
Active Learning using Adaptive Resampling

Vijay S. Iyengar
IBM Research Division

T.J. Watson Research Center
P.O. Box 218, Yorktown

Heights, NY 10598, USA

vsi@us.ibm.com

Chidanand Apte
IBM Research Division

T.J. Watson Research Center
P.O. Box 218, Yorktown

Heights, NY 10598, USA

apte@us.ibm.com

Tong Zhang
IBM Research Division

T.J. Watson Research Center
P.O. Box 218, Yorktown

Heights, NY 10598, USA

tzhang@watson.ibm.com

ABSTRACT
Classi�cation modeling (a.k.a. supervised learning) is an ex-
tremely useful analytical technique for developing predictive
and forecasting applications. The explosive growth in data
warehousing and internet usage has made large amounts of
data potentially available for developing classi�cation mod-
els. For example, natural language text is widely available
in many forms (e.g., electronic mail, news articles, reports,
and web page contents). Categorization of data is a common
activity which can be automated to a large extent using su-
pervised learning methods. Examples of this include routing
of electronic mail, satellite image classi�cation, and charac-
ter recognition. However, these tasks require labeled data
sets of su�ciently high quality with adequate instances for
training the predictive models. Much of the on-line data,
particularly the unstructured variety (e.g., text), is unla-
beled. Labeling is usually a expensive manual process done
by domain experts. Active learning is an approach to solv-
ing this problem and works by identifying a subset of the
data that needs to be labeled and uses this subset to gen-
erate classi�cation models. We present an active learning
method that uses adaptive resampling in a natural way to
signi�cantly reduce the size of the required labeled set and
generates a classi�cation model that achieves the high ac-
curacies possible with current adaptive resampling methods.

Categories and Subject Descriptors
I.2.6 [Arti�cial Intelligence]: Learning; I.5.1 [Pattern
Recognition]: Models; H.2.8 [Database Managemen t]:
Database Applications|data mining

General Terms
Data mining, machine learning, classi�cation, active learn-
ing, adaptive resampling

1. INTRODUCTION
Supervised learning methods are being used to build classi-
�cation models in various domains like �nance, marketing,
and healthcare [5]. Classi�cation techniques have been de-
veloped within several scienti�c disciplines, including statis-
tics, pattern recognition, machine learning, neural nets and
expert systems [30]. The quality and the quantity of train-
ing data used by these supervised methods is an important
factor in the prediction accuracy of the derived models. In
many applications, getting data with the class labels is dif-
�cult and expensive since the labeling is done manually by
experts. A frequently cited example is electronic mail rout-
ing based on categories. Training data is usually obtained
by manually labeling a number of instances of mail. Another
such example is categorizing web pages based on content.

One approach to solving this problem is to select the data
that need to be labeled such that a small amount of labeled
training data su�ces to build a classi�er with su�cient ac-
curacy. Random sampling is clearly ine�ective since the var-
ious classes can have very skewed distributions in the data
and instances of the infrequent classes can get omitted from
the random samples. Strati�ed sampling [8] is a method de-
veloped to address this problem with random samples. The
unlabeled data is partitioned based on the attributes of each
instance in the data. Sampling is done separately from each
partition and can be biased based on the expected di�culty
in classifying the data in each partition. However, it be-
comes more di�cult to generate these partitions for high
dimensional data and it is not clear how to e�ectively ap-
ply this approach on data typically seen in many real life
applications.

Active learning is a term coined to represent methods where
the learning algorithm assumes some control over the sub-
set of the input space used in the modeling [9, 10]. In this
paper, active learning will mean learning from unlabeled
data, where an oracle can be queried for labels of speci�c
instances, with the goal of minimizing the number of ora-
cle queries required. Active learning has been proposed in
various forms [2, 10, 11, 12, 17, 23, 24, 27]. We will discuss
in more detail the earlier works in active learning related to
the approach used in this paper.

One approach to active learning is uncertainty sampling in
which instances in the data that need to be labeled are iter-
atively identi�ed based on some measure that suggests that
the predicted labels for these instances are uncertain. Vari-
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ous methods for measuring uncertainty have been proposed.
In [22], a single classi�er is used that produces an estimate
of the degree of uncertainty in its prediction. An iterative
process then selects some �xed number of instances with
maximum estimated uncertainty for labeling. The newly
labeled instances are added to the training set and a classi-
�er generated using this larger training set. This iterative
process continues until the training set reaches a speci�ed
size. This method is generalized in [21] by using two clas-
si�ers, the �rst one to determine the degree of uncertainty
and the second one to do the classi�cation. In this work, a
probabilistic classi�er was chosen for the �rst task based on
e�ciency considerations and C4.5 rule induction was chosen
for the second task.

Another related approach is called Query by Committee [27,
16]. In one version of the query by committee approach
two classi�ers consistent with the already labeled training
data are randomly chosen. Instances of the data for which
the two chosen classi�ers disagree are then candidates for
labeling. The emphasis here has been to prove theoretical
results about this approach.

Adaptive resampling methods are being increasingly used
to solve the classi�cation problem in various domains with
high accuracies [15, 7, 28]. In this paper, we use the term
adaptive resampling to refer to methods like boosting that
adaptively resample data biased towards the misclassi�ed
points in the training set and then combine the predictions
of several classi�ers. Various explanations have been put
forth for the classi�cation accuracies achieved by these tech-
niques [26, 18]. Adaptive resampling methods like boosting
are also useful in selecting relevant examples even though
their original goal was to improve the performance of weak
learning algorithms [14]. The application of boosting to se-
lective labeling has been suggested in [14] without algorith-
mic details or experimental results. A related application of
boosting to select a subset of labeled instances for nearest
neighbor classi�ers has been explored in [15]. The closest re-
lated work [1] combines the Query by Committee approach
with bagging and boosting techniques. In this paper we use
a more general formulation that separates the two roles for
a classi�er in such approaches. This allows us to plug in dif-
ferent classi�ers (including an oracle) for one of these roles
and gain additional insight on factors inuencing the results
achieved. Other di�erences between our method and [1] re-
late to practical aspects in the application that impact the
computational requirements and will be discussed later in
the paper.

This paper applies adaptive resampling to the active learn-
ing task in a direct way that will be described in the next
section. The goal is to retain some of the advantages of
adaptive resampling methods, e.g., accuracy and robustness
of the generated models, and combine it with a reduction in
the required size of the labeled training set. Comparisons
will also be made between using either one or two classi�ers
in the adaptive resampling framework [21]. Experimental re-
sults using benchmarks from various domains are presented
in the paper to illustrate the the sizes of the labeled training
sets needed to get adequate classi�cation accuracy.

2. DESCRIPTION OF OUR METHOD
Adaptive resampling (e.g., [15, 28]) selects instances from a
labeled training set with the goal of improving the classi�-
cation accuracy. The selection process adapts by biasing in
favor of those instances that are misclassi�ed by the ensem-
ble of classi�ers generated. We explore a direct application
of this framework to choose which of the unlabeled instances
should be labeled in an active learning task. Since the actual
labels are unknown for these instances in an active learning
task, guessed labels generated by a classi�er will be used
instead.

Method ALAR (Input: Unlabeled data U,
Output: Labeled training set L,
Output: Classi�er C)

Choose initial subset to start process

1 Select an initial subset S0 2 U.
Label instances in S0. Remove S0 from U and add it to L.
A subset of instances selected for labeling in each phase

2 For each phase p
3 Guess labels G for each instance in U

using classi�cation method M1.
Multiple rounds of adaptive resampling

4 Use adaptive resampling on training set L
using classi�cation method M2 to generate
an ensemble E of classi�cation models.

Select subset of instances to add to training set

for use by adaptive resampling in the next phase

5 If not last phase
6 Select subset Sp 2 U using weights W

calculated for each instance in U using G and E.
Remove Sp from U and add it to L.

Build combined classi�er using voting

7 Combine the ensemble E of classi�cation models
to form a resultant classi�er C.

end ALAR

Figure 1: Description of Active Learning using
Adaptive Resampling (comments are italicized)

Consider a more detailed description of the method (ALAR)
given in Figure 1. It is assumed that apart from the unla-
beled data U provided to the method, an expert is available
to label any selected instance in U. The method produces
as output a classi�er C and a selectively labeled training
set L that might have other uses (e.g., for use by another
classi�er).

Instances are selected from the unlabeled data U for label-
ing in an iterative process. The initial subset S0 is typically
chosen at random. Instances in S0 are labeled by the expert
and moved from U to the labeled training set L (statement
1). Additional instances from U will be labeled and added
to L in phases. In each phase, the labeled training set L
is used by a classi�cation method M1 to guess the labels
G for the unlabeled instances in U (statement 3). The set
L with the instances labeled so far is used in an adaptive
resampling framework using a classi�cation method M2 to
generate an ensemble E of classi�cation models (statement
4). Many variations for adaptive resampling have been pro-
posed and they di�er in the details of weighting function for
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resampling and the classi�cation method used. The exper-
imental results in this paper were generated using decision
trees for the classi�cation method M2. The resampling was
done using the normalized version of the following weighting
function w(i) for each instance i in L [28]:

w(i) = (1 + error(i)3) (1)

where error(i) is the cumulative error for instance i over all
the classi�cation models in the ensemble E.

The ensemble E of classi�cation models is used with the
guessed classes G for the unlabeled data to select more in-
stances in U for labeling in the next phase (statement 6).
Intuitively, the weights W for selecting any instance in U for
labeling should be biased towards those which are misclassi-
�ed in the ensemble E assuming the validity of the guessed
class labels G. In our experiments, we use Equation 1 again
to compute the weights W, but with the cumulative error
being calculated using the guessed class labels G as refer-
ence. A set of instances Sp is selected in each phase by
sampling using the normalized version of weights W.

Typically, the iterative addition of instances from U to the
labeled set L could continue until a speci�ed size of L has
been reached or the model quality improvements taper o�.
The �nal classi�er C is generated by combining the classi�-
cation models in the ensemble E (statement 7). We explore
a couple of variations in the generation of C. In the �rst case,
all the classi�cation models in E are combined. In the second
case, once the labeled training set L is complete, a new set of
classi�cation models is generated using adaptive resampling
with this complete set L (earlier models in E are discarded).
The second case corresponds to using our method to gen-
erate a labeled training set L and then using the adaptive
resampling method with L. In our experiments, we use un-
weighted voting across the set of classi�cation models being
combined to produce the �nal classi�er C [7, 28].

Two variations of the ALAR method will be considered in
the experiments discussed in the next section. In the �rst
approach, refered to as ALAR-vote-E, we combine (using
unweighted voting) the ensemble of classi�cation models E
available in each phase for use as the classi�cation model
M1. This approach takes advantage of the reported e�ec-
tiveness of voting methods (e.g., [15]) in providing guessed
labels. In the second approach, refered to as ALAR-3-nn,
two distinct classi�cation methods are utilized. A nearest
neighbor method (3-NN) is used for classi�cation method
M1. In both approaches decision trees are used for classi�-
cation method M2. The comparison of the performance of
these two approaches is interesting given earlier comparisons
between one and two classi�er methods (e.g., [21]).

Other important parameters that can be varied in the method
in Figure 1 are the number of phases, number of points to be
selected for labeling in each phase and the number of rounds
of adaptive resampling with the training set of each phase.
The values used for these parameters in our experiments will
be given in the next section along with other experimental
details.

3. EXPERIMENTS
This section presents the results of applying our method
to benchmarks in various domains. The �rst benchmark
internet-ads we will consider is based on an application to
identify images that are Internet advertisements [6]. An ap-
plication to remove advertisements after identi�cation was
evaluated using this benchmark by its donor in [19]. Three of
the 1558 features encode the geometry of the image. Most of
the remaining binary features capture occurrences of phrases
in the URL, the anchor text, and text near the anchor text.
In this paper, only the 2359 records in the benchmark with-
out any missing data are used. The original paper [19] using
this data reported results using the accuracy measure. The
skewed distribution of the two classes ad, nonad leads us
to use instead the usual information retrieval measures of
recall and precision for the more infrequent class ad. All ex-
periments with this benchmark are done using 10-fold cross
validation.

In the �rst experiment we will use random sampling to cre-
ate training sets of various sizes. For each training set cre-
ated, two types of classi�cation models are constructed and
evaluated against the test set. The �rst type of model is
a decision tree constructed using the tree package DMSK
[29]. The second type of model is created using adaptive re-
sampling of the training set with 100 DMSK trees. Figure 2
shows the results averaged over ten experiments for each par-
tition in the 10-fold cross validation. The arithmetic mean
of precision and recall is the metric displayed. The results
obtained for the single tree are comparable to the results
presented in [19]. The quality of precision/recall degrades
substantially for the single tree from 89.4% to 71.3% when
the randomly chosen training set size is reduced by a factor
of ten to 212. On the other hand, adaptive resampling with
the randomly chosen subsets (AR-random) is more robust.
The precision/recall metric for AR-random with the entire
training data is 92.3%, which is better to begin with. When
the training set is cut in size randomly by a factor of ten the
metric for AR-random degrades to 84.8%. Many of the ear-
lier works in active learning give comparisons with classi�ers
like the single tree case shown in Figure 2. However, with
the prevalence and success of adaptive resampling methods
now, it is more interesting to compare the accuracy of active
learning methods using AR-random as the baseline [1].

The improvement in prediction accuracy by using the ALAR
method over AR-random is shown in Figure 3. The AR-
random performance curve is repeated for comparison. The
curves marked ALAR were achieved by using the ALAR
method of Figure 1 with the following set of parameters. A
total of 4 phases (after the initial addition of S0) were used
with equal number of instances being labeled in each phase.
In each phase 25 rounds of adaptive resampling was done
with the labeled training set available at that point. How-
ever, for the last phase after all the additions to the labeled
training set this was increased to 100 rounds of adaptive re-
sampling. The combined classi�er was obtained by voting
over all the 200 trees in the ensemble. This set of param-
eters was used for all the experiments in the paper except
when noted otherwise.

The curves ALAR-vote-E and ALAR-3-nn depict the re-
sults achieved by two variations of the ALAR method. The
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Figure 2: Results using random sampling on benchmark internet-ads

ALAR-vote-E curve was achieved by using the unweighted
majority vote amongst the ensemble of models E for classi�-
cation method M1. The ALAR-3-nn curve was achieved by
using 3-NN as the classi�cation method M1. The results in
Figure 3 indicate that there is a very slight loss of accuracy
using ALAR-vote-E and ALAR-3-nn even when the train-
ing set size is reduced by a factor of four. When further
reductions are made in the size of the labeled training set,
the accuracy of both methods (ALAR-vote-E and ALAR-
3-nn) degrades, though it continues to remain better than
AR-random. For this benchmark, ALAR-vote-E performs
slightly better than ALAR-3-nn for most of the training set
size range.

Another interesting curve plotted in Figure 3 is called ALAR-
oracle. This curve is achieved by using an oracle for classi-
�cation method M1. Obviously, this is not a practical solu-
tion since the labels for instances in U will not be known.
However, the ALAR-oracle curve can be used to assess the
impact of the accuracy of the classi�cation methods used
for M1 (e.g., 3-NN and vote-E) on the ALAR method. The
gap between ALAR-oracle and ALAR-vote-E/ALAR-3-nn
widens as the allowed size of the labeled set is reduced.
This is caused in part by the quality of guesses in both
ALAR-vote-E and ALAR-3-nn getting worse as the size of
the labeled set available to them decreases. All the ALAR
results can be impacted by changing the parameters for the
ALAR method (e.g., number of phases, number of instances
added for labeling in each phase). We have experimented
with these parameters to some extent, but will use the same
set of parameter values across all the benchmarks.

The next benchmark we will consider is satimage from the
UCI Repository [6]. This benchmark contains spectral val-
ues for pixels in a satellite image (36 attributes) and the goal
is to predict the soil type (6 classes). The given training set
has 4435 points and the test set has 2000 points. The ALAR
method was applied with the same set of parameters as de-
scribed earlier and the results averaged over 10 experiments
(on the given test set) are plotted in Figure 4. As before the
AR-random curve is used as the baseline and the goal for
accuracy is that achieved by AR-random (average error =

8.54%, � = 0.17%) with the entire training set of size 4435.
Both ALAR-vote-E and ALAR-3-nn achieve comparable ac-
curacy with only 2217 labeled instances. With 2217 labeled
instances ALAR-3-nn achieves average error = 8.83%, � =
0.19%, and ALAR-vote-E achieves average error = 8.67%, �
= 0.34%. Interestingly, both ALAR-3-nn and ALAR-vote-
E achieve accuracy similar to ALAR-oracle for much of the
training set size range.

The ALAR method (refer Figure 1) produces a labeled train-
ing set L of the speci�ed size in addition to the classi�er C.
We explored the use of this labeled training set with this
benchmark. Three di�erent classi�ers were used to compare
three training sets: a ALAR-3-nn generated labeled set of
size 2217, a random subset of size 2217, and the entire train-
ing set of size 4435. The three classi�ers were 5-NN, adaptive
resampling using 100 DMSK trees, and a single DMSK tree.
Table 1 presents the average percentage errors and standard
deviation (in parenthesis) over ten experiments. For this
benchmark, the smaller labeled set produced by ALAR-3-
nn can be used by these three classi�ers to produce fairly
accurate models when compared to the results using the en-
tire training set. However, further investigations are needed
to determine whether, in general, the labeled sets are useful
with other classi�ers.

The next benchmark is letter-recognition from the UCIRepos-
itory [6]. The 16 attributes capture statistical moments and
edge counts for the english alphabets in various fonts with
the goal of determining the displayed alphabet (26 classes).
The benchmark speci�es a training set with 16K instances
and a test set with 4K instances. The results of applying
the ALAR method are shown in Figure 5. Both ALAR-3-nn
and ALAR-vote-E achieve the accuracy goal with only 8000
labeled instances.

The last benchmark used is the Mod-Apte split of the Reuters
data set available from [20]. Only the top ten categories are
considered. For each of them we solve the binary classi�ca-
tion problem of being in or out of that category. We used
the notion of information gain [31] to select a set of 500 at-
tributes for each of the ten binary classi�cation problems.
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Figure 3: Results using ALAR methods on benchmark internet-ads
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Figure 4: Results using ALAR methods on benchmark satimage

This feature selection method requires labels and hence is
not applicable for truly unlabeled data [21]. Also, a re-
duction in the size of the labeled set in this experimental
framework does not translate to a corresponding reduction
in the labeled set needed for the Reuters classi�cation prob-
lem. However, this experimental framework has been used
in earlier works [24]. An internally available decision tree
package customized for text applications was used for this
benchmark. As is customary with this benchmark, we use
the micro-average measure [3], in which the confusion ma-
trices for the ten categories are added and overall precision
and recall computed. Ten random runs were performed and
the micro-average of the arithmetic mean of recall and pre-
cision is given in Figure 6. There is only a slight degradation
in the accuracy with just 960 labeled instances using either
ALAR-vote-E or ALAR-3-nn method.

4. DISCUSSIONS
The experimental results in the previous section indicate
that the ALAR-3-nn and ALAR-vote-E methods perform
similarly on those benchmarks. Clearly, there is no ev-

idence in our experiments to justify the added computa-
tional cost of a separate classi�cation method like K-NN
for M1. ALAR-vote-E is a more natural and direct way
to apply adaptive resampling to the task of active learning
when compared to ALAR-3-nn. On some of the benchmarks
(internet-ads, reuters) the ALAR method using the oracle
does signi�cantly better than ALAR-vote-E, especially for
the smaller sizes of the training set. Part of the explanation
for this is that the quality of the guesses get worse as the size
of the labeled training set decreases. However, variations in
the behavior across the various benchmarks require further
investigation.

It is hard to directly compare the results obtained using the
ALAR methods with those obtained by earlier approaches
to active learning. Clearly, the performance of any active
learning method depends heavily on the benchmark and its
usage. Earlier works on active learning also report signi�-
cant reduction in the required size of labeled training set.
However, the baseline target accuracy is chosen di�erently
in each case. For example, in [21] the baseline target is
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Classi�er Random ALAR-3-nn Entire
used subset generated training

subset set
(size 2217) (size 2217) (size 4435)

5-NN 10.88 (0.47) 9.79 (0.17) 9.65
adaptive
resampling 10.09 (0.38) 8.63 (0.23) 8.54 (0.17)
using trees
Single tree 16.33 (0.76) 15.29 (0.7) 14.8

Table 1: Use of ALAR-3-nn generated subset with some classi�ers and comparisons
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Figure 5: Results using ALAR methods on benchmark letter-recognition

set by the accuracy achieved by C4.5 rules on the full la-
beled set. As we have seen in Figure 2 adaptive resampling
classi�cation methods can signi�cantly improve the baseline
target over single tree classi�ers. This has also been pointed
out in the work in [1] which includes boosted results in the
baseline.

Adaptive resampling with trees is a computationally inten-
sive process and the ALAR method inherits this computa-
tional complexity if decision trees are chosen for the classi-
�cation method M2. The values for the parameters of the
ALAR method were chosen in our experiments based on
computational complexity and accuracy considerations. In-
stances are chosen for labeling and added to the training
set in phases. Each phase needs to have enough rounds of
adaptive resampling to train the ensemble of classi�ers ad-
equately to the training set for that phase. Adding only
one instance in each phase as in [1] would lead to too many
phases and too many rounds of adaptive resampling. Hence,
in our experiments the total number of rounds of adaptive
resampling, which impacts the computational cost, was cho-
sen to be comparable to earlier usage (e.g., [15]). Having
chosen this, the number of phases is determined based on
trading o� having enough rounds per phase for adaptive re-
sampling versus having enough phases with �ne grain con-
trol for adding instances for labeling.

As mentioned above, computational considerations lead us

to select multiple instances for labeling in each phase. This
opens up the issue of how these instances are chosen. One
approach would be to extend the greedy method of picking
one instance in [1] to picking multiple instances with the
largest weights (W in Figure 1). Instead, we have used a
randomized method by creating a probability function us-
ing the selection weights (Equation 1) and using it to pick
multiple instances without replacement. The comparison
for the benchmark satimage is given in Figure 7. For this
benchmark the probabilistic method (ALAR-vote-E) per-
forms better than the greedy method (Greedy-E) for smaller
training set sizes. A plausible explanation is that picking
multiple instances in a greedy fashion may be including more
instances that are redundant for the modeling. Combining
these methods to improve the selection process needs to be
explored further.

In practice, the active learning process would be stopped
by detecting diminishing improvement in the quality of the
models being built. Convergence detection has been studied
for the case of random sampling by estimating the slope of
the learning curve [25]. The learning curve may not be well
behaved in the active learning case making this task more
complicated. This also makes the more general problem
of determining a good schedule for adding labeled points
harder than the random sampling case [25].

There are other variations of this method still to be ex-

96



96 240 480 960 2400 9600
70

75

80

85

90

95

Size of training set

M
icr

o−
av

er
ag

e 
of

 (R
ec

al
l a

nd
 P

re
cis

io
n)

/2
 (p

er
ce

nt
ag

e)

−o− ALAR−oracle

−*− ALAR−3−nn

−.− ALAR−vote−E
−x− AR−random

Figure 6: Results using ALAR methods on the top ten categories of the benchmark reuters
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Figure 7: Comparing greedy and probabilistic selection methods on benchmark satimage

plored. Use of simpler classi�cation methods for M2 will be
explored in future work. A related problem with the use of
decision trees not addressed in this paper is that of attribute
selection for unlabeled data [21]. Another variation to be ex-
plored is in the function (e.g., Equation 1) used for adaptive
resampling relating importance of selecting an instance to
some measure of error. The adaptive resampling literature
has explored this and the related subject of over�tting any
noisy labels in the training set [4, 13, 18]. The concern over
over�tting of noise labels is not directly applicable in the
active learning context since the error measure is computed
using guessed labels.

5. CONCLUSIONS
Dealing with vast amounts of unlabeled data is a growing
problem in many domains. We have presented a direct way
of using adaptive resampling methods for selecting a subset
of the instances for labeling. The experiments with vari-
ous benchmarks indicate that this method is successful in
signi�cantly reducing the size of the labeled training set
needed without sacri�cing the classi�cation accuracy when

compared with a state-of-the-art method like adaptive re-
sampling with trees.
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