through installation warnings and 

permissions screens without paying attention. Even if they do, it is 

not always clear from the Android interface how different permis-

sions and access rights are used by an application. It is entirely 

possible, then, for applications to spy on people using their mo-

bile device’s sensors. If malicious applications exploit sensor 

data, people may opt not to use legitimate sensor mining applica-

tions. Giving users control over their privacy makes it more likely 

that they will use sensor mining applications. 

Design Issue 24: user privacy means user control over data col-

lection, including notification of which sensors are being col-

lected and options to control them. 

5. RESOURCE USAGE 
It is important for mobile sensor mining applications to operate 

continuously without interfering with normal phone operation. To 

help ensure this, in this section we enumerate a few key design 

issues related to resource usage. In addition, we present actual 

performance results associated with our WISDM Data Collector 

application, which currently operates in the “dumb client” mode. 

While we have taken some steps to minimize resource usage, we 

expect that over the next few months we will need to further op-

timize our design in order to make better use of limited resources. 

We have evaluated our Data Collector application on a variety of 

Android devices, including the Google Nexus One, Motorola 

Droid Pro, HTC Hero and EVO, and the Samsung Epic, Trans-

form, Intercept, and Captivate. The majority of measurements 

provided, however, are based on the popular HTC EVO. 

5.1 Battery 
Battery life is an incredibly important issue on smart phones and, 

in particular, it is critical that such devices operate for at least a 

full day without being recharged. If sensor mining applications 

draw too much power and degrade battery life too significantly, 

then users will be unwilling to run these applications.  

Design issue 25: Sensor mining applications must not degrade 

battery performance too significantly or prevent the device from 

operating without recharge for a normal 16-hour “waking” day. 

Our measurements indicate that on the HTC EVO our Data Col-

lector application consumes 35-51 milliwatts per second, and on 

an idle device with the screen powered off this corresponds to 

6.6% of the device's power consumption. For comparison, the 

screen takes about 525 milliwatts per second at standard bright-

ness (but the screen is not normally lit continuously). Thus the 

sensor collection process does not unduly tax the phone’s battery, 

although the Data Collector does consume 31.6 times more power 

than the Android operating system. When the application is col-

lecting data and in the CPU foreground (visible on the screen) the 

battery life will be 7:25 hours; under the same circumstances, but 

without the application collecting sensor data, the expected bat-

tery life is 7:30 hours. The lack of a significant change in battery 

life indicates that it is feasible to have an application constantly 

polling and recording sensors. The ability of mobile phones to 

sustain this activity is encouraging for sensor mining applications. 

Future optimizations may help reduce power consumption. For 

example, we can buffer recorded data into memory before it is 

written to flash storage rather than writing data to flash every 

50ms. Note that all these measurements are based on the “dumb 

client” architecture and that if additional processing occurs on the 

phone, this will have an impact on battery life. But our belief is 

that even a “smart” client will not require much additional power, 

although this has yet to be confirmed.   

5.2 CPU and RAM 
Computing power and RAM are also limited on smart phones. 

Since sensor mining applications may run continuously, we need 

to be even more concerned about their cumulative CPU and RAM 

usage, so that normal device operation is not compromised. 

Design issue 26: The operation of sensor mining applications 

should not impact normal functioning of smart phones; consump-

tion of CPU and RAM should not exceed 20%, on average. 

CPU usage tests were performed on the “dumb” Data Collector 

client application. The tests were conducted on an HTC EVO 4G, 

which features a SD8650 chipset and a 1GHz Snapdragon Scor-

pion processor. While recording, the WISDM Data Collector's 

service spends approximately 3.4% of its uptime as the active 

process, which translates to approximately 2% of the CPU's total 

potential.  For comparison, the Android 2.2 kernel occupies 3.6% 

of the CPU's capacity. 

On Android phones services do not occupy the CPU foreground 

unless the screen is active, resulting in decreased priority on the 

CPU. In practice, this translates to a slower Pr value because the 

application does not have the priority to execute commands as 

frequently. For our application, with a Pr value of 50 ms, we find 

that we are only able to successfully poll new values every 100 to 

200 ms. This problem may not have a significant impact on sensor 

mining applications that do not require such a high frequency Pr. 

Future work on the Data Collector includes implementing remote 

services which run independently of the application. This should 

prevent the collection service’s CPU priority from decreasing 

when the application leaves the foreground. If this is the case, 

then any application that continuously polls sensors would need 

to use this or a similar technique. 

The WISDM Data Collector uses 18MB of RAM, of which 12MB 

is reserved for data and 6MB is shared. Full RAM usage is ap-

proximately 3.5% of the HTC EVO's 512 MB RAM total. The 

application’s memory use is relatively small and unlikely to con-

flict with other applications or interfere with normal operation. 

5.3 Data Storage 
Sensor mining has the potential to generate massive datasets. Ap-

plications can have thousands or even millions of users. More 

importantly, mobile sensors may continuously report new data, 

which means that even per user the data will grow rapidly. Appli-

cations such as ActiTracker, which polls the accelerometer as 

frequently as possible, will produce 72,000 records per hour.  

Design Issue 27: Compression and efficient encoding are critical 

to manage the storage needs of sensor mining applications.  

It is easiest to demonstrate the data storage requirements with a 

case study. With ActiTracker, data storage requirements for the 

same raw accelerometer data vary significantly based upon the 

format of the data. Each record, for instance, has a user ID and 

activity label, which are both repeated for many other records. 

Also, the timestamp for each record is almost identical to the 

timestamp of the previous and next records. This yields potential 

for data compression to save space. Encoding can also make a 

significant difference. We use ASCII encoding to produce human 

readable files, which turns single precision float values (a single 

byte) into multiple separate characters (each represented by a 



byte). A purely binary flat file would be able to compress data 

down to just 15.7% of the size of our average ASCII text files.  

Databases are also prone to inefficiency. Numeric values are 

stored in fixed length spaces, but this space is not the minimum 

binary space (e.g. in our MySQL database, single precision floats 

require four bytes, rather than one). Timestamps and data labels 

that are added by an application also get stored in fixed size spac-

es. This standardization eliminates much of the possibility for 

compression and application-specific encoding. In the case of 

ActiTracker, each record in the database requires only slightly less 

space than it does in an ASCII text file. Additionally, due to the 

overhead required for indexing and other system functions, the 

actual space taken up in the database is greater [5]. 

Design Issue 28: Saving only required data is critical for scala-

bility and reducing storage costs. 

Sensor mining applications will have varying degrees of prepro-

cessing involved, and in many cases this will reduce the quantity 

of data. For our work with ActiTracker the data transformation 

step allows us to dramatically reduce the number of records stored 

because we collapse each 200 consecutive time series records into 

a single, slightly larger, example. The total space required for one 

example is 2.9% the size of the raw data that it describes. As out-

lined in Section 3.3, production applications may store only the 

transformed data, or just the prediction outcomes, dramatically 

reducing their storage needs.  

Data storage and transmission are closely related and for every-

thing other than a “smart” client, data storage first requires data 

transmission. Therefore, when determining the quantity and size 

of data stored at a central server by an application, it is important 

to take network bandwidth into account. Data stored locally on 

the device also has limitations to consider. Many smart phones are 

shipping with 8 GB or more of onboard storage, with options to 

expand to more. However, this space is often taken up by user’s 

pictures, music, and documents, and taking away significant 

amounts of space from other applications may not be viable.  

6. CONCLUSIONS 
Sensor mining applications using smart phones will become 

common over the next decade. In this paper we describe key is-

sues that a sensor mining architecture, and sensor mining applica-

tions, will have to deal with in order to provide benefits to the 

user while running on a resource constrained device. These issues 

will be critical for developing and evaluating sensor mining archi-

tectures and platforms. In addition, we described our WISDM 

sensor mining architecture. By doing so we demonstrated in a 

concrete manner how these design issues can be addressed. We 

also showed how a flexible architecture can support varying levels 

of responsibility between the client and server. Issues concerning 

resource usage and security and privacy were also highlighted. 

The WISDM platform is partially implemented, with most basic 

functionality working and tested. We expect that our first produc-

tion application, ActiTracker [1], will be released around Septem-

ber 1, 2011. This will allow researchers and everyday users to 

track their activities over time to see if they are receiving suffi-

cient physical activity. It will also provide concrete feedback 

about the efficacy of our WISDM sensor mining architecture. 
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