
Design Considerations for the WISDM Smart Phone-based
Sensor Mining Architecture

Jeffrey W. Lockhart, Gary M. Weiss, Jack C. Xue,
Shaun T. Gallagher, Andrew B. Grosner, Tony T. Pulickal

Department of Computer and Information Science
Fordham University

441 East Fordham Road
Bronx NY 10458

{lockhart, gweiss, xue, sgallagher, grosner, pulickal}@cis.fordham.edu

ABSTRACT

Smart phones comprise a large and rapidly growing market. These

devices provide unprecedented opportunities for sensor mining

since they include a large variety of sensors, including an: accele-

ration sensor (accelerometer), location sensor (GPS), direction

sensor (compass), audio sensor (microphone), image sensor (cam-

era), proximity sensor, light sensor, and temperature sensor. Com-

bined with the ubiquity and portability of these devices, these

sensors provide us with an unprecedented view into people’s

lives—and an excellent opportunity for data mining. But there are

obstacles to sensor mining applications, due to the severe resource

limitations (e.g., power, memory, bandwidth) faced by mobile

devices. In this paper we discuss these limitations, their impact,

and propose a solution based on our WISDM (WIireless Sensor

Data Mining) smart phone-based sensor mining architecture.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data Mining

General Terms

Performance, Design, Security, Experimentation, Human Factors

Keywords

Sensor mining, sensors, smart phone, cell phone, data mining,

accelerometer, mobile applications.

1. INTRODUCTION
Smart phones and other wireless mobile devices, including tablet

computers, music players, and portable gaming systems, comprise

a large and rapidly growing market. In fact, since the fourth quar-

ter of 2010 smart phone sales have exceeded those of PCs [11].

Smart phones provide unprecedented opportunities for sensor

mining since they include a variety of sensors, including an: acce-

leration sensor (accelerometer), location sensor (GPS), direction

sensor (compass), audio sensor (microphone), image sensor (cam-

era), proximity sensor, light sensor, and temperature sensor. The

ubiquity and portability of these devices, combined with the many

sensors that they host, provides us with an unprecedented view

into people’s lives—and great opportunities for data mining.

Sensor mining applications, however, face many challenges due to

the severe resource limitations imposed on mobile devices. In this

paper we discuss these limitations, their design impact, and pro-

pose solutions based on our WISDM (Wireless Sensor Data Min-

ing) smart phone-based sensor mining architecture. The design

considerations that we identify will be useful to others who build

smart phone-based data mining applications and can also be used

to evaluate future smart phone-based sensor mining platforms.

We briefly introduce a few representative smart phone-based sen-

sor mining applications, since it is difficult to evaluate design

considerations independent of any applications. One class of sen-

sor mining applications relies mainly on the smart phone’s accele-

rometer to learn what activities (walking, jogging, etc.) a user is

performing [4, 9, 12, 19]. Such activity recognition applications

can be used to determine if a user is getting enough physical activ-

ity or to customize smart phone behavior based on context. Since

a user’s movements form a distinctive signature, a smart phone’s

accelerometer can also be used for biometric identification and

authentication [6, 10]. Location-based sensor data mining is a

particularly popular and expanding application area, which has

matured sufficiently to spawn commercial applications. For ex-

ample, Sense Networks [14] provides several location based data

mining applications, including Citysense™, which identifies hot

spots and also learns where each user likes to spend time. Other

applications include Google Maps and Navigator, which identify

traffic based on real-time GPS location data from large numbers

of smart-phone users, which is then combined with knowledge

about historical traffic patterns. Our WISDM research group [17]

has developed smart phone-based activity recognition [9] and

biometric [10] applications and is in the process of implementing

them within our WISDM architecture so that they operate in real-

time. We have chosen to implement our WISDM sensor mining

architecture using the Android mobile operating system and An-

droid phones for reasons described in Section 3.1, but this archi-

tecture can be adapted to use other mobile operating systems.

There are many high-level design constraints that a mobile sensor

mining architecture must satisfy. First, it must be scalable to thou-

sands, if not millions (e.g., Google Navigator), of users. It must

also generate results in real-time, which means applying any

learned models to the sensor data in real-time (most activity rec-

ognition systems require this). The architecture must also be able

to generate predictive models in close to real-time and automati-

cally deploy them, since some sensor mining applications will

require this. The architecture should also support varying levels of

distributed processing, where at one extreme the phone acts as a

“dumb” client and the server is responsible for all data processing

and mining, while at the other extreme everything is done locally

on the “smart” client. For a variety of reasons including scalabili-

ty, application independence, and user privacy, it makes sense to

push processing tasks to the mobile devices, when feasible. But

some tasks, by their very nature, may require centralized

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SensorKDD ’11, August 21, 2011, San Diego, CA, USA.

Copyright 2011 ACM 978-1-4503-0832-8…$10.00.

processing of data (e.g., road traffic analysis). Additionally, a

server-based solution is needed if the application is too compute

intensive for a smart phone or if the sensor data must be collected

and saved (a key requirement for much academic research). Thus

far, we have identified three high level design issues that impact

the design of a phone-based sensor mining architecture:

Design Issue 1: Mobile devices have severe resource limitations

with respect to battery power, computational speed (CPU), mem-

ory, and bandwidth which must be accommodated.

Design Issue 2: The sensor mining architecture must be scalable

so that it can accommodate thousands or even millions of users.

Design Issue 3: Sensor mining applications must often generate

results in real-time—and sometimes must also be able to learn

(i.e., build predictive models) in real-time.

The remainder of this paper is organized as follows. In Section 2

we describe the sensors available on smart phones and some key

issues that we have encountered using them. Our WISDM data

mining architecture is then described in Section 3. Security and

Privacy, two very important issues for smart phone sensor mining,

are discussed in Section 4. Resource usage issues are described in

Section 5 and then Section 6 summarizes our main contributions.

2. SENSORS
The sensors contained in smart phones are described in Section

2.1. Section 2.2 then describes the frequency with which sensor

information is updated and Section 2.3 discusses how sensor

usage can interact with normal phone functioning.

2.1 Description of Sensors
In this section we describe smart phone sensors, but provide more

details for the most powerful and complex sensors. One key sen-

sor is the accelerometer, which was initially provided on smart

phones to handle screen rotation and to support advanced games.

All Android phones and iPhones include a tri-axial accelerometer

that measures acceleration in all three spatial dimensions. The

accelerometer in Android phones varies by manufacturer, but as

an example, the popular HTC Hero uses Bosch’s BMA150 digital

acceleration sensor [3] and Apple uses an LIS302DL accelerome-

ter [15] in iPhones and recent iPods. The force of gravity is meas-

ured by most of these accelerometers and this information can be

used to determine the direction downward (i.e., to Earth). These

accelerometers tend to produce highly accurate measurements.

Smart phones also include sensors for determining location. The

most accurate information is provided by the GPS receiver, which

can provide location information to within a few meters. This

functionality relies on triangulation with satellites in Earth orbit

but typically does not function indoors. When the GPS signal is

not available, most smart phones rely on other triangulation which

is much less accurate, and uses the estimated distance to local cell

phone towers and WiFi networks to calculate location. Such “ar-

tificial GPS” methods can still be quite accurate, however, in

highly populated areas with many cell and WiFi signals. Smart

phones are now routinely used by millions of users for mapping

and route information via services like Google Navigator.

The audio sensor (i.e., microphone) can be used to monitor speech

and background noise. Speech-to-text capabilities provide the

opportunity for interesting (and perhaps troubling) sensor mining

applications, but even gross measurements like sound level can

provide clues about a user’s environment or activity. For example,

one application uses the microphone to help determine if a user is

at a party [12]. The image sensor (i.e., camera) can also be useful,

especially as the quality of the cameras improves. These sensors

can be combined with image mining programs to perform face

recognition and automatically identify objects and places. Unfor-

tunately, the camera cannot be used for continuous monitoring

since it is typically obstructed when the phone is not in active use.

Smart phones contain what we refer to as secondary sensors,

which provide only limited capabilities. One such sensor is the

light sensor, which measures the intensity of ambient light. The

main purpose of this sensor is to determine appropriate screen

brightness. It only operates when the smart phone is open, limit-

ing its usage for other purposes. The proximity sensor determines

the distance of an obstruction from the phone and the main in-

tended purpose is to determine if the phone is pressed against

one’s ear, in which case the screen is turned off to save battery

power. Some proximity sensors measure distance while others

only support a binary measurement (near or far). Additionally,

some proximity sensors use an infrared signal while others are

only a “pseudo-sensor” implemented using the light sensor. Smart

phones also often include a magnetic compass, which measures

the Earth’s magnetic field. While these secondary sensors may be

limited in their function, they still could provide useful informa-

tion to augment sensor mining applications. Additionally, smart

phones can be connected to external sensors (e.g., we are experi-

menting with a Zephyr HxM Bluetooth heart rate monitor [20]).

2.2 Sensor Polling and Sensing Rates
A two-stage process is involved in providing sensor values to

smart phone applications. In the first stage, the sensor hardware

stores measurements from the sensors in shared memory, based on

the sensing rate, Sr. In the second stage, the application requests

the sensor measurement and the value is returned to the applica-

tion. Assuming that the application continuously monitors the

sensor, the rate at which the value is requested is the polling rate,

Pr. The two rates may differ for each sensor. Only the polling rate

is under programmer control. It is important that Pr should not be

more frequent than Sr, to preserve limited resources.

Figure 1. Accelerometer data using different polling rates

Figure 1 shows actual accelerometer data from an Android phone.

When values are polled at 20 ms intervals, there is significant

repetition—between two and six values will repeat, with the va-

riance most likely due to system load. As we decrease Pr, the repe-

titions decrease until at 50 ms the application reliably returns

unique values for each consecutive sample. This indicates that in

practice, for the accelerometer on this phone Sr is 50ms and thus

Pr should never be set more frequent that this.

Design Issue 4: The sensing rate Sr may sometimes not provide

sufficient granularity for some sensor mining applications, and

the application will have to take this into account.

For our activity recognition work, Sr is not sufficient to provide

smooth curves for repetitive activities such as walking, jogging,

and climbing stairs. The repetitive patterns can be approximated

by visual inspection, but due to the sparse data (there are only 3 to

5 data points within a cycle) the peak values cannot be determined

precisely and thus neither can the frequency of the repetitions.

Design Issue 5: The polling rate Pr should be configurable by

application developers and users to match needs of particular

applications and conserve limited resources.

One should not poll sensors more frequently than they are needed,

since this will waste CPU cycles, while not polling them frequent-

ly enough will degrade the performance of the application. Sen-

sors such as GPS need a much lower Pr than the accelerometer,

because their values change more slowly—people do not move far

in 50ms but acceleration values do change a great deal in 50ms.

We address this in our WISDM architecture by providing differ-

ent default Pr values for each sensor and allowing each to be re-

configured via the client’s user interface.

2.3 Interactions with Normal Phone Function
Sensor mining is not the primary function of smart phones. Other

functions, namely making and receiving phone calls, have much

higher priority and thus sensor mining applications cannot unduly

impact these other functions. A good sensor mining architecture

must use shared resources very carefully. This topic is addressed

in Section 4 and in this section we focus on other interactions.

While developing our client Data Collector application we en-

countered several software issues. These occurred because sensor

applications were not a key issue in the design and testing of the

phone and the Android operating system. Some of the problems

that we found, which were also encountered by other sensor de-

velopers, only occurred for specific models of the phone and An-

droid version. Specifically, when the phone’s screen rotated while

our Data Collector application was running, our application

crashed. After we implemented a temporary workaround to auto-

matically restart the application, we found that rotating the screen

swapped the spatial axes of the accelerometer data—something

which we had not anticipated. We then disabled the automatic

screen rotation function while our application is running, as a

workaround. Ultimately, however, our application must be coded

to handle the screen rotation changes properly. This demonstrates

the need for understanding and testing phone interactions.

Design Issue 6: Sensor mining development must carefully con-

sider interactions with normal phone functioning and incorporate

this into the testing process.

A second issue involved the device’s hibernation mode, which is

entered when the phone is inactive, in order to extend battery life.

This mode normally shuts off the screen and changes the operat-

ing mode of the CPU. This causes a “sensor freeze” so that the

sensor data that we collect contains repeated values. Clearly this is

a critical, and fundamental, issue. We found that this problem

occurred with some Android models but not others and some

Android OS versions but not others. An Internet search revealed

that many sensor developers were struggling with this problem.

But there was not even universal agreement that this was a bug,

since the functionality protected battery life. Ultimately, we ad-

dressed this problem by inserting a “Wake Lock” that keeps the

CPU active when the phone is in hibernation mode. This demon-

strates the issue of using a resource-constrained device for pur-

poses that were not originally deemed important.

Design Issue 7: Smart phones are designed to conserve resources

and this sometimes conflicts with the needs of sensor mining.

3. THE WISDM ARCHITECTURE
Data mining is generally done offline, but most sensor mining

applications require results to be generated in real-time and poten-

tially for a large number of users. For example, our ActiTracker

activity recognition system [1] is being designed to support thou-

sands of users and provide real-time results via a web interface.

Similar real time and scalability constraints exist for many other

sensor mining applications, including map navigation, traffic

analysis, and biometric authentication. Some applications, such as

navigation, even require large numbers of users to generate useful

results, since traffic information is inferred directly from the users.

Finally, applications must also run on mobile devices with inhe-

rently limited resources. These were our primary architectural

concerns when designing the WISDM sensor mining architecture.

The sensor mining process involves several steps. First the raw

time-series data from the phone’s sensors must be collected and

stored locally. Since traditional predictive data mining algorithms

(e.g., decision trees) do not operate directly on time-series data,

the next step for traditional methods involves transforming the

time-series data into examples that summarize the data over a

fixed time period. For our current activity recognition and biome-

tric applications [9, 10] we generate one example, with 43 fea-

tures, from each 10 seconds of accelerometer data. Next, pre-built

classifiers are used to generate predictions (our architecture also

supports the dynamic creation of classifiers). The final step in-

volves reporting the results back to the user, by sending them to

the phone and/or making them available via the Web.

3.1 Mobile Operating System and Platform
The WISDM sensor mining architecture is designed for smart

phones and mobile devices running the Android operating system.

Our reasons for choosing Android [2] over Apple iOS [8] are

summarized in Table 1 and include the fact that Android uses a

more popular programming language, provides multiprocessing,

has free and well documented developer tools, is open source, has

competitive market share, makes it easy to publish applications on

the marketplace, and is supported by multiple hardware vendors—

which should encourage innovation and result in lower costs.

Table 1. Mobile Operating System Comparison

Criterion Apple iOS Android

Language Objective C Java

Language Popularity Low (Difficult) High

Multiprocessing No Yes

Developer Tools

 Free No Yes

 Documentation Limited Extensive

Open Source No Yes

App Approval Strict Oversight None

Market Share [8] 13.80% 14.50%

Hardware Venders Apple Many

Design Issue 8: The platform’s mobile operating system should be

easy to develop for: it should use a common programming lan-

guage, have a well documented and inexpensive software devel-

opment kit (SDK), and ideally it should be open source.

Figure 2. The WISDM Sensor Mining Architecture

There were some problems, however, with using Android. Name-

ly, when we started the project, Android was not very polished

and was not stable (in 3½ years the Android OS has been up-

graded 8 times). This led to complications including which An-

droid version to develop for, since each Android version provides

different functionality. We decided to program the application for

an older version (version 1.5) in order to ensure maximum compa-

tibility with existing Android smart phones. Also, unlike the Ap-

ple iPhone, there are dozens of Android models, which compli-

cates the process of compatibility testing. In fact, in Section 2.3

we noted several bugs that only occurred for some versions of

Android and some phone models.

3.2 Sensor Mining Process Overview
Our architecture uses a client-server model to perform the steps

identified at the start of this section. The client application pro-

vides a graphical interface for collecting sensor data from user’s

phones and for reporting results back from the server. The server

is built to receive raw sensor data, transform it, classify it, and

store the results and also report the results back to the user, via the

phone and/or a web interface. As we will discuss, the nature of an

application determines how (and whether) these tasks should be

distributed between the client and server. In our simplest “dumb

client” architecture, the client has minimal responsibilities and

most of the processing and mining occurs on the server.

Figure 2 describes the “dumb client” version of our WISDM sys-

tem. The numbers in the diagram refer to the steps in the sensor

mining process. Step 1 involves the recording of the sensor data

on the client device. Once the client has collected data, it contacts

our server (Step 2a) and then in Step 2b the listener on the server

passes the connection off to a handler thread, which then commu-

nicates with the client (Step 2c) to authenticate a user and accept

his or her data. This data is aggregated and submitted to the data-

base in batches (Step 2d). As more functionality is pushed to the

client, Step 2 will need to be performed at a later time—or possi-

bly not at all (see Section 3.3).

Control then passes to the server. In Step 3 the data is transformed

to create examples from the time series sensor data (this step may

not always be required). In Step 3a newly arrived data is periodi-

cally retrieved from the database by a sorting thread, which orga-

nizes the data so that records (i.e. snap shots of the sensor values

recorded at Pr) that are from the same sensor and cell phone are

processed together. Related data are stored in a queue until Step

3b is triggered, which has a grouping thread take the sorted time

series records and bind them into examples. In our case an exam-

ple represents 10 seconds worth of data, recorded at Pr =50 ms, so

each example contains 200 sensor readings. The accelerometer

returns 3 values when it is polled (vis. x, y, and z acceleration) so

these 200 readings contain 600 values. In Step 3c, a feature gene-

rator thread takes them and transforms the records into an exam-

ple. These examples are saved to two separate queues so that they

can be stored and processing can also proceed. In Step 5a, exam-

ples are taken from one of these queues, grouped into batches for

efficiency, and saved to the database. This ensures that we have a

record of the intermediate stages of our work. These transformed

examples can also be formed into a data set and shared with other

researchers. Step 4 has a thread take examples from the other

queue and run them through a pre-built classifier. The results are

saved to a final queue and then aggregated into batches and saved

to the database in Step 5b. With the classification results stored in

the database, they can later be queried for visualization and pres-

entation to the user via our web interface.

The scenario that was just described did not cover the dynamic

construction of classifiers. We believe that sensor mining applica-

tions will need to build personal models for some applications

(like activity recognition) in order to obtain highly accurate re-

sults. Thus, this capability is necessary and is part of our WISDM

architecture. But this will also require smart phone applications to

facilitate self-training. Our WISDM platform will facilitate this

self-training phase for activity recognition by walking users

through the process of collecting labeled training activity data.

Design Issue 9: Some sensor mining applications may require

self-training to generate personalized models and the sensor min-

ing architecture should support this ability.

3.3 Client/Server Architectures
The client and server responsibilities can be apportioned in many

ways. The two extremes are the “dumb client” architecture, where

minimal work is done on the client, and a “smart client” architec-

ture, where the client does all of the work and no server is re-

quired. Between these extremes there are several viable interme-

diary architectures. Table 2 summarizes reasonable alternatives.

Table 2. Possible Client Workloads

 Client Type: 1/Dumb 2 3 4 5 6/Smart

Data Collection

Data Transformation

Classification

Model Generation

Data Storage

Data Reporting

Currently the WISDM client application, called Data Collector,

implements the responsibilities of the dumb client, although in the

future it will be able to be configured to support any of the work-

loads shown in Table 2. The Data Collector has a very simple user

interface for managing the data collection and data upload

process. The home screen has username and password fields, and

buttons to “start recording,” “send data,” and “exit” plus a drop-

down data label chooser so that people can label the data they

collect for supervised learning applications (e.g. for activity rec-

ognition, the physical activity they are performing). When one

clicks “Start,” they are brought to a new screen that displays the

sensor polling rates and notifies the user that it is recording. This

screen has a “stop collecting” button to stop collection and return

a user to the home screen. Sensor polling rates and server connec-

tion settings can be modified from within the normal Android

application settings screen. Very soon, our application will sup-

port the automatic (periodic) upload of data.

In the future we will migrate additional server functionality to the

phone, to reduce the workload on the central server. We plan to

do this for our production application, ActiTracker [2], in order to

make it scalable. The first stage in moving functionality to the

client application is to transform the time series sensor data into

individual examples on the phone (Client Type 2). This process is

straightforward to implement and only moderately compute inten-

sive. It also means that less data will be transmitted to the server,

thus saving communication bandwidth.

The next step is to have the classification process occur on the

phone using pre-built models (Client Type 3). In most cases im-

plementing this will be quite straightforward. Also, depending on

the type of model, the amount of computation required may be

low (e.g., decision tree) or high (nearest neighbor). This architec-

ture is quite scalable, with the phone performing most of the rou-

tine processing, and the server responsible mainly for storing and

reporting the results. In many ways this may be optimal since the

client is still relatively simple, the server is offloaded from most

work, and the client does not need to store large quantities of

results. This is the target architecture for our ActiTracker applica-

tion, since we want to allow users to view their history of activi-

ties over long periods of time via the Internet.

Model generation is perhaps the most complex processing step

and for this reason it will often be performed on the server. Since

model generation will occur relatively rarely, this may not overly

impact the scalability of the architecture. But in some cases hav-

ing model generation occur on the application will be desirable,

and this leads to Client Type 4. It may be much easier to imple-

ment model generation on the phone than one might think, since

our WISDM platform uses the WEKA data mining suite [18],

which is written in Java, and Java code can run under Android.

Also, today’s smart phones do have the processing power to run

such tools. Even computationally intensive tasks, such as discrete

Fourier transforms of sound samples, have been shown to be poss-

ible on older smart phones [12]. But since model generation is

still the most complex step, it still will often be kept on the server.

In this case we can still move more functionality to the client by

keeping all of the results and reporting facilities on the phone

(Client Type 5). In this case, however, since we do not transmit

the sensor data to the server, we can only use pre-built models,

which means that personalized models cannot be used. But this is

fine for many applications. Finally, in the “smart client” extreme

(Client Type 6), all functionality is on the mobile device.

Design Issue 10: Smarter clients trade off application scalability

with limited resources.

3.4 A Central Database
Our data is stored in a MySQL database which has tables for raw,

intermediate, and final data. This allows us to go back and modify

our methodology, add new tasks, or visualize data which would

be lost if we kept only the resulting classifications. These are crit-

ical abilities for academic research, but are likely to be unimpor-

tant in many consumer applications. However, there are some

practical problems with storing large quantities of records in a

relational database.

Design Issue 11: Storing large numbers of records in a database

can make finding specific or related records difficult.

For our purposes, we needed to process sequential data together in

blocks in order to translate individual readings into 10 second

examples of activity. This also means we needed to prevent data

from multiple users from mixing. Because all records share the

same form, it is tempting to store them together in a single table.

If this is done, data from different users, times, and activities will

be mixed, and the data will have to be sorted back into homoge-

neous groups before evaluation. Even with hash tables and index-

ing, these tables will be difficult to manage, and extracting desired

and related records will be CPU intensive. This mixing can be

eliminated and table size reduced by partitioning data in separate

tables based upon relevant information. Increasing organization

increases accessibility, but stricter organization also introduces

application overhead to sort new records outside of the database.

Design Issue 12: Relational databases are I/O chokepoints which

can impede real time functionality.

In the “dumb client” architecture, even a single user will generate

millions of records per day (e.g., with a 50ms polling rate), which

will cause most queries to take a long time to run. Even the inser-

tion of our research dataset into the database took hours on a ded-

icated machine because of the overhead involved in relational

database systems like MySQL. This overhead includes insertion

times, index updates, permission checks, and locking [5]. If in-

serting new data and querying it back takes longer than processing

it, then the application will waste time waiting for the database.

This translates to less responsive “real time” applications and in

cases where large amounts of data are accepted continuously, it

may mean that the server becomes severely backlogged and can

never catch up. It is important, therefore, to limit queries and ap-

plication dependence on a database. Where possible, applications

should store and process all sensor data in memory and use the

database for long term storage only. If raw sensor readings must

be saved, they should be saved independently of their processing.

3.5 Concurrency
The massive quantities of data produced by mining sensor data

from mobile devices makes concurrent processing very attractive.

As mentioned before, data mining tasks are frequently done se-

quentially, which is inadequate for real time applications. Fortu-

nately, sensor mining is comprised of independent steps and dis-

crete records which lend themselves to concurrent processing.

There are two important kinds of concurrency for our work: per-

forming the same task on multiple data at once (i.e. parallelism)

and performing multiple steps of a single procedure (on different

data) at the same time (i.e. pipelining).

Design Issue 13: Parallelism requires careful separation of data

so that no data’s processing depends on the state or content of

other data.

Many of the steps in Section 3.2 can be performed in parallel. In

our server each step is comprised of persistent threads, to avoid

thread creation overhead after startup. For all steps that can be

performed on multiple data in parallel (viz. client connections,

record grouping, feature generation, classification), we use thread

pools to manage the number of threads and balance the workload.

Design Issue 14: Pipelining requires careful separation and se-

quencing of tasks to avoid dependencies that can cause unneces-

sary stalls.

If data must go back and forth between stages, or data from one

stage is tied to data from another stage, then some stages may end

up waiting for others. Each stage must be able to proceed regard-

less of the other stages, to ensure that the application does not

stall. First, this requires separate threads for each task so that the

steps can proceed independently. This also means using separate

thread pools for each task so that threads for some steps are not

queued behind threads of other steps doing unrelated work.

Second, buffers are needed between the steps because they take

different amounts of time to complete. We resolve this timing

problem using queues between steps. When a step finishes, it puts

its result into one queue and takes the next job from another. If

the input queue is empty or in use, then the thread waits until

there is work. Thus, resources can be kept busy.

To avoid waiting for I/O operations, data to be saved is passed to

another queue so that processing threads can continue execution.

Dedicated I/O threads take from each of these queues and com-

bine the data into batch queries, then execute them in mass to

reduce database overhead. Each I/O thread has its own persistent

connection to the database, to reduce connection overhead.

3.6 Language and Operating System
Data mining applications need to interface with other systems and

this should affect the choice of programming language for the

application. Mobile devices have native languages for applica-

tions that must be used to interface with the operating system.

There may or may not be support for other languages, but the

quality of that support and the overhead necessary to implement

non-native code should be evaluated prior to development. Our

client and server architecture was coded in Java, the primary de-

velopment language for Android. Writing our server program in

the same language allows for maximum compatibility between

different code used by the project and even allows us to share

code between the client and server.

Design Issue 15: Choice of programming language can have

significant impact on the performance and integration of sensor

mining applications.

Third party data mining algorithms also interface best with appli-

cations written in the same or friendly languages. Our WISDM

platform uses the WEKA data mining suite [18], which is written

in Java and can be imported natively into Java applications. Data-

bases interface differently with different languages and so the

choice of language and database should be coordinated. In our

case Java has strong support for our MySQL database using JDBC.

Some languages are more efficient than others and since limited

computation power is an issue for mobile devices, the choice of

language is important. Our early work relied on Perl scripts be-

cause they were quick to write, but when we began working on

automation and integration of the many tasks associated with data

mining, we realized that any part implemented in Perl would be

inefficient due to the way Perl works. By implementing our pre-

processing in Java, we were able to reduce the time required by

several orders of magnitude and a language like C could further

increase application efficiency. Aside from efficiency, different

languages may also better support an application’s functionality.

Mobile sensor mining is inherently a multi-system environment

and generally involves communication over networks. Choosing a

language that has strong support for these functions is important,

which caused us to choose Java. Because it executes within the

standardized, cross platform Java Virtual Machine, our programs

will be portable to other systems. Java also provides strong typing

at compile time and automatic memory management, which make

applications more robust, and considerable support for secure

network communication, authentication and cryptography [13].

3.7 Web Interface and Data Representation
The sensor mining results should be available to the user via a

web interface. In our design, two separate versions will be sup-

ported: one for visitors on a computer and another for mobile

devices. Due to the possibility of smart phone users visiting the

full version of the website, the full version will be designed as

efficiently as possible. This includes taking into account the size

of all the images and scripts as well as the language the site was

written in. The images and scripts had to be optimized in order to

load as quickly as possible and the majority of the site was coded

in PHP to reduce the load time by caching the headers and footers

of the pages so that they would only have to be loaded once. The

data visualization scripts are written in Javascript in order to pro-

vide real-time updates, greater user-interaction and to alleviate the

load on our server, but this will increase the load on the mobile

device’s data connection. A possible alternative that we will have

to consider implementing as we build the mobile website, would

be PHP-based graphical representation which would shift the data

rendering to the server just for visitors on mobile devices.

3.8 Algorithm Efficiency
A key component in any sensor mining architecture is the data

mining module. Key questions involve: what data mining algo-

rithms should be used, how and when the predictive models are

built, how long the training process takes, and how long it takes to

classify new data using existing models. Efficiency considerations

are critical when addressing these issues due to the resource limi-

tations placed on mobile devices.

There is no best data mining algorithm to use, but for real-time

applications some algorithms are more appropriate than others. In

particular, instance-based (nearest-neighbor) learning algorithms

are especially appropriate, since they do not require any training

time at all. Thus, they are good for applications, like activity rec-

ognition, where personalized models perform best. It is also criti-

cal that new data can be applied to learned models and results can

be generated quickly. But most algorithms generate models that

can quickly generate results. While instance-based learning me-

thods may actually take some time to generate results, these me-

thods can be sped up by implementing them directly, independent

of any learning program, and by exploiting the matrix operations

supported by modern processor architectures [6].

Design Issue 16: No single data mining algorithm will always

perform best for all sensor mining applications and thus multiple

data mining algorithms should be available.

Design Issue 17: Data mining algorithms that require little or no

training time will be ideal for building personalized models.

Design Issue 18: Due to the speed and memory limitations placed

on smart phones, data mining algorithms that require low over-

head are most appropriate to run on a smart phone.

4. SECURITY AND PRIVACY
Mining mobile sensors provides opportunities to learn a great deal

about people’s lives and thus user privacy is a significant concern.

Secure applications will also attract a wider audience [16].

4.1 Communication
One of the biggest concerns for data security is transmission.

Sending data and communicating provide points of attack on data

including person-in-the-middle and spoofing as well as on re-

sources through SQL injection and malicious code.

Design Issue 19: Sensor data must be communicated securely

over public networks with techniques like public key encryption.

Mobile devices communicate over many unsecure networks. They

may be connected to a public WiFi hotspot, a cellular carrier’s

broadband network, or even a physical tether to a desktop com-

puter. Users move about and may connect to many different and

untrusted networks, including public networks. Therefore, it is

critical to keep personal data private while it is being transferred

over any network. We use public key certificates to verify the

interaction between a client smart phone and our server. Using

these certificates, we are able to encrypt all of the communication

between client and server as an SSL session. These measures pre-

vent a person-in-the-middle attack and keep a user’s data private

while it is in transit.

Design Issue 20: Connections from public networks and applica-

tions cannot be trusted to provide safe and accurate data unless it

is verified and sanitized.

Because our server must accept sensor data from clients over the

Internet, it is important to verify our interactions. First, we require

authentication before any data is accepted, so the first interaction

after connecting is user authentication or new user creation. This

ensures that no data is sent anonymously (the user’s identity may

be anonymous but the data must be bound to a user ID so that it

can be retrieved later). New users submit a unique user name (an

email address) and password. When the application is released to

the public, the unique Android device ID will also be used to

verify users, but this is not needed in a research setting where

multiple test subjects may use the same set of devices.

Second, our server functions as a demilitarized zone (DMZ) be-

tween clients and the database. Specifically, our architecture uses

predefined strings to signal and communicate with clients. This

means that the client asks the server to make database requests on

its behalf and the server sanitizes all database queries. The client

must know and initiate requests in the proper order for successful

interaction. Too many failed requests or strings containing dan-

gerous SQL will cause the server to deny and/or disconnect from

the client. In addition to data verification and database isolation,

this structure has the added advantage of being able to aggregate

queries into batches. By using batches of predefined statements to

execute queries, we reduce database load.

4.2 Storage
Other security efforts are meaningless if the data is not stored

securely. If the application architecture requires storing data local-

ly, potentially malicious applications should be prevented from

accessing this information. In a centralized storage situation, a key

aspect in keeping user’s data private is storing it separately from

their personal information. All data that we store on our central

server is associated with a unique user ID, which is assigned to

each user at his or her creation. Users do not know their ID num-

bers; rather, when they authenticate with their username and

password, the system fetches their user number from the password

file and uses it internally. Personal data about users is also stored

separately. This ensures that if all the sensor data and classifica-

tions were released to the public, it would still be impossible to

identify users or link them with their data (although GPS data

makes it possible to identify a person based upon their location).

Design issue 21: Sensor and user data must be stored securely

both on the mobile device and at any central server.

Some sensors, like the GPS, can give away significant information

about a user, ranging from current location and home address to

habits and routines. The ambient light and magnetic compass

sensors are unlikely to pose privacy risks of the same magnitude.

It should be noted, however, that the results of data mining can

produce information which is a greater security threat than the raw

data, in the way that ActiTracker [1] will produce detailed activity

histories from otherwise meaningless acceleration values.

Design Issue 22: some sensor data, such as audio, image, and

location data, can be very sensitive, and so extra privacy meas-

ures must be in place to secure it.

Generally, more information is better for data mining tasks. How-

ever, when designing systems for the general public it is important

to keep in mind what information is actually needed. For example,

for ActiTracker there is no need to save everything the phone’s

microphone records and doing so would needlessly put private

information at risk. Thus our applications will only save the sen-

sor data that they need. However, applications often involve user

accounts which can have unnecessary personal information as

well. Because of this, user passwords are never stored. Instead,

passwords are repeatedly hashed using SHA-256, and the result is

compared to the hash value saved in our password file. Even if an

attacker gained access to the password file, no passwords would

be exposed.

Design Issue 23: Storing unnecessary data compromises security.

4.3 Application Level User Control
A key component of security is allowing users to control their

own data, so that they can make informed decisions about their

privacy. Allowing users to select which sensors are recorded in-

creases their privacy. In our design a user can disable the record-

ing of any sensor. This means that users need to understand what

is being recorded. When applications are installed on Android

devices there is a warning showing what the application has

access to. Unfortunately, these permissions are so broad that most

applications need access to many of them, so users do not really

know how an application is using its permissions. As a result,

users quickly learn to click through installation warnings and

permissions screens without paying attention. Even if they do, it is

not always clear from the Android interface how different permis-

sions and access rights are used by an application. It is entirely

possible, then, for applications to spy on people using their mo-

bile device’s sensors. If malicious applications exploit sensor

data, people may opt not to use legitimate sensor mining applica-

tions. Giving users control over their privacy makes it more likely

that they will use sensor mining applications.

Design Issue 24: user privacy means user control over data col-

lection, including notification of which sensors are being col-

lected and options to control them.

5. RESOURCE USAGE
It is important for mobile sensor mining applications to operate

continuously without interfering with normal phone operation. To

help ensure this, in this section we enumerate a few key design

issues related to resource usage. In addition, we present actual

performance results associated with our WISDM Data Collector

application, which currently operates in the “dumb client” mode.

While we have taken some steps to minimize resource usage, we

expect that over the next few months we will need to further op-

timize our design in order to make better use of limited resources.

We have evaluated our Data Collector application on a variety of

Android devices, including the Google Nexus One, Motorola

Droid Pro, HTC Hero and EVO, and the Samsung Epic, Trans-

form, Intercept, and Captivate. The majority of measurements

provided, however, are based on the popular HTC EVO.

5.1 Battery
Battery life is an incredibly important issue on smart phones and,

in particular, it is critical that such devices operate for at least a

full day without being recharged. If sensor mining applications

draw too much power and degrade battery life too significantly,

then users will be unwilling to run these applications.

Design issue 25: Sensor mining applications must not degrade

battery performance too significantly or prevent the device from

operating without recharge for a normal 16-hour “waking” day.

Our measurements indicate that on the HTC EVO our Data Col-

lector application consumes 35-51 milliwatts per second, and on

an idle device with the screen powered off this corresponds to

6.6% of the device's power consumption. For comparison, the

screen takes about 525 milliwatts per second at standard bright-

ness (but the screen is not normally lit continuously). Thus the

sensor collection process does not unduly tax the phone’s battery,

although the Data Collector does consume 31.6 times more power

than the Android operating system. When the application is col-

lecting data and in the CPU foreground (visible on the screen) the

battery life will be 7:25 hours; under the same circumstances, but

without the application collecting sensor data, the expected bat-

tery life is 7:30 hours. The lack of a significant change in battery

life indicates that it is feasible to have an application constantly

polling and recording sensors. The ability of mobile phones to

sustain this activity is encouraging for sensor mining applications.

Future optimizations may help reduce power consumption. For

example, we can buffer recorded data into memory before it is

written to flash storage rather than writing data to flash every

50ms. Note that all these measurements are based on the “dumb

client” architecture and that if additional processing occurs on the

phone, this will have an impact on battery life. But our belief is

that even a “smart” client will not require much additional power,

although this has yet to be confirmed.

5.2 CPU and RAM
Computing power and RAM are also limited on smart phones.

Since sensor mining applications may run continuously, we need

to be even more concerned about their cumulative CPU and RAM

usage, so that normal device operation is not compromised.

Design issue 26: The operation of sensor mining applications

should not impact normal functioning of smart phones; consump-

tion of CPU and RAM should not exceed 20%, on average.

CPU usage tests were performed on the “dumb” Data Collector

client application. The tests were conducted on an HTC EVO 4G,

which features a SD8650 chipset and a 1GHz Snapdragon Scor-

pion processor. While recording, the WISDM Data Collector's

service spends approximately 3.4% of its uptime as the active

process, which translates to approximately 2% of the CPU's total

potential. For comparison, the Android 2.2 kernel occupies 3.6%

of the CPU's capacity.

On Android phones services do not occupy the CPU foreground

unless the screen is active, resulting in decreased priority on the

CPU. In practice, this translates to a slower Pr value because the

application does not have the priority to execute commands as

frequently. For our application, with a Pr value of 50 ms, we find

that we are only able to successfully poll new values every 100 to

200 ms. This problem may not have a significant impact on sensor

mining applications that do not require such a high frequency Pr.

Future work on the Data Collector includes implementing remote

services which run independently of the application. This should

prevent the collection service’s CPU priority from decreasing

when the application leaves the foreground. If this is the case,

then any application that continuously polls sensors would need

to use this or a similar technique.

The WISDM Data Collector uses 18MB of RAM, of which 12MB

is reserved for data and 6MB is shared. Full RAM usage is ap-

proximately 3.5% of the HTC EVO's 512 MB RAM total. The

application’s memory use is relatively small and unlikely to con-

flict with other applications or interfere with normal operation.

5.3 Data Storage
Sensor mining has the potential to generate massive datasets. Ap-

plications can have thousands or even millions of users. More

importantly, mobile sensors may continuously report new data,

which means that even per user the data will grow rapidly. Appli-

cations such as ActiTracker, which polls the accelerometer as

frequently as possible, will produce 72,000 records per hour.

Design Issue 27: Compression and efficient encoding are critical

to manage the storage needs of sensor mining applications.

It is easiest to demonstrate the data storage requirements with a

case study. With ActiTracker, data storage requirements for the

same raw accelerometer data vary significantly based upon the

format of the data. Each record, for instance, has a user ID and

activity label, which are both repeated for many other records.

Also, the timestamp for each record is almost identical to the

timestamp of the previous and next records. This yields potential

for data compression to save space. Encoding can also make a

significant difference. We use ASCII encoding to produce human

readable files, which turns single precision float values (a single

byte) into multiple separate characters (each represented by a

byte). A purely binary flat file would be able to compress data

down to just 15.7% of the size of our average ASCII text files.

Databases are also prone to inefficiency. Numeric values are

stored in fixed length spaces, but this space is not the minimum

binary space (e.g. in our MySQL database, single precision floats

require four bytes, rather than one). Timestamps and data labels

that are added by an application also get stored in fixed size spac-

es. This standardization eliminates much of the possibility for

compression and application-specific encoding. In the case of

ActiTracker, each record in the database requires only slightly less

space than it does in an ASCII text file. Additionally, due to the

overhead required for indexing and other system functions, the

actual space taken up in the database is greater [5].

Design Issue 28: Saving only required data is critical for scala-

bility and reducing storage costs.

Sensor mining applications will have varying degrees of prepro-

cessing involved, and in many cases this will reduce the quantity

of data. For our work with ActiTracker the data transformation

step allows us to dramatically reduce the number of records stored

because we collapse each 200 consecutive time series records into

a single, slightly larger, example. The total space required for one

example is 2.9% the size of the raw data that it describes. As out-

lined in Section 3.3, production applications may store only the

transformed data, or just the prediction outcomes, dramatically

reducing their storage needs.

Data storage and transmission are closely related and for every-

thing other than a “smart” client, data storage first requires data

transmission. Therefore, when determining the quantity and size

of data stored at a central server by an application, it is important

to take network bandwidth into account. Data stored locally on

the device also has limitations to consider. Many smart phones are

shipping with 8 GB or more of onboard storage, with options to

expand to more. However, this space is often taken up by user’s

pictures, music, and documents, and taking away significant

amounts of space from other applications may not be viable.

6. CONCLUSIONS
Sensor mining applications using smart phones will become

common over the next decade. In this paper we describe key is-

sues that a sensor mining architecture, and sensor mining applica-

tions, will have to deal with in order to provide benefits to the

user while running on a resource constrained device. These issues

will be critical for developing and evaluating sensor mining archi-

tectures and platforms. In addition, we described our WISDM

sensor mining architecture. By doing so we demonstrated in a

concrete manner how these design issues can be addressed. We

also showed how a flexible architecture can support varying levels

of responsibility between the client and server. Issues concerning

resource usage and security and privacy were also highlighted.

The WISDM platform is partially implemented, with most basic

functionality working and tested. We expect that our first produc-

tion application, ActiTracker [1], will be released around Septem-

ber 1, 2011. This will allow researchers and everyday users to

track their activities over time to see if they are receiving suffi-

cient physical activity. It will also provide concrete feedback

about the efficacy of our WISDM sensor mining architecture.

7. ACKNOWLEDGMENTS
We would like to thank past and present WISDM members that

contributed to this project. This work was financially supported

by a Google faculty research award, a Fordham faculty research

grant, and several Fordham summer science research internships.

8. REFERENCES
[1] ActiTracker. http://ActiTracker.com/

[2] Android, Google. http://www.android.com/

[3] Bosch. BMA 150 Digital , Triaxial Acceleration Sensor Data

Sheet, http://www.bosch-sensortec.com/content/language4/

downloads/BST-BMA150-DS000-06.pdf

[4] Brezmes, T., Gorricho, J.L., and Cotrina, J. 2009. Activity

Recognition from accelerometer data on mobile phones. In

Proceedings of the 10th International Work-Conference on

Artificial Neural Networks, 796-799.

[5] Elmasri, R. and Navathe, S. 2007. Database Systems 5th ed.

Pearson, Boston, MA.

[6] Frank, J., Mannor, S., and Precup, D. 2010. Activity and gait

recognition with time-delay embeddings. In Proceedings of

the 24th AAAI Conference on Artificial Intelligence.

[7] InMobi Mobile Insights. (2011, April 14). A Global View Of

Mobile Advertising: Global Summary March 2011.

[8] iOS, Apple. http://www.apple.com/iphone/ios4/

[9] Kwapisz, J.R., Weiss, G. M., and Moore, S.A.2010. Activity

recognition using cell phone accelerometers. In Proceedings

of the Fourth International Workshop on Knowledge Dis-

covery from Sensor Data, Washington DC, 10-18.

[10] Kwapisz, J.R., Weiss, G.M., and Moore, S.A. 2010. Cell

phone-based biometric identification. In Proceedings of the

IEEE 4th International Conference on Biometrics: Theory,

Applications and Systems (BTAS-10), Washington DC.

[11] Menn, J. February 8, 2011. Smartphone shipments surpass

PCs. Retrieved from http://www.ft.com/cms/s/2/d96e3bd8-

33ca-11e0-b1ed-00144feabdc0.html#axzz1L2wKclC7

[12] Miluzzo, E. et al. 2008. Sensing meets mobile social net-

works: the design, implementation and evaluation of the

CenceMe application. In The 6th ACM Conference on Em-

bedded Networked Sensor Systems, 337-350.

[13] Oracle. Java SE Security, http://www.oracle.com/

technetwork/java/javase/tech/index-jsp-136007.html

[14] Sense Networks. http://www.sensenetworks.com/

[15] STMicroelectronics, LIS302DL 3-axis Accelerometer,

http://www.st.com/stonline/books/pdf/docs/12726.pdf

[16] Sutter, J. D. (2011, April 21). Report: iPhones secretly track

their users' locations. CNN Tech, mobile. Retrieved from

http://www.cnn.com/2011/TECH/mobile/04/20/iphone.tracki

ng/index.html?hpt=T2

[17] Weiss, G. M. 2011. WISDM (Wireless Sensor Data Mining)

Project. Fordham University, Department of Computer and

Info. Science, http://www.cis.fordham.edu/wisdm/

[18] Witten, I. H. and Frank, E. 2005. Data Mining: Practical

Machine Learning Tools and Techniques, 2nd edition.

[19] Yang, J. 2009. Toward physical activity diary: Motion rec-

ognition using simple acceleration features with mobile

phones, In First International Workshop on Interactive Mul-

timedia for Consumer Electronics at ACM Multimedia.

[20] Zephyr. Consumer Heart Rate Monitor. http://www.zephyr-

technology.com/consumer-hxm.

http://actitracker.com/
http://www.android.com/
http://www.apple.com/iphone/ios4/
http://www.ft.com/cms/s/2/d96e3bd8-33ca-11e0-b1ed-00144feabdc0.html#axzz1L2wKclC7
http://www.ft.com/cms/s/2/d96e3bd8-33ca-11e0-b1ed-00144feabdc0.html#axzz1L2wKclC7
http://www.oracle.com/
http://www.sensenetworks.com/
http://www.st.com/stonline/books/pdf/docs/12726.pdf
http://www.cnn.com/2011/TECH/mobile/04/20/iphone.tracking/index.html?hpt=T2
http://www.cnn.com/2011/TECH/mobile/04/20/iphone.tracking/index.html?hpt=T2
http://www.zephyr-technology.com/consumer-hxm
http://www.zephyr-technology.com/consumer-hxm

