Data Mining: Statistics and More?

David J. HAND

Data mining is a new discipline lying at the interface of
statistics, database technology, pattern recognition, machine
learning, and other areas. It is concerned with the secondary
analysis of large databases in order to find previously un-
suspected relationships which are of interest or value to
the database owners. New problems arise, partly as a con-
sequence of the sheer size of the data sets involved, and
partly because of issues of pattern matching. However, since
statistics provides the intellectual glue underlying the effort,
it is important for statisticians to become involved. There
are very real opportunities for statisticians to make signifi-
cant contributions.
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1. DEFINITION AND OBJECTIVES

The term data mining is not new to statisticians. It is
a term synonymous with data dredging or fishing and has
been used to describe the process of trawling through data
in the hope of identifying patterns. It has a derogatory con-
notation because a sufficiently exhaustive search will cer-
tainly throw up patterns of some kind—by definition data
that are not simply uniform have differences which can be
interpreted as patterns. The trouble is that many of these
“patterns” will simply be a product of random fluctuations,
and will not represent any underlying structure. The object
of data analysis is not to model the fleeting random pat-
terns of the moment, but to model the underlying structures
which give rise to consistent and replicable patterns. To
statisticians, then, the term data mining conveys the sense
of naive hope vainly struggling against the cold realities of
chance.

To other researchers, however, the term is seen in a much
more positive light. Stimulated by progress in computer
technology and electronic data acquisition, recent decades
have seen the growth of huge databases, in fields ranging
from supermarket sales and banking, through astronomy,
particle physics, chemistry, and medicine, to official and
governmental statistics. These databases are viewed as a re-
source. It is certain that there is much valuable information
in them, information that has not been tapped, and data min-
ing is regarded as providing a set of tools by which that in-
formation may be extracted. Looked at in this positive light,
it is hardly surprising that the commercial, industrial, and
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economic possibilities inherent in the notion of extracting
information from these large masses of data have attracted
considerable interest. The interest in the field is demon-
strated by the fact that the Third International Conference
on Knowledge Discovery and Data Mining, held in 1997,
attracted around 700 participants.

Superficially, of course, what we are describing here is
nothing but exploratory data analysis, an activity which has
been carried out since data were first analyzed and which
achieved greater respectability through the work of John
Tukey. But there is a difference, and it is this difference
that explains why statisticians have been slow to latch on
to the opportunities. This difference is the sheer size of the
data sets now available. Statisticians have typically not con-
cerned themselves with data sets containing many millions
or even billions of records. Moreover, special storage and
manipulation techniques are required to handle data collec-
tions of this size—and the database technology which has
grown up to handle them has been developed by entirely
different intellectual communities from statisticians.

It is probably no exaggeration to say that most statis-
ticians are concerned with primary data analysis. That is,
the data are collected with a particular question or set of
questions in mind. Indeed, entire subdisciplines, such as ex-
perimental design and survey design, have grown up to fa-
cilitate the efficient collection of data so as to answer the
given questions. Data mining, on the other hand, is entirely
concerned with secondary data analysis. In fact we might
define data mining as the process of secondary analysis of
large databases aimed at finding unsuspected relationships
which are of interest or value to the database owners. We
see from this that data mining is very much an inductive
exercise, as opposed to the hypothetico-deductive approach
often seen as the paradigm for how modern science pro-
gresses (Hand in press).

Statistics as a discipline has a poor record for timely
recognition of important ideas. A common pattern is that a
new idea will be launched by researchers in some other dis-
cipline, will attract considerable interest (with its promise
often being subjected to excessive media hype—which can
sometimes result in a backlash), and only then will statis-
ticians become involved. By which time, of course, the
intellectual proprietorship—not to mention large research
grants—has gone elsewhere. Examples of this include work
on pattern recognition, expert systems, genetic algorithms,
neural networks, and machine learning. All of these might
legitimately be regarded as subdisciplines of statistics, but
they are not generally so regarded. Of course, statisticians
have later made very significant advances in all of these
fields, but the fact that the perceived natural home of these
areas lies not in statistics but in other areas is demonstrated
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by the key journals for these areas—they are not statistical
journals.

Data mining seems to be following this pattern. For the
health of the discipline of statistics as a whole it is impor-
tant, perhaps vital, that we learn from previous experience.
Unless we do, there is a real danger that statistics—and
statisticians—will be perceived as a minor irrelevance, and
as not playing the fundamental role in scientific and wider
life that they properly do. There is an urgency for statis-
ticians to become involved with data mining exercises, to
learn about the special problems of data mining, and to con-
tribute in important ways to a discipline that is attracting
increasing attention from a broad spectrum of concerns.

In Section 2 of this article we examine some of the major
differences in emphasis between statistics and data mining.
In Section 3 we look at some of the major tools, and Section
4 concludes.

2. WHAT’S NEW ABOUT DATA MINING?

Statistics, especially as taught in most statistics texts,
might be described as being characterized by data sets
which are small and clean, which permit straightforward
answers via intensive analysis of single data sets, which are
static, which were sampled in an iid manner, which were
often collected to answer the particular problem being ad-
dressed, and which are solely numeric. None of these apply
in the data mining context.

2.1 Size of Data Sets

For example, to a classically trained statistician a large
data set might contain a few hundred points. Certainly a
data set of a few thousand would be large. But modern
databases often contain millions of records. Indeed, nowa-
days gigabyte or terabyte databases are by no means uncom-
mon. Here are some examples. The American retailer Wal-
Mart makes over 20 million transactions daily (Babcock
1994). According to Cortes and Pregibon (1997) AT&T has
100 million customers, and carries 200 million calls a day
on its long-distance network. Harrison (1993) said that Mo-
bil Oil aims to store over 100 terabytes of data concerned
with oil exploration. Fayyad, Djorgovski, and Weir (1996)
described the Digital Palomar Observatory Sky Survey as
involving three terabytes of data, and Fayyad, Piatetsky-
Shapiro, and Smyth (1996) said that the NASA Earth Ob-
serving System is projected to generate on the order of 50
gigabytes of data per hour around the turn of the century. A
project of which most readers will have heard, the human
genome project, has already collected gigabytes of data.
Numbers like these clearly put into context the futility of
standard statistical techniques. Something new is called for.

Data sets of these sorts of sizes lead to problems with
which statisticians have not typically had to concern them-
selves in the past. An obvious one is that the data will not
all fit into the main memory of the computer, despite the
recent dramatic increases in capacity. This means that, if all
of the data is to be processed during an analysis, adaptive or
sequential techniques have to be developed. Adaptive and
sequential estimation methods have been of more central

concern to nonstatistical communities—especially to those
working in pattern recognition and machine learning.

Data sets may be large because the number of records
is large or because the number of variables is large. (Of
course, what is a record in one situation may be a variable
in another—it depends on the objectives of the analysis.)
When the number of variables is large the curse of dimen-
sionality really begins to bite—with 1,000 binary variables
there are of the order of 103%° cells, a number which makes
even a billion records pale into insignificance.

The problem of limited computer memory is just the be-
ginning of the difficulties that follow from large data sets.
Perhaps the data are stored not as the single flat file so
beloved of statisticians, but as multiple interrelated flat files.
Perhaps there is a hierarchical structure, which does not
permit an easy scan through the entire data set. It is pos-
sible that very large data sets will not all be held in one
place, but will be distributed. This makes accessing and
sampling a complicated and time-consuming process. As a
consequence of the structured way in which the data are
necessarily stored, it might be the case that straightforward
statistical methods cannot be applied, and stratified or clus-
tered variants will be necessary.

There are also more subtle issues consequent on the sheer
size of the data sets. In the past, in many situations where
statisticians have classically worked, the problem has been
one of lack of data rather than abundance. Thus, the strat-
egy was developed of fixing the Type I error of a test at
some ‘“‘reasonable” value, such as 1%, 5%, or 10%, and
collecting sufficient data to give adequate power for appro-
priate alternative hypotheses. However, when data exists in
the superabundance described previously, this strategy be-
comes rather questionable. The results of such tests will
lead to very strong evidence that even tiny effects exist,
effects which are so minute as to be of doubtful practical
value. All research questions involve a background level of
uncertainty (of the precise question formulation, of the defi-
nitions of the variables, of the precision of the observations,
of the way in which the data was drawn, of contamination,
and so on) and if the effect sizes are substantially less than
these other sources, then, no matter how confident one is in
their reality, their value is doubtful. In place of statistical
significance, we need to consider more carefully substantive
significance: is the effect important or valuable or not?

2.2 Contaminated Data

Clean data is a necessary prerequisite for most statistical
analyses. Entire books, not to mention careers, have been
created around the issues of outlier detection and missing
data. An ideal solution, when questionable data items arise,
is to go back and check the source. In the data mining con-
text, however, when the analysis is necessarily secondary,
this is impossible. Moreover, when the data sets are large,
it is practically certain that some of the data will be invalid
in some way. This is especially true when the data describe
human interactions of some kind, such as marketing data,
financial transaction data, or human resource data. Con-
tamination is also an important problem when large data
sets, in which we are perhaps seeking weak relationships,
are involved. Suppose, for example, that one in a thousand
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records have been drawn from some distribution other than
that we believe they have been drawn from. One-tenth of
1% of the data from another source would have little impact
in conventional statistical problems, but in the context of a
billion records this means that a million are drawn from this
distribution. This is sufficient that they cannot be ignored
in the analysis.

2.3 Nonstationarity, Selection Bias, and Dependent

Observations

Standard statistical techniques are based on the assump-
tion that the data items have been sampled independently
and from the same distribution. Models, such as repeated
measures methods, have been and are being developed for
certain special situations when this is not the case. How-
ever, contravention of the idealized iid situation is probably
the norm in data mining problems. Very large data sets are
unlikely to arise in an iid manner; it is much more likely
that some regions of the variable space will be sampled
more heavily than others at different times (for example,
differing time zones mean that supermarket transaction or
telephone call data will not occur randomly over the whole
of the United States). This may cast doubt on the validity
of standard estimates, as well as posing special problems
for sequential estimation and search algorithms.

Despite their inherent difficulties, the data acquisition as-
pects are perhaps one of the more straightforward to model.
More difficult are issues of nonstationarity of the popula-
tion being studied and selection bias. The first of these, also
called population drift (Taylor, Nakhaeizadeh, and Kunisch
1997; Hand 1997), can arise because the underlying popula-
tion is changing (for example, the population of applicants
for bank loans may evolve as the economy heats and cools)
or for other reasons (for example, gradual distortion creep-
ing into measuring instruments). Unless the time of acqui-
sition of the individual records is date-stamped, changing
population structures may be undetectable. Moreover, the
nature of the changes may be subtle and difficult to detect.
Sometimes the situation can be even more complicated than
the above may imply because often the data are dynamic.
The Wal-Mart transactions or AT&T phone calls occur ev-
ery day, not just one day, so that the database is a constantly
evolving entity. This is very different from the conventional
statistical situation. It might be necessary to process the data
in real time. The results of an analysis obtained in Septem-
ber, for what happened one day in June may be of little
value to the organization. The need for quick answers and
the size of the data sets also lead to tough questions about
statistical algorithms.

Selection bias—distortion of the selected sample away
from a simple random sample—is an important and under-
rated problem. It is ubiquitous, and is not one which is spe-
cific to large data sets, though it is perhaps especially trou-
blesome there. It arises, for example, in the choice of pa-
tients for clinical trials induced by the inclusion/exclusion
criteria; can arise in surveys due to nonresponse; and in
psychological research when the subjects are chosen from
readily available people, namely young and intelligent stu-
dents. In general, very large data sets are likely to have
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been subjected to selection bias of various kinds—they are
likely to be convenience or opportunity samples rather than
the statisticians’ idealized random samples. Whether selec-
tion bias matters or not depends on the objectives of the
data analysis. If one hopes to make inferences to the un-
derlying population, then any sample distortion can inval-
idate the results. Selection bias can be an inherent part of
the problem: it arises when developing scoring rules for
deciding whether an applicant to be a mail order agent is
acceptable. Typically in this situation comprehensive data
is available only for those previous applicants who were
graded “good risk” by some previous rule. Those graded
“bad” would have been rejected and hence their true status
never discovered. Likewise, of people offered a bank loan,
comprehensive data is available only for those who take up
the offer. If these are used to construct the models, to make
inferences about the behavior of future applicants, then er-
rors are likely to be introduced. On a small scale, Copas
and Li (1997) describe a study of the rate of hospitaliza-
tion of kidney patients given a new form of dialysis. A plot
shows that the log-rate decreases over time. However, it
also shows that the numbers assigned to the new treatment
change over time. Patients not assigned to the new treatment
were assigned to the standard one, and the selection was not
random but was in the hands of the clinician, so that doubt
is cast on the argument that log-rate for the new treatment
is improving. What is needed to handle selection bias, as in
the case of population drift, is a larger model that also takes
account of the sample selection mechanism. For the large
data sets that are the focus of data mining studies—which
will generally also be complex data sets and for which suf-
ficient details of how the data were collected may not be
available—this will usually not be easy to construct.

2.4 Finding Interesting Patterns

The problems outlined previously show why the current
statistical paradigm of intensive “hand” analysis of a single
data set is inadequate for what faces those concerned with
data mining. With a billion data points, even a scatterplot
may be useless. There is no alternative to heavy reliance on
computer programs set to discover patterns for themselves,
with relatively little human intervention. A nice example
was given by Fayyad, Djorgovski, and Weir (1996). De-
scribing the crisis in astronomy arising from the huge quan-
tities of data which are becoming available, they say: “We
face a critical need for information processing technology
and methodology with which to manage this data avalanche
in order to produce interesting scientific results quickly and
efficiently. Developments in the fields of Knowledge Dis-
covery in Databases (KDD), machine learning, and related
areas can provide at least some solutions. Much of the fu-
ture of scientific information processing lies in the creative
and efficient implementation and integration of these meth-
ods.” Referring to the Second Palomar Observatory Sky
Survey, the authors estimate that there will be at least 5 x 107
galaxies and 2 x 10° stellar objects detectable. Their aim is
“to enable and maximize the extraction of meaningful in-
formation from such a large database in an efficient and
timely manner” and they note that “reducing the images to



catalog entries is an overwhelming task which inherently
requires an automated approach.”

Of course, it is not possible simply to ask a computer to
“search for interesting patterns” or to “see if there is any
structure in the data.” Before one can do this one needs to
define what one means by patterns or structure. And be-
fore one can do that one needs to decide what one means
by “interesting.” Klosgen (1996, p. 252) characterized in-
terestingness as multifaceted: “Evidence indicates the sig-
nificance of a finding measured by a statistical criterion.
Redundancy amounts to the similarity of a finding with re-
spect to other findings and measures to what degree a find-
ing follows from another one. Usefulness relates a finding
to the goals of the user. Novelty includes the deviation from
prior knowledge of the user or system. Simplicity refers to
the syntactical complexity of the presentation of a finding,
and generality is determined by the fraction of the popula-
tion a finding refers to.” In general, of course, what is of
interest will depend very much on the application domain.

When searching for patterns or structure a compromise
needs to be made between the specific and the general. The
essence of data mining is that one does not know precisely
what sort of structure one is seeking, so a fairly general
definition will be appropriate. On the other hand, too gen-
eral a definition will throw up too many candidate patterns.
In market basket analysis one studies conditional proba-
bilities of purchasing certain goods, given that others are
purchased. One can define potentially interesting patterns
as those which have high conditional probabilities (termed
confidence in market basket analysis) as well as reasonably
large marginal probabilities for the conditioning variables
(termed support in market basket analysis). A computer pro-
gram can identify all such patterns with values over given
thresholds and present them for consideration by the client.

In the market basket analysis example the existing
database was analyzed to identify potentially interesting
patterns. However, the objective is not simply to charac-
terize the existing database. What one really wants to do is,
first, to make inferences to future likely co-occurrences of
items in a basket, and, second and ideally, to make causal
statements about the patterns of purchases: if someone can
be persuaded to buy item A then they are also likely to buy
item B. The simple marginal and conditional probabilities
are insufficient to tell us about causal relationships—more
sophisticated techniques are required.

Another illustration of the need to compromise between
the specific and the general arises when seeking patterns
in time series, such as arise in patient monitoring, teleme-
try, financial markets, traffic flow, and so on. Keogh and
Smyth (1997) describe telemetry signals from the Space
Shuttle: about 20,000 sensors are measured each second,
with the signals from missions that may last several days
accumulating. Such data are especially valuable for fault
detection. One of the difficulties with time series pattern
matching is potential nonlinear transformation of the time
scale. By allowing such transformations in the pattern to be
matched, one generalizes—but overdoing such generaliza-
tion will make the exercise pointless. Familiarity with the

problem domain and a willingness to try ad hoc approaches
seems essential here.

2.5 Nonnumeric Data

Finally, classical statistics deals solely with numeric
data. Increasingly nowadays, databases contain data of
other kinds. Four obvious examples are image data, au-
dio data, text data, and geographical data. The issues of
data mining—of finding interesting patterns and structures
in the data—apply just as much here as to simple numerical
data. Mining the internet has become a distinct subarea of
data mining in its own right.

2.6 Spurious Relationships and Automated Data
Analysis

To statisticians, one thing will be immediately apparent
from the previous examples. Because the pattern searches
will throw up a large numbers of candidate patterns, there
will be a high probability that spurious (chance) data con-
figurations will be identified as patterns. How might this be
dealt with? There are conventional multiple comparisons
approaches in statistics, in which, for example, the over-
all experimentwise error is controlled, but these were not
designed for the sheer numbers of candidate patterns gen-
erated by data mining. This is an area which would benefit
from some careful thought. It is possible that a solution
will only be found by stepping outside the conventional
probabilistic statistical framework—possibly using scoring
rules instead of probabilistic interpretations. The problem
is similar to that of overfitting of statistical models, an is-
sue which has attracted renewed interest with the develop-
ment of extremely flexible models such as neural networks.
Several distinct but related strategies have been developed
for easing the problem, and it may be possible to develop
analogous strategies for data mining. These strategies in-
clude restricting the family of models (c.f. limiting the size
of the class of patterns examined), optimizing a penalized
goodness-of-fit function (c.f. penalizing the patterns accord-
ing to the size of the set of possible patterns satisfying the
criteria), and shrinking an overfitted model (c.f. imposing
tougher pattern selection criteria). Of course, the bottom
line is that those patterns and structures identified as poten-
tially interesting will be presented to a domain expert for
consideration—to be accepted or rejected in the context of
the substantive domain and objectives, and not merely on
the basis of internal statistical structure.

It is probably legitimate to characterize some of the anal-
ysis undertaken during data mining as automatic data anal-
ysis, since much of it occurs outside the direct control of
the researcher. To many statisticians this whole notion will
be abhorrent. Data analysis is as much an art as a science.
However, the imperatives of the sheer volume of data mean
that we have no choice. In any case, the issue of where
human data analysis stops and automatic data analysis be-
gins is a moot point. After all, even standard statistical tools
use extensive search as part of the model-fitting process—
think of variable selection in regression and of the search
involved in constructing classification trees.

In the 1980s a flurry of work on automatic data analysis
occurred under the name of statistical expert systems re-
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search (a review of such work was given by Gale, Hand,
and Kelly 1993). These were computer programs that in-
teracted with the user and the data to conduct valid and
accurate statistical analyses. The work was motivated by
a concern about misuse of increasingly powerful and yet
easy to use statistical packages. In principle, a statistical
expert system would embody a large base of intelligent un-
derstanding of the data analysis process, which it could ap-
ply automatically (to a relatively small set of data, at least
in data mining terms). Compare this with a data mining
system, which embodies a small base of intelligent under-
standing, but which applies it to a large data set. In both
cases the application is automatic, though in both cases in-
teraction with the researcher is fundamental. In a statistical
expert system the program drives the analysis following a
statistical strategy because the user has insufficient statis-
tical expertise to do so. In a data mining application, the
program drives the analysis because the user has insuffi-
cient resources to manually examine billions of records and
hundreds of thousands of potential patterns. Given these
similarities between the two enterprises, it is sensible to
ask if there are lessons which the data mining community
might learn from the statistical expert system experience.
Relevant lessons include the importance of a well-defined
potential user population. Much statistical expert systems
research went on in the abstract (“let’s see if we can build
a system which will do analysis of variance”). Little won-
der that such systems vanished without trace, when those
who might need and make use of such a system had not
been identified beforehand. A second lesson is the impor-
tance of sufficiently broad system expertise—a system may
be expert at one-way analysis of variance (or identifying
one type of pattern in data mining), but, given an inevitable
learning curve, a certain frequency of use is necessary to
make the system valuable. And, of course, from a scientific
point of view, it is necessary to formulate beforehand a cri-
terion by which success can be judged. It seems clear that
to have an impact, research on data mining systems should
be tied into real practical applications, with a clear problem
and objective specification.

3. METHODS

In the previous sections I have spoken in fairly general
terms about the objective of data mining as being to find
patterns or structure in large data sets. However, it is some-
times useful to distinguish between two classes of data min-
ing techniques, which seek, respectively, to find patterns
and models. The position of the dividing line between these
is rather arbitrary. However, to me a model is a global rep-
resentation of a structure that summarizes the systematic
component underlying the data or that describes how the
data may have arisen. The word “global” here signifies that
it is a comprehensive structure, referring to many cases.
In contrast, a pattern is a local structure, perhaps relating
to just a handful of variables and a few cases. The mar-
ket basket associations mentioned previously illustrate such
patterns: perhaps only a few hundred of the many baskets
demonstrate a particular pattern. Likewise, in the time se-
ries example, if one is searching for patterns the objective
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is not to construct a global model, such as a Box—Jenkins
model, but rather to locate structures that are of relatively
short duration—the patterns sought in technical analysis of
stock market behavior provide a good illustration.

With this distinction we can identify two types of data
mining method, according to whether they seek to build
models or to find patterns. The first type, concerned with
building global models is, apart from the problems inher-
ent from the sizes of the data sets, identical to conven-
tional exploratory statistical methods. It was such “tradi-
tional” methods, used in a data mining context, which led
to the rejection of the conventional wisdom that a portfolio
of long-term mortgage customers is a good portfolio: in fact
such customers may be the ones who have been unable to
find a more attractive offer elsewhere—the less good cus-
tomers. Models for both prediction and description occur in
data mining contexts—for example, description is often the
aim with scientific data while prediction is often the aim
with commercial data. (Of course, again there is overlap. I
am not intending to imply that only descriptive models are
relevant with scientific data, but simply to illustrate appli-
cation domains.) A distinction is also sometimes made (Box
and Hunter 1965; Cox 1990; Hand 1995) between empir-
ical and mechanistic models. The former (also sometimes
called operational) seek to model relationships without bas-
ing them on any underlying theory. The latter (sometimes
called substantive, phenomenological, or iconic) are based
on some theory of mechanism for the underlying data gen-
erating process. Data mining, almost by definition, is chiefly
concerned with the former.

We could add a third type of model here, which might
be termed prescriptive. These are models which do not
so much unearth structure in the data as impose struc-
ture on it. Such models are also relevant in a data mining
context—though perhaps the interpretation is rather differ-
ent from most data mining applications. The class of tech-
niques which generally go under the name of cluster anal-
ysis provides an example. On the one hand we have meth-
ods which seek to discover naturally occurring structures
in the data—to carve nature at the joints, as it has been
put. And on the other hand we have methods which seek
to partition the data in some convenient way. The former
might be especially relevant in a scientific context, where
one may be interested in characterizing different kinds of
entities. The latter may be especially relevant in a com-
mercial context, where one may simply want to group the
objects into classes which have a relatively high measure
of internal homogeneity—without any notion that the dif-
ferent clusters really represent qualitatively different kinds
of entities. Partitioning the data in this latter sense yields a
prescriptive model. Parenthetically at this point, we might
also note that mixture decomposition, with slightly different
aims yet again, but also a data mining tool, is also some-
times included under the term cluster analysis. It is perhaps
unfortunate that the term “cluster analysis” is sometimes
used for all three objectives.

Methods for building global models in data mining in-
clude cluster analysis, regression analysis, supervised clas-
sification methods in general, projection pursuit, and, in-



deed, any method for summarizing data. Bayesian networks
(e.g., Heckerman 1997) are also receiving a great deal of
attention in the data mining context. When there are many
variables the overall probability distribution is very com-
plex, and the curse of dimensionality means that estimating
individual cell probabilities (with categorical variables) is
out of the question. Bayesian networks seek to summarize
the overall distribution in terms of the conditional depen-
dencies between the variables. If there are only a relatively
few nonzero conditional dependencies, the result is a dra-
matic reduction in the number of parameters which need
to be estimated (and hence a concomitant increase in pre-
cision).

If there is a huge number of records, the question arises
as to whether all are necessary for the model building pro-
cess. As noted previously, there may well be difficulties in
accessing all the records in a reasonable time, and adap-
tive methods may be necessary. If the basic estimation pro-
cedure does not permit explicit solutions, so that iterative
methods are normally employed, one may need to think
carefully about the algorithms which are used in a context
when data set size or evolving nature means iteration is im-
possible. An approach which is sometimes used is to build
one’s model on a sample of the data, perhaps updating it
using the remainder when one is sure one has the correct
basic structure. This, of course, is predicated on the ability
to draw a random or, at least, representative, sample from
the entire database—an operation which may not be easy
or, indeed, possible.

We should also bear in mind the complexity of the re-
quired model. We noted earlier that with huge data sets it
is possible to model small idiosyncrasies which are of little
practical import. So, for example, in the global modeling
context, just how many clusters is it worth knowing about
and just how small a conditional dependence should be re-
tained in the model? Perhaps we should restrict ourselves
to the few largest.

Moving on from global models, the second class of data
mining method seeks to find patterns by sifting through the
data seeking co-occurrences of particular values on partic-
ular variables. It is this class of strategies which has led to
the notion of data mining as seeking nuggets of informa-
tion among the mass of data. Pattern finding strategies are
especially useful for anomaly detection. Examples include
fault detection, either during manufacturing or in opera-
tion; fraud detection, for example in applications for loans,
in credit card usage, or in tax returns; and in distinguish-
ing between genuine and spurious alarm triggers. There is
obviously a relationship between pattern detection meth-
ods and diagnostics in conventional statistics, but they are
not identical. One big difference is that conventional diag-
nostic methods need a model with which to compare the
data, while simple pattern detection does not. Another is
the need, in the pattern-detection context, to search through
very large collections of data and, indeed, of possible shapes
of pattern. This makes automatic computer search vital in
data mining: it is necessary to rely on the machine’s abil-
ity to search through masses of data without getting bored,

tired, and without making mistakes. These new aspects to
the problem mean that the area is rich for potential research
effort— new problems require new solutions.

Graphical methods, especially dynamic and interactive
graphical methods, also have a key role to play here. Such
tools allow one to take advantage of the particular power
of the human eye and mind at digesting very complex in-
formation. The dynamic graphical display known as the
World Tour—projecting multivariate data down into a two
dimensional projection and letting the direction of projec-
tion vary—is an example of this. At present such meth-
ods have their limitations. Sitting watching such a display
for any length of time can be a mind-numbing experience.
However, here again the computer can come to our aid.
We can define measures of interestingness for a scatterplot
and let the machine apply these measures as it produces
the projections. We are back at projection pursuit. This, of
course, requires us to articulate and define beforehand what
we consider “interesting.” But we can go further. We can
present the machine with a series of projections, telling it
which ones we find interesting and which we do not, and
(provided we have given it a basic alphabet of structures)
we can let it learn appropriate internal representations of
“interesting” for itself.

So far, in this discussion of methods, I have only re-
ferred to methods for the statistical aspects. But I noted
previously that database technology was also a fundamen-
tal leg on which the data mining enterprise stood. Just as
the size of the data sets and the range of the problems
mean that standard statistical methods are inadequate for
the challenge of data mining, so Imielinksi and Mannila
(1996) argued that standard database technology is inad-
equate. Although the few primitives of structured query
language (SQL) are sufficient for many business applica-
tions, they are insufficient for data mining applications and
new tools are needed. The term OLAP, standing for on-
line analytical processing, is often used to describe the
sorts of query-driven analysis which must be undertaken.
Expressions used in OLAP include such things as rolling
up (producing marginals), drilling (going down levels of
aggregation—the opposite of rolling up), slicing (condition-
ing on one variable), and dicing (conditioning on many vari-
ables). See, for example, Gray et al. (1997). Moving up a
level, the term “data warehousing” is often used. A “data
warehouse” is “a database that contains subject-oriented,
integrated, and historical data that is primarily used in anal-
ysis and decision support environments. Data warehousing
is the process of creating a data warehouse by collecting
and cleaning transactional data and making it available for
online retrieval to assist in analysis and decision making.”
(Uthurusamy 1996). A data warehouse thus has integrated
data (rather than data contained in a number of separate
databases), both raw data and summarized data, historical
data if the data are accumulating over time, and metadata
(descriptions of the meaning and context of the data).

4. CONCLUSION

Some authors (e.g., Fayyad 1997) see data mining as
a “single step in a larger process that we call the KDD
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process.” “KDD” here stands for Knowledge Discovery in
Databases. Other steps in this process include (Fayyad
1997): data warehousing; target data selection; cleaning;
preprocessing; transformation and reduction; data mining;
model selection (or combination); evaluation and interpre-
tation; consolidation and use of the extracted knowledge.
Apart from general issues arising from data set size and par-
ticular issues concerned with pattern search, most of these
steps will be familiar to statisticians.

Given the commercial interest in data mining, it is hardly
surprising that a number of software tools have appeared
on the market. Some are general tools, similar to powerful
statistical data exploration systems, while others essentially
seek to put the capacity for extracting knowledge from data
in the hands of the domain expert rather than a professional
data analyst. These must thus use domain terminology. An
example of general tool is Explora (Hoschka and Klosgen
1991; Klosgen 1996) and examples of more domain spe-
cific tools are the Interactive Data Exploration and Anal-
ysis system of AT&T (Selfridge, Srivastava, and Wilson
1996), which permits one to segment market data and ana-
lyze the effect of new promotions and advertisements, and
Advanced Scout (Bhandari et al. 1997) which seeks inter-
esting patterns in basketball games.

The promise and opportunities of data mining are
obvious—and commercial organizations have not been slow
to react to this. However, parallels with other fields, such as
expert systems and artificial intelligence, suggest that some
caution should be exercised. Data mining is not a univer-
sal panacea and it is not without its problems and diffi-
culties. Care must be exercised to ensure that the claims
are not overinflated or there will be a very real danger of
a backlash. In particular, when searching for patterns it is
necessary to consider how many of those discovered are
real (rather than chance fluctuations in the database), how
to make valid probability statements about them (given the
probably nonrandom nature of the data), and how many of
them are nontrivial, interesting, and valuable. Some cost-
benefit analysis of data mining exercises seems appropriate.

Beyond all this, however, lie the very real contributions
that statisticians can make. We must learn from the expe-
rience in other areas, and not hesitate to become involved
in what is after all, essentially a statistical problem. There
are real opportunities to make major advances in tackling
genuinely important problems. It would be a great loss, for
the reputation of statistics as a discipline as well as for indi-
vidual statisticians, if these opportunities were not grasped.

Further general reading on data mining may be found in
the new journal Data Mining and Knowledge Discovery, a
special issue of the Communications of the ACM on data
mining (November 1996, vol. 39, no. 11), and in Fayyad,
Piatetsky-Shapiro, and Smyth (1996).

[Received September 1997. Revised December 1997.]
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