
Department of Computer and Information

Science

Norwegian University of Science and

Technology

Induction of decision trees from partially classified data

using belief functions

Marte Skarstein Bjanger

February 28, 2000

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
FAKULTET FOR FYSIKK, INFORMATIKK OG MATEMATIKK

HOVEDOPPGAVE

Kandidatens navn: Marte Skarstein Bjanger

Fag: Datateknikk, Kunnskapssystemer

Oppgavens tittel (norsk):

Oppgavens tittel (engelsk): Induction of decision trees from partially classified data
using belief functions

Oppgavens tekst:

Most of the work on pattern classification and supervised learning has focused
on the induction of decision rules from learning examples consisting of objects
with known classification. In certain real-world problems,however, such ”per-
fect” observations are not always available. Instead, we may have an ”uncertain”
training set of objects with partially known classification. For instance, an expert
or a group of expert may have expressed (possibly conflicting) opinions regard-
ing the class membership of objects contained in the data base. It may then be
advantageous to take into account the resulting uncertainty in the design of a
classification rule.

For that purpose, an approach based on tree-structured classifiers and the Dempster-
Shafer theory of belief functions will be investigated. Using previous work on
parametric inference for the Bernouilli distribution using an evidential approach,
the entropy measure classically used to assess the ”purity”of nodes in decision
trees will be replaced by evidence-theoretic uncertain measures allowing to take
into account not only the class proportions, but also the number of objects in
each node. This approach will be extended to training data whose class mem-
bership is only partially specified in the form of a belief function. The method
will be evaluated on electroencephalogram data from a sleepstaging experiment.

Oppgaven gitt: 1. september 1999
Besvarelsen leveres innen: 1. mars 2000
Besvarelsen levert: 28. februar 2000
Utført ved: Université de Téchnlogie de Compiégne, Genie Informatique
Veileder: Thierry Denoeux og Jan Komorowski

Trondheim, 28. februar 2000

Jan Komorowski
Faglærer

i

Abstract

The work described in this report concerns the problem of reasoning with uncertainty,
in particular the problem of building classifiers based on uncertain data. The kind
of uncertainty we have been concerned with has been uncertain classification, i.e.,
classification of data for which the classification labels are not crisp.

We have proposed a method to handle this kind of uncertainty that is sometimes present
in the training objects used to build classifiers. Our methodproposes to introduce the
concept of belief functions, as defined in the Dempster-Shafer theory of evidence, in
the well known decision tree learning method. Belief functions is a means of stating the
kind of uncertainty we are interested in and give valuable information as output from
the classifier. This makes the classifier able to give a more differentiated result. Also,
the classifier will be able to use the information given in uncertain labeled training
objects in a profitable way.

We have implemented our method in MATLAB, to test it on a real world classification
problem. The results obtained from these experiments show that our method performs
at least as well as the ordinary decision tree learning method. In addition they show
that our method offers a way of handling problems for which the classification is not
entirely known for the training objects. This means that themethod will be able to
handle classification problems which for instance the ordinary decision tree learning
method is not able to handle.

In order to be able to obtain substantial conclusions about the method, further work
will have to be done to test the method more extensively and toimprove it. However,
our results are promising and encourage further work with this method.

iii

Preface

This report presents the results of work constituting a master thesis at the Depart-
ment of Computer and Information Science (IDI), Faculty of Physics, Informatics and
Mathematics (FIM) at the Norwegian University of Science and Technology (NTNU).

The work has been done at the Faculty of Informatics (Génie Informatique, GI) at
the Technical University of Compiègne (Université de Technologie de Compiègne,
UTC) in France. My teaching supervisor at UTC has been ProfessorThierry Denoeux.
My teaching supervisor at NTNU during my period of work has been ProfessorJan
Komorowski.

The assignment was given by Professor Thierry Denoeux and concerns a part of his
current research on reasoning with uncertainty.

Acknowledgements

I would like to thank Professor Thierry Denoeux for introducing me to an interest-
ing area of research and for sharing his ideas on the subject with me. He has enthu-
siastically provided the foundation for this work. I am grateful for all the valuable
discussions we have had during the period of work.

I would also like to thank UTC for making it possible for me to come to Compiègne
to do my work and for making my stay a very enjoyable one.

Thank you as well to Professor Jan Komorowski for encouraging me to go to Compiègne
and carry out this work, and for giving me useful comments during my period of work.

Finally, I would like to thank my husband, Bjørn, for being interested and supportive
and for his continually encouraging smile.

Compiègne, February 24, 2000

Marte Skarstein Bjanger

Contents

1 Introduction 1
1.1 The purpose of our work . 1
1.2 Reader’s guide . 1

2 Classification of uncertain data 3
2.1 Introduction . 3
2.2 Classification . 3
2.3 Data sets with uncertainty . 5
2.4 Method proposed in our work . 6

3 Decision trees 7
3.1 Introduction . 7
3.2 Basic concepts . 8
3.3 The decision tree algorithm . 9
3.4 An example . 11
3.5 The problems . 15
3.6 Summary . 18

4 Dempster-Shafer Theory of Evidence 19
4.1 Introduction . 19
4.2 Basic concepts . 20
4.3 An example . 24
4.4 Summary . 26

5 The method proposed in our work 27
5.1 Introduction . 27
5.2 Modification of the entropy computation 27
5.3 Classification with uncertain labels 32
5.4 Implementation of our method . 35
5.5 Summary . 37

6 Experiments and results 39
6.1 Introduction . 39

v

vi CONTENTS

6.2 The example data set . 39
6.3 The C4.5 program . 43
6.4 Results . 44

6.4.1 Crisp labels . 44
6.4.2 Uncertain labels . 48

6.5 Summary . 56

7 Discussion 57
7.1 Introduction . 57
7.2 Analysis of the results . 57

7.2.1 Learning from crisp labels 58
7.2.2 Learning from uncertain labels 59

7.3 Comparison to other methods . 61
7.4 Further work . 61
7.5 Summary . 62

A Source code 67
A.1 Main functions . 67

A.1.1 buildtree.m . 67
A.1.2 DT.m . 70
A.1.3 classifytest.m . 74

A.2 Functions for computing the uncertainty 77
A.2.1 entropybel.m . 77
A.2.2 entropybelbf.m . 77
A.2.3 labelcomb.m . 78
A.2.4 computeentropyobj.m . 79

A.3 Auxiliary functions . 80
A.3.1 attvallist.m . 80
A.3.2 bestsplit.m . 80
A.3.3 bestsplitint.m . 82
A.3.4 classifyrek.m . 83
A.3.5 countmax.m . 84
A.3.6 countmin.m . 85
A.3.7 findmostcommon.m . 85
A.3.8 findrange.m . 86
A.3.9 ncont.m . 87
A.3.10 prunetree.m . 87

Chapter 1

Introduction

1.1 The purpose of our work

The work we present in this report adresses the problem of reasoning with uncertainty,
in particular the problem of building classifiers based on uncertain data. The kind of
uncertainty we were concerned with is uncertain classification, i.e., training a classifier
on data for which the knowledge of which class it belongs to isnot certain.

The purpose of our work has been to develop a method that handles this kind of un-
certainty. Our method is based on the decision tree learningmethod, which we modify
with the use of belief functions. Belief functions are used to compute an uncertainty
measure that will replace the concept of entropy used in ordinary decision tree learning
methods. It was our belief that the introduction of belief functions would enable us to
train the classifier on data with the kind of uncertainty mentioned above.

1.2 Reader’s guide

This report is roughly divided in three parts. The first part introduces the important
concepts related to the problem domain. This part is supposed to give the reader the
necessary knowledge about the issues in question. It is to beregarded as an introduc-
tion to what is presented in the following parts. The second part presents the method
we propose in our work and the theory it is based upon. The third part presents exper-
iments we have performed in order to test our method.

The first part of the report starts with a chapter giving a short introduction to the domain
of classification, and in particular to the domain of classifying with uncertain data.
Chapter 3 provides an introduction to the decision tree learning method. Chapter 4
defines the concepts of the Dempster-Shafer theory of evidence, and in particular the

1

2 1. INTRODUCTION

interpretation of this theory that constitutes the transferable belief model.

The second part consists of Chapter 5, which presents our ideas for a new method
combining decision tree learning and the Dempster-Shafer theory of evidence. This
chapter elaborates the mathematical foundation for our proposed method and gives a
short description of our implementation of the method.

The third part presents experiments and results. In Chapter6 we describe how our
method has been tested on a real world classification problemand compared to an
ordinary decision tree learning program. Chapter 7 analyses our results and gives an
evaluation of our method as well as proposing further work that may be done to obtain
more solid results and to improve our method.

Chapter 2

Classification of uncertain data

2.1 Introduction

A common problem in the context of machine learning is the task of classification, or
diagnosis. Examples of “diagnostic systems” are medical systems, that use observed
symptoms for a patient to assess whether some disease is present or not, or technical
systems, that for instance can use the observed behaviour ofsome machine to assess
whether this machine is in a fault state or not.

In order to build a reliable “diagnostic system”, a good classifier has to be found. There
exist several methods to produce classifiers, such as Neuralnetworks, Decision trees,
k-Nearest neighbour and Rough Set theory to mention some of them. A lot of work has
been done to find new methods and to improve existing methods in order to increase
the reliability of the classifiers the different methods produce.

Not all of the existing methods are able to handle adequatelydata that contain some
sort of uncertainty. However, as most of the data used as a basis for classification
that reflect real world situations contain uncertainty in one way or another, it is an
important task to find a method that is able to handle uncertain data.

This chapter gives an overview of the classification task, and explains some of the
problems involved in dealing with uncertain data. Some existing methods are men-
tioned, and a summary of our proposed method is given.

2.2 Classification

The classification process consists of deciding whichclassamong two or more possible
classes some instances or objects of a kind belong to. These instances or objects in

3

4 2. CLASSIFICATION OF UNCERTAIN DATA

question are commonly gathered indata sets.

Each instance in a data set can be regarded as a vector with a given number of values.
Each of the values represents anattribute valuemeasured or chosen for the instance in
question. The attributes that are considered for the set of instances are often calledcon-
ditional attributes. The collection of possible attribute values can bebinary, discrete
or continuous.

In order to make a classifier, one needs to have a set of alreadyclassified instances to
train the system. The set of already classified instances used for this purpose is called
the training set. In addition to all the conditional attributes, these instances also have
an attribute called thedecision attribute, which represents the classification of each
instance. The values of this attribute represent the possible classes the instances from
this particular distribution can belong to. Thus, these values can either bebinary, if
there are only two classes, ordiscrete.

An example of a data set that can be used as a basis for learninga classification task is
shown in Table 2.1. The example is taken from [1] and represents the task of learning
how to choose whether to play tennis or not on a given day basedon information about
the weather conditions.

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Table 2.1: Example data set

When a classifier has been constructed, its performance can be tested by using a set
of instances that have not yet been classified. The set of instances used to test the
system’s performance is called thetest set. This set should be drawn from the same
distribution as the training set.

If the classifier performs adequately, one can classify future instances for which one

2.3. DATA SETS WITH UNCERTAINTY 5

does not know the class by running them through the classifier. For instance, if a
classifier was built based on the data in Table 2.1, one can easily use this classifier
to decide whether or not to play tennis one particular day given this day’s weather
conditions.

2.3 Data sets with uncertainty

Classification systems that are based on empirical data, such as technical systems that
are designed to monitor the state of a machine, have to involve a method of handling
uncertainty. The classifier in such systems are built based on data observed during a
period of time, and if the classifier is to be reliable with respect to classifying states
that will occur in the future, it has to take into consideration the uncertainty inherent
in the collected data.

Uncertainty in data may have different causes. If the data used as basis are constructed
from some expert’s opinion, which in turn is based on this expert’s experience and
earlier observations, assumptions that this expert makes about some observation can
introduce uncertainty in the data. Uncertainty also arisesif there are several experts
who each have their opinion, since these opinions may conflict.

Another source of uncertainty may simply be measurement uncertainty when data are
collected. If the means of measuring or observing is not completely reliable, the mea-
sured data will consequently not be completely reliable.

It is also necessary to take into consideration the possibility that an event may occur
given some conditions, but may not occur later given the sameconditions. This induces
an uncertainty in our experienced data, because the two observed situations, that the
event did occur and that the event did not occur, produces a conflict in our statements.

Other causes of uncertainty may be imprecision in the representation method of the
data or simply vague terminology, for instance if objects are classified as “small” or
“large” without any definite limit between the two values.

Since we know that uncertainty may be contained in the training data we use to build
our classifier, the classification results should also reflect this situation. It is desirable to
have a classifier that not only classifies the instances as belonging to one of the classes,
but is able to say something about the degree of reliability of this classification. It
should be able to give us a clue about how much we should believe in the classification
it produces.

6 2. CLASSIFICATION OF UNCERTAIN DATA

2.4 Method proposed in our work

In order to use uncertain data in a profitable way, one has to find a method for rep-
resenting and taking care of the uncertainty. There are several ways of doing this.
Methods have for instance been developed based on the concept of probability, but
other methods have also been developed.

The theories of fuzzy sets and rough sets address the problemof uncertainty in data, see
for instance [2] and [3] for a description of fuzzy sets and rough sets. A method based
on interval estimation of probabilities has been developedby Kurt Weichselberger and
Sigrid Pöhlmann, see [4]. Thierry Denoeux has developed a method for pattern clas-
sification that uses the k-Nearest Neighbour method based onthe Dempster-Shafer
theory of evidence, see [5], [6] and [7].

Uncertainty may be present in many forms. In our work we are concerned with uncer-
tainty in class labels, for instance if we do not know for certain which of the possible
classes a given instance belong to. Our work has the purpose of finding a way to build
reliable classifiers when the values of thedecision attributeare uncertain, i.e., find-
ing a way to train the system even though the training attributes do not have a crisp
classification.

We propose a method that combines the decision tree learningmethod with the con-
cepts of the Dempster-Shafer theory of evidence for representing this kind of uncer-
tainty. The method of decision tree learning does not in itself address the problems of
uncertain class labels in training data as described above,but we propose to extend this
method with the use of belief functions in order to be able to work with uncertainty.

Our method will be fully described in Chapter 5. The next chapters give an overview
of respectively the decision tree learning method and the Dempster-Shafer theory of
evidence.

Chapter 3

Decision trees

3.1 Introduction

The decision tree learning method is one of the methods that are used for classification
or diagnosis. As for many other machine learning methods, the learning in decision
trees is done by using a data set of already classified instances to build a decision tree
which will later be used as a classifier. The set of instances used to “train” the decision
tree is called the training set.

When the decision tree has been built based on the training set, the testing of the sys-
tem’s performance is done by using a test set with instances that are not yet classified,
but which are taken from the same distribution of instances as the training set. The test
set instances are put through the resulting decision tree inorder to get a classification
for each of the test instances. The goal is to get a tree which,based on the instances in
the training set, is able to classify the instances in the test set correctly.

Decision tree learning has several advantages. One of the advantages is that it gives a
graphical representation of the classifier which makes it easier to understand. However,
this is not the case for large trees, which tend to get over-complex and difficult to
follow. Another advantage is that this method can handle missing attribute values in
the training data.

This chapter gives a definition of some basic notions in the decision tree method, and
gives a description of the common procedure used when building decision trees. An
example is also provided, in order to illustrate the concepts. This chapter is to be
regarded as an overview only. For a more thorough description of decision trees, refer
to [8], [9] and [1].

7

8 3. DECISION TREES

3.2 Basic concepts

In order to understand how decision trees are used for classification purposes, some
basic notions have to be defined.

Decision trees consist ofnodesandbranches. The nodes can either be ordinary nodes
with other descendant nodes, orleaf nodeswhich do not have descendants. Theroot
nodeis the first node on top of the tree. Figure 3.1 illustrates these concepts.

Root
node

Branches

Nodes

Leaf nodes

Figure 3.1: An example tree

Each of the ordinary nodes represents a test on one of the attributes that are measured
for each object, and each of the leaf nodes represents a classification of the object. The
branches descending from a node corresponds to the possiblevalues for the attribute
in question, and consequently there are as many branches from a node as there are
attribute values for the attribute which is tested by the node. If the attribute values are
continuous, there are usually two branches descending fromthe node, corresponding
to a division of the objects according to some splitx � xi andx > xi, wherex is the
attribute value for the object tested at the node, andxi is some defined split value for
the attribute in question.

Another important concept in the decision tree method is theconcept ofentropy. The
entropy is a value that is used when the tree is being built, and it reflects how well the
objects in the training set are separated with respect to thedifferent classes at some
node. If there are an approximately equal amount of trainingobjects from each class
connected to the node, the entropy is large, and if there are only training objects from

3.3. THE DECISION TREE ALGORITHM 9

one class connected to the node, the entropy is 0. The entropyconcept is explained in
detail later.

3.3 The decision tree algorithm

There are several procedures and methods for building decision trees, such as ID3,
C4.5 and CART (see [9] and [8]). We have chosen to base our workon the ID3-
algorithm, because this algorithm visualises well the general approach to building de-
cision trees. As a consequence, this algorithm forms the basis of the description of
decision trees in this chapter. The ID3-algorithm is shown in Algorithm 3.1.

The ID3-algorithm employs a top-down, greedy search through the possible trees, and
it never backtracks to reconsider the choices it takes at each node.

To build a decision tree, one has to have a set of training objects on which to base
the learning of the tree. These training objects have a knownclassification before the
building of the tree starts.

The general concept of the building phase consists of findingthe attribute that best
separates the remaining objects in the training set, and then choose this attribute as
the attribute to be represented in the node. The building thus starts with finding the
best overall attribute that discerns the objects in the training set based on the deci-
sion classes they belong to. This attribute is chosen as the attribute for the root node.
Then one adds as many branches to the root node as there are attribute values for the
chosen attribute and separates the training set objects into groups corresponding to
the different values the attribute may take. Each group of training objects follows its
corresponding branch from the root node.

Then one builds the tree downwards by choosing for each node the one attribute out
of the remaining attributes which best separates the objects from the training set that
belong to this part of the tree.

If in a node there are no more attributes to check on, the node becomes a leaf node
with a label corresponding to the decision class which has the highest number of rep-
resentatives among the remaining training set objects.

If all the remaining training set objects in a node belong to the same class, the node
becomes a leaf node with a label corresponding to this decision class, as there is no
use in separating the objects further.

To find the attribute that best separates the training set objects, the ID3-algorithm uses a
concept that is calledinformation gain. Information gain is a measure on how well one
can discern the remaining objects according to their classes by using a given attribute
as a separator. Associated to the concept of information gain is the concept ofentropy.

10 3. DECISION TREES

Algorithm 3.1 The ID3-algorithm

ID3(Examples; De
ision attribute; Attributes)
Examples are the training objects. Decision attribute is the attribute

whose value is to be predicted by the tree. Attributes is a list of
other attributes that may be tested by the learned decision tree.

Returns a decision tree that correctly classifies the given examples.
Create aRoot node for the tree.
if all Examples are positive,Return the single-node treeRoot, with label = +
end
if all Examples are negative,Return the single-node treeRoot, with label = �
end
if Attributes is empty,Return the single-node treeRoot, with label = most

common value ofDe
ision attribute in Examples
end
Otherwise
beginA the attribute fromAttributes that best* classifiesExamples

The decision attribute forRoot A
for each possible value,vi, of A,

Add a new tree branch belowRoot, corresponding to the testA = vi
LetExamplesvi be the subset ofExamples that have valuevi for A
if Examplesvi is empty

then below this new branch add a leaf node withlabel = most common
value ofDe
ision attribute in Examples

else below this new branch add the subtree
ID3(Examplesvi ; De
ision attribute; Attributes� fAg)

end
end

end
end
RETURNRoot
* The best attribute is the one with the highestinformation gain.

3.4. AN EXAMPLE 11

Entropy is a measure of the “impurity” of the set of training objects.

The entropy is defined as E(S) �
Xi=1�pi log2 pi
whereS is the set of training objects containing objects from
 different classes, andpi is the proportion of objects in the setS from classi. The entropy is 0 if all objects
in S belong to the same decision class, and can be as large aslog2
.
For the special case where the objects are divided between only two decision classes,
let us say a positive class and a negative class, the entropy reduces toE(S) � �p� log2 p� � p	 log2 p	
In this case, the entropy is between 0 and 1, and 1 if there are an equal number of
objects from each of the two decision classes.

The information gain measure is based on the computed entropy for each attribute, and
states the expected reduction in entropy if the training objects are separated by using
the attribute in question. The information gain of an attributeA relative to a set of
objectsS is defined asG(S;A) � E(S)� Xv2V alues(A) jSvjjSj E(Sv)
whereV alues(A) contains all possible values of the attributeA andSv is the set of
objects inS for which attributeA has valuev. We see from the equation that the
information gain is a measure on how much the entropy is expected to decrease if we
partition the training set based on a given attribute. Because of this we choose as the
“best” attribute the attribute which gives the highest information gain, since our goal
is to decrease the entropy as we split the training objects.

When there are no more training objects, or there are no more attributes to split on, we
have a final decision tree which can be used as a classifier. Theperformance of the tree
can now be tested by running pre-classified test objects through the tree, and observe
whether or not the tree classifies them correctly.

3.4 An example

To illustrate the procedure of the decision tree method explained in this chapter, an
example is presented. The example objects are taken from [10], and modified slightly.

12 3. DECISION TREES

The example objects given in Table 3.1 will be used as a basis for building a decision
tree.

Theobjects(rows) in this example are bottles of red wine. Differentattributes(columns)
are measured for each bottle. The measured attributes areWine district, Main grape
variety, VintageandStorage temperature. For each bottle we have a classification that
says whether the bottle is ready to be drunk now or if it shouldbe kept in store.

Wine district Main grape variety Vintage Storage temp. Decisionx1 Bordeaux Cabernet Sauvignon1992 12-15 Drinkx2 Rhône Syrah 1992 <12 Holdx3 Chile Cabernet Sauvignon1995 12-15 Drinkx4 Bordeaux Merlot 1995 >15 Drinkx5 Chile Cabernet Sauvignon1992 12-15 Holdx6 Rhône Merlot 1992 12-15 Holdx7 Bordeaux Merlot 1995 12-15 Drinkx8 Chile Merlot 1992 <12 Holdx9 Bordeaux Merlot 1992 >15 Drinkx10 Rhône Syrah 1995 <12 Holdx11 Chile Merlot 1992 12-15 Drink

Table 3.1: Example objects

The first step in building a decision tree, according to ID3, is to create a root node.
Then we have to choose which attribute is to be tested on the root node. The best
attribute is the one with the highest Information Gain, so wehave to compute the In-
formation Gain for each possible attribute, which at this first step are all the attributes.

At the root node we consider all the example objects, becausewe have not yet started
to divide them into groups, so in this case the set of all training examples,S, contains
all 11 objects from Table 3.1. We observe that we have 6 objects belonging to the
decision classDrink, and 5 objects belonging to the decision classHold. We are then
able to compute the Entropy for this set.E(S) = �pDrink log2 pDrink � pHold log2 pHoldE(S) = � 611 log2(611)� 511 log2(511) = 0:994
We then compute the information gain for the attributeWine district. To simplify the
notation,Wine districtis represented byWD, Bordeauxis represented byB and so

3.4. AN EXAMPLE 13

on: G(S;WD) = E(S)� Xv�V alues(A) jSvjjSj E(Sv)G(S;WD) = E(S)� jSBjjSj E(SB)� jSRjjSj E(SR)� jSC jjSj E(SC)E(SB) = �44 log2(44) = 0E(SR) = �33 log2(33) = 0E(SC) = �24 log2(24)� 24 log2(24) = 1G(S;WD) = 0:994� 411 � 0� 311 � 0� 411 � 1 = 0:6304
The entropy and the information gain for the remaining attributes are computed the
same way and we get these information gain values for the fourattributes at the root
node level: G(S;Wine distri
t) = 0:6304G(S;Main grape variety) = 0:2427G(S; V intage) = 0:0721G(S; Storage temperature) = 0:4931
We see from these results that if we choose to split on attributeWine districtat the root
node, we will get the highest information gain. This tells usthat this split will divide
the training objects in the best possible way concerning thetwo different classes. Our
goal is to have as “pure” nodes as possible in the end, nodes that contain - if possible -
objects from only one class. Thus, we choose to split the objects on the attributeWine
district at the root node.

We now have the tree shown in Figure 3.2. At the root node we divide the training
objects into groups according to which value they have for the attributeWine district,
and create a child node for each possible attribute value.

The next step is to consider which attribute to split on for the child nodes we have
created. For the child node corresponding to the attribute valueBordeaux, we have
four training objects that haveBordeauxas value for the attributeWine district. We
observe that all these objects belong to the classDrink, and according to ID3, this
means that the child node corresponding toBordeauxcan be a leaf node with decision
Drink.

The same applies to the child node corresponding to the attribute valueRhône. For this
node we have three training objects, which all belong to the classHold. We can then
let this child node be a leaf node with decisionHold.

14 3. DECISION TREES

Wine district

RhôneBordeaux Chile

Figure 3.2: Our decision tree at the first stage

The third child node, the one corresponding to the attributevalueChile, has four train-
ing objects connected to it. Among these objects there are two objects that belong to
the classDrink and two objects that belong to the classHold. This means that we
have to split these objects in two, based on one of the three remaining attributes,Main
grape variety, Vintageor Storage temperature. We apply the same method as above
and compute the information gain for each attribute. Note that now the starting point
is the set with the four training objects that belong to this node, which we denoteSC .
The computation results are as follows:G(SC ;Main grape variety) = 0G(SC ; V intage) = 0:3113G(S; Storage temperature) = 0:3113
The information gain values obtained by splitting on the attributesVintageandStorage
temperatureare equal, so we can choose any one of them. We chooseVintageas the
attribute to split on for the child node in question. We now have the tree shown in
Figure 3.3.

If we continue like this, until the training objects are divided into groups with objects
from only one class, we finally get the tree shown in Figure 3.4.

The tree is now ready to be used for classification. The classification is done by running
objects, for which we do not know the class, through the decision tree. Let us say that
we have another bottle of wine, and we want to find out whether it is better to keep this
bottle in store or if it is ready to be drunk. This bottle is represented in Table 3.2.

Wine district Main grape variety Vintage Storage temp. Decisionx12 Chile Merlot 1995 >15 ?

Table 3.2: Object to be classified

3.5. THE PROBLEMS 15

Wine district

RhôneBordeaux Chile

Drink Hold Vintage

1992 1995

Figure 3.3: Our decision tree at the second stage

According to our tree in Figure 3.4 we should first check the attributeWine districtfor
this object to be classified. We observe that the object is from Chile, and according to
our tree, the object should follow the branch down to the nodelabeledVintage. We
check the attribute value forVintagefor our object, and we observe that it is from
1995. The object should follow the branch representing1995. The node connected to
this branch is a leaf node with decisionDrink. We can then conclude that our bottle is
ready to be drunk.

3.5 The problems

Building a decision tree consists of several problems, for instance finding out how to
consider which attribute is best for each node, and finding out when to stop building
the tree, i.e. how deeply one should grow the tree.

The problem of finding out when to stop growing the tree is connected to a problem
called overfitting the data. Overfitting means that if one grows a tree that classifies
perfectly the objects in the training set, this tree may not classify other objects too well,
because the tree is too specific. The result of growing too biga tree may accordingly
be that the tree is too specifically trained to handle exactlythe details of the objects
in the training set, and poorly trained to handle anything else. The classification of
objects outside the training set will consequently be worsened, which is not a desired
behaviour.

Mitchell, [1], gives this definition of overfitting:

16 3. DECISION TREES

Wine district

RhôneBordeaux Chile

Drink Hold Vintage

1992 1995

DrinkMain grape
variety

Cabernet
Sauvignon

Merlot

Storage
temperature

Hold

< 12 12-15

Hold Drink

Figure 3.4: Our final decision tree

Definition: Given a hypothesis space,H, a hypothesish 2 H is said to
overfit the training data if there exists some alternative hypothesis h0 2 H,
such thath has smaller error thanh0 over the training examples, buth0 has a
smaller error thanh over the entire distribution of instances.

The problem of overfitting is particularly present in the cases where the training objects
contain noise or errors. Then a full grown tree will be too sensitive with respect to the
noise or errors in the data, and the result is that the tree classifier performs badly on
other data sets.

Figure 3.5 is taken from [1] and illustrates the consequenceof overfitting. The results
in this figure were obtained by applying the ID3-algorithm tothe task of learning
which medical patients have a form of diabetes. The numbers along the horizontal
axis represents the size of the tree as it is grown. As the figure shows, the accuracy
over the training objects increases as the tree grows, because the tree learns gradually
more from the training objects as it grows. However, the accuracy on the independent
test objects increases from a certain size of the tree, whichindicates that when the tree
grows larger than this size, it gets too specific in relation to the test data.

3.5. THE PROBLEMS 17

A
cc

u
ra

cy

0.5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 6050 70 80

0.55

90

Size of tree (number of nodes)

On training data

On test data

Figure 3.5: Overfitting in decision tree learning

The most common methods to avoid overfitting in decision trees are to either stop
growing the tree before it is fully grown, or to grow a full tree and then prune1 it. In
either case the problem is to find a criterion to use as an indication of which sized tree
will be the tree to perform best. It is not easy to know exactlywhen to stop in order
to get the best tree. Too large a tree will use too much of the detailed information
contained in the training set, while too small a tree may not make use of all the helpful
information contained in the training set. There are several approaches to finding the
right sized tree. The most common of them is to use a validation set of objects, which
should be distinct from the training objects, to evaluate how much post-pruning a node
will improve the tree classifier.

In order to decide which nodes to prune, by using the validation set, one can use the
concept oferror rate estimation. The validation set can be run down trees of different
sizes, and for each tree one can use the classification results to compute an estimated
error rate. For instance, if one first grows a full tree based on the training set, and then
prune the full grown tree node by node and run the validation set down the tree each
time a node has been pruned, one will get an error rate estimation for each possible
tree size. By comparing the computed values, one can see thatthere are tree sizes that
are better than others. The typical results will be that as one prunes the full grown tree,
the error rate estimate will decrease, until one reaches a size where continued pruning
will result in increasing error rate estimates.

The problem with this approach is that it requires a large amount of available data. If
the data available is limited, it may not be desirable to holdout a set of objects for
validation, because that would result in a smaller trainingset, which in turn would
result in a less reliable decision tree than if all the available information was used to
build the tree.

1To prune a node from a decision tree is to remove the subtree ofthat node, and to make the node a
leaf node with decision value the most common value of the training objects connected to that node.

18 3. DECISION TREES

Another problem in decision tree building is to find a good wayof choosing splits
for continuous attribute values. The common way of splitting objects with continuous
attribute values is to divide the objects in two groups, according to whether or not they
have an attribute valuex which is smaller than or greater than some valuexi. The split
divides the objects in two groups withx � xi andx > xi. The difficulty is to find the
best split for the attribute in question, i.e., to decide thevaluex.

3.6 Summary

The decision tree learning method is widely used for classification purposes, and this
chapter has presented the method and its concepts. Decisiontree learning represents
an understandable and reliable method for constructing classifiers. The tree structure
makes it intuitively easy for humans to visualise the classifier.

There are however several problems connected to the use of decision trees as a clas-
sification method, and some of them were outlined here. Another problem, which we
have been concerned with in our work, is that decision tree learning does not cover a
good method for handling uncertainty in the training data. This problem will be further
outlined in the remaining chapters.

Chapter 4

Dempster-Shafer Theory of Evidence

4.1 Introduction

The Dempster-Shafer theory of evidence is a mathematical theory concerning belief
and uncertainty and was evolved by Arthur Dempster and GlennShafer [11]. The the-
ory in large involves assigning a value between0 and1 to some hypothesis, regarding
this value as the degree of belief in the hypothesis in question, based upon a given
body of evidence.

The theory differs from probability-based methods in that it does not claim that the
sum of the belief in a hypothesis and its negation has to be1. If, for instance, the belief
in a hypothesis is assigned the value0, the negation of the hypothesis may also be
assigned the value0, which in short reflects a situation where there is no information
available that helps in choosing between the two.

The Dempster-Shafer theory of evidence also involves the possibility of assigning be-
lief values to sets of hypotheses, as well as combining distinct bodies of evidence in
order to assign combined belief values to the different hypotheses.

This chapter presents an overview of some of the concepts of the Dempster-Shafer
theory of evidence. There exist several interpretations ofthis theory, and we have
based our work on the interpretation called thetransferable belief model(TBM) that
has been introduced by P. Smets ([12] and [13]). Consequently, the presentation in
this chapter will be based on this model. Since it will be too extensive to give the
reader full knowledge of the Dempster-Shafer theory, only the basic concepts and the
concepts concerning our work will be outlined. For a full description of the Dempster-
Shafer theory of evidence, see [11], [12] and [14].

19

20 4. DEMPSTER-SHAFER THEORY OF EVIDENCE

4.2 Basic concepts

In the transferable belief model there are two levels at which uncertain information
is processed, thecredal level and thepignistic level1. At the credal level beliefs are
quantified by belief functions, and a possible updating of our beliefs is done at this
level. The pignistic level succeeds the credal level in timeand appears when one is
confronted with decision making based on one’s beliefs. Ourwork is concerned with
classification, where there is a decision to be made in the end, so we have to take into
consideration both levels.

At the credal level, our beliefs are built. In order to build them we have to define
what we will have beliefs about. This is what we in the last section called the “hy-
potheses”, and they are represented as a set of possible situations, called theFrame of
Discernment � = f�1; �2; : : : ; �ng
where�1; �2; : : : ; �n are mutually exclusive and exhaustive. The power set of�, 2�,
denotes the set of all subsets of�.

A basic belief assignmentis a function that assigns a value between0 and1 to each
subset in the Frame of Discernmentm : 2� ! [0; 1℄;
such that m(;) = 0XA��m(A) = 1:m(A) is calledA’s basic belief number, and represents a mass of belief that is assigned
toA. This belief is assigned on the basis of the given body of evidence concerning the
hypotheses.

According to the statements above, no belief is assigned to;, since at least one of the
subsets in the Frame of Discernment has to represent the truesituation, if we adopt
the closed-world assumption [12]. Also, for the same reason, the total belief in� is 1.
The quantitym(A) is the degree of belief that is assigned exactly to the setA, and it
can not be subdivided in order to get the assigned values for the possible subsets ofA.

1The wordpignisticcomes from the Latin wordpignus, which means a bet.

4.2. BASIC CONCEPTS 21

The total belief inA, including the values for the subsets ofA, can be obtained byBel(A) = XB�Am(B):
The functionBel : 2� ! [0; 1℄ is called abelief functionover�. The belief function
is called thevacuousbelief function whenm(�) = 1 andm(A) = 0 for all A 6= �,
thenBel(�) = 1 andBel(A) = 0 for all A 6= �. This represents a situation where
one has no evidence.

A subsetA of a Frame of Discernment� is called afocal elementof a belief functionBel over� if m(A) > 0. The union of all the subsets that are focal is called thecore
of �.

Another function can be defined from the basic probability assignment, theplausibility
function P l(A) = XB\A6=;m(B):
The plausibility function can also be given byP l(A) = 1�Bel(� n A); 8A � �:
As we see, the plausibility function is another way of presenting our beliefs. Yet
another way of stating beliefs is the commonality function defined byQ(A) = XB�Am(B):
The functionsm(A), Bel(A), P l(A) andQ(A) are all several ways of representing
the same information and can all be obtained from the others.

Dempster’s rule of combinationprovides the tool for combining several belief func-
tions over the same Frame of Discernment. In order to use thisrule, the different
belief functions must be based upon distinct bodies of evidence. Using Dempster’s
rule of combination involves computing the orthogonal sum of the belief functions to
be combined. Dempster’s rule of combination is defined bym(;) = 0m3(C) = PA\B=C m1(A)m2(B)1�PA\B=;m1(A)m2(B) C 6= ;:

22 4. DEMPSTER-SHAFER THEORY OF EVIDENCE

This states that for two belief assignmentsm1 andm2, a combined belief assignment,m3, can be computed. In order to get a better understanding of this rule, a geometrical
representation is shown in Figure 4.1. The belief assignment m3(C) is computed by
summing up all the combined belief assignments whereAi \ Bj = C, and then nor-
malise the result by the inverse sum of all the combined belief assignments where the
intersections are empty.

m(A1) m(A2) m(Ai)

m(B1)

m(B2)

m(Bj)

m2

m1

...

..
.

probability
assignment
assigned to the
intersection of Ai
and Bj with value
m1(Ai)m2(Bj)

Figure 4.1: Dempster’s rule of combination

As stated earlier, when one wants to use belief functions to make a decision, the at-
tention is transferred to the pignistic level. The idea is that one can have beliefs prior
to and independent of decision making, but when a decision has to be made, one has
to base the decision on a probability distribution in order for it to be coherent. So a
probability measure has to be made based on the belief that have been stated at the
credal level, i.e., we have to make a pignistic transformation from belief functions to
probability functions.

Smets [12] proposes a rule to construct a probability distribution,BetP , from a belief
function BetP (�) = XA3� m(A)jAj :
This rule represents the principle that, in lack of information, m(A) should be dis-
tributed among the elements ofA with an equal amount.

The notions mentioned above may be used to define two types of uncertainty, non-
specificity and discord, which have been defined in work done to extend the Dempster-
Shafer theory of evidence [15]. Nonspecificity reflects an uncertainty based on lack

4.2. BASIC CONCEPTS 23

of information, while discord reflects an uncertainty basedon conflict in the given
information.

Nonspecificity is defined asNS(m) = XA��m(A) log2 jAj:
wherejAj denotes the cardinality of the setA and� signifies the frame of discernment.

The nonspecificity function measures the amount of total ignorance of whether a hy-
pothesis is true or not. If there is little information to support either one of the possible
hypotheses, some uncertainty is present, and the nonspecificity is a measure of this
uncertainty. The range of the nonspecificity measure is0 � N(m) � log2 j�j
whereN(m) = 0 represents full certainty (m(f�g) = 1 for some� 2 �), whileN(m) = log2j�j represents total ignorance (m(�) = 1).

Discord is defined as D(m) = � XA��m(A) log2BetP (A);
whereBetP (A) is thepignistic probability distributionas defined above.

The discord function measures the amount of conflict that is present in the information
given. If there is information that gives reason to put belief in one of the hypotheses,
and at the same time there is information present that gives reason to put belief in
another of the possible hypotheses, this information introduces an uncertainty that is
based on contradictory evidence. The discord is a measure ofthis type of uncertainty.

Klir [15] states that these two measures may both be present in a body of evidence. He
proposes a total uncertainty measure inherent in the body ofevidence as the sum of the
nonspecificity and the discord:U(m) = NS(m) +D(m):
In decision tree classification, entropy is used as a measureof “impurity” in each node.
Instead, we propose to use the measure of uncertainty based on nonspecificity and
discord to represent this impurity inherent in the body of evidence that is present, i.e.,
the training examples that are associated with each node. Ifwe have many training
examples of each class associated with a node, the discord would be high because of
the contradictory “evidence”. As the number of training examples decreases during
the building of the tree, they will arouse less conflict and the discord will decrease.

24 4. DEMPSTER-SHAFER THEORY OF EVIDENCE

However, less training examples will represent less information and consequently the
nonspecificity will increase as the tree is built. We thus propose to use this measure as
a means of computing what is in ordinary decision tree learning called “entropy”. This
idea will be further explained in the following chapter.

4.3 An example

To illustrate the use of belief functions and their related concepts, we use the example
introduced in Chapter 3 and shown in Table 2.1.

Now suppose that we do not know for certain if the 11 bottles wehave can be drunk
or should be held in store for some time, i.e., we do not know for certain whether the
objects given belong to the classDrink or to the classHold. Suppose we do not have
the last column of the table.

The usual way of using belief functions is to first define the set of possible situations,
the “hypotheses”, and then assign to each of the possible situations, i.e., each of the
items in the Frame of Discernment, a mass of belief (a basic belief number). This
assignment may for instance be based on certain given evidence, such as observed
facts, or it may be done by experts in the field of interest.

In our example, the set of possible situations, the Frame of Discernment, is� =fDrink;Hold; g. This means that our possible “guesses” about the objects will be
either that the object belongs to classDrink, that it belongs to classHold or that it
belongs to one of the classes, but we don’t know for certain which one of them. All
these possible outcomes must be assigned some basic belief number. Let us say that
we contact a person which is an expert on red wines and presentto this person the
data about our 11 bottles. Assume that the expert gives us theanswer shown in Table
4.1, with the values form(fDrinkg), m(fHoldg) andm(f�g) given for each bottle.
To simplify the notation, the classDrink is represented by aD and the classHold is
represented by anH.

From these values, one can compute the belief in each of the hypotheses, that the bottle
in question belongs to classDrink, that the bottle belongs to classHold or that it can
belong to either one of the classes. When there are only two classes, as in this example,
the computation of belief is simple:Bel(A) = XB�Am(B)Bel(fDrinkg) = m(fDrinkg)Bel(fHoldg) = m(fHoldg)Bel(f�g) = m(fDrinkg) +m(fHoldg) +m(f�g) = 1:

4.3. AN EXAMPLE 25

Wine dist. Main gr. var. Vint. St. temp. m(fDg) m(fHg) m(f�g)x1 Bordeaux Cab. Sauv. 1992 12-15 0.6 0.3 0.1x2 Rhône Syrah 1992 <12 0.1 0.8 0.1x3 Chile Cab. Sauv. 1995 12-15 1 0 0x4 Bordeaux Merlot 1995 >15 1 0 0x5 Chile Cab. Sauv. 1992 12-15 0.3 0.4 0.3x6 Rhône Merlot 1992 12-15 0.1 0.7 0.2x7 Bordeaux Merlot 1995 12-15 0.6 0.1 0.3x8 Chile Merlot 1992 <12 0.4 0.5 0.1x9 Bordeaux Merlot 1992 >15 0.5 0.2 0.2x10 Rhône Syrah 1995 <12 0.2 0.6 0.2x11 Chile Merlot 1992 12-15 0.8 0.1 0.1

Table 4.1: Example objects with expert’s opinion

These results can be used for each bottle to show how much belief we have in the bottle
being ready to be drunk, or whether it should be kept in store.

If there are several distinct sets of evidence, for instanceseveral experts to assign
masses to the hypotheses, these assignments can be combinedby Dempster’s rule of
combination to obtain a composite belief function. In our example this would corre-
spond to a situation where we have the opinions of several experts on red wine. We
could then, for each bottle, compute the combined belief in whether the bottle is ready
to be drunk or not, based on these distinct statements.

Suppose now that we were to use this data set to train a classifier, as in Chapter 3.
However, this time we are not able to use the decision tree learning method, because
we do not have crisp labels for the training objects. We are not able to count how
many objects we have from each class. Nevertheless, we should be able to use the
belief functions given for each object to compute a joint belief function for the training
set. We could then use this belief function to state what our belief would be of what
class the next bottle of red wine we encounter will belong to.This belief function
could be used to compute the nonspecificity and discord contained in the training set.
Then we have a way of measuring the inherent uncertainty of the training set. This
uncertainty measure would correspond to the entropy measure we have seen in the
decision tree learning method. Using this uncertainty measure, we will thus be able to
use the decision tree learning for building a classifier. Howto do this will be elaborated
in the next chapter.

26 4. DEMPSTER-SHAFER THEORY OF EVIDENCE

4.4 Summary

Many interpretations of Dempster-Shafer theory of evidence have been presented. The
general opinion is that this theory can be used to model one’sdegree of belief. This
belief is connected to certain given hypotheses, and expresses how much we believe in
the hypotheses, based on the evidence given.

The Dempster-Shafer theory of evidence can be a good means ofrepresenting uncer-
tainty, as it allows you to express ignorance. This can in turn be used when one wishes
to express several types of uncertainty, as nonspecificity and discord.

It is our belief that, combined with the decision tree method, the concepts of the
Dempster-Shafer theory of evidence can be used as basis for amethod that makes
the classification task more robust to uncertainty - both in the training data and the test
data. Our proposed method will be outlined in the next chapter.

Chapter 5

The method proposed in our work

5.1 Introduction

As stated in Chapter 2, one of the problems in diagnostic systems is finding a way to
handle uncertainty in data. We have in our work been concerned with handling data
with uncertain classification labels. This corresponds to training the system on objects
that do not have a crisp classification, i.e., we are not able to state definitely which
of the possible classes they belong to. Instead we may have for each object a belief
function that tells, for each class, what our belief is that the object in question belongs
to this class.

We propose in this chapter a method that introduces belief functions into the decision
tree learning method. This will allow us to use as training data both objects with
crisp labels and objects with uncertain labels. Our method builds a belief function
from previously seen cases, i.e., the training data. As output, the method will give not
only a classification label, but also a belief function that tells us how the classification
is supported, i.e., states our belief in the classification.We will in this chapter first
describe how we propose to use belief functions in the decision tree learning method.
Then we will elaborate this and show how this can be used to build classifiers from
training data with uncertain labels.

In order to test our method, we have implemented the method inMATLAB. A descrip-
tion of our program is given in this chapter.

5.2 Modification of the entropy computation

As stated earlier, in diagnostic systems the problem is to build a classifier that is able
to classify an object or an instance as belonging to one of several possible classes. The

27

28 5. THE METHOD PROPOSED IN OUR WORK

classifier is built by training the system on previously observed objects. We wish to be
able to state, based on what we have seen earlier, what is the most likely class the new
object should belong to.

In such a problem, our knowledge of the domain is not exhaustive, since the only
representations we have of possible situations to be encountered are the objects we
have already seen. According to Smets [13] and [16] this situation is one where the
probability distribution of the possible outcomes among our objects is only partially
known. We do not know the exact composition of the possible classes among our
objects. Therefore, we are not able to build a probability distribution for our situation,
but we can state some beliefs.

According to the transferable belief model, beliefs are quantified by belief functions.
In our diagnostic problem, the objects can be seen as random events that occur accord-
ing to an underlying probability function. This probability function is only partially
known to us, but we have some knowledge of previous cases thatcan induce a belief
function. When we build a classifier from our previously seencases, we use this belief
function to state our belief in how the future cases will behave.

To illustrate this situation, Smets [16] gives as an examplean urn in which there are
100 balls which are either black, white or red. The amount of balls of each colour
is not exactly known, but we know that there are between 30 and40 black balls and
between 10 and 50 white balls. We are interested in finding outwhat our belief is that a
randomly selected ball will be black. If we select 50 balls atrandom with replacement
and observe their colour, our belief will probably change, because now we have a wider
experience.

We can regard a classification problem as a situation of this kind. We have observed
some events, our previously observed objects, and from themwe are interested in
building a belief function for the possible classes our objects may belong to. If we
accept the close world assumption that one and only one of thepossible classes can be
assigned to each object, i.e., we have a frame of discernmentthat is mutually exclusive
and exhaustive, we can build a belief function on this frame of discernment. If the
underlying probability function of our situation is fully known to us, our belief function
should be equal to the probability function, according to the principle Smets refers
to as the Hacking Frequency Principle. However, if this is not the case, as in our
classification problem, we will need a means of computing ourbelief function based
on the knowledge we have.

Smets proposes in [16] a way of computing this belief function for the case where there
are only two elements in the frame of discernment, i.e., there are only two possible
classes the objects can belong to. Smets calls his two classessuccess, S, andfailure,F ,
and states that if you observer successes ands failures onn independent experiments,

5.2. MODIFICATION OF THE ENTROPY COMPUTATION 29

wherer + s � n, the belief function on� = fS; Fg will beBel�(Sjr; s) = rr + s+ 1Bel�(F jr; s) = sr + s+ 1
and m�(S [F jr; s) = 1r + s+ 1
The method we propose is based on this result. However, sinceSmets has given the re-
sult only for two-class problems, we will only look at classification problems with two
classes. Suppose that we have two classes, class1 and class2, and that we have ob-
served a number of objects from each class. These objects will constitute our training
set. We can then compute our belief that the next observed object wil belong to class1
or class2. In the decision tree learning method, we can use this knowledge to build a
belief function for each node, based upon the objects that have been observed and are
associated with the node. When the object to be classified have been put through the
tree and ended in a leaf node, we use the belief function associated with this node to
state our belief of which class this new object belongs to.

Suppose we denote byn1 the number of objects observed from class1 andn2 the
number of objects observed from class2. The belief function at each node regarding
the two classes can be computed with Smets’ results. In orderto use the belief in our
computations, we will work with the basic belief assignment, m(A), instead of the
belief function,bel(A), since this is just another way of representing belief.1 We get
the basic belief assignment m(f1g) = n1n+ 1m(f2g) = n2n+ 1m(f1; 2g) = 1n+ 1
wheren is the total number of objects.

1Remember from Chapter 4 that in the case where we have only twoclasses, the belief for the two
classes,Bel(f1g) andBel(f2g) equals the basic belief numbers,m(f1g) andm(f2g).

30 5. THE METHOD PROPOSED IN OUR WORK

The belief function obtained for each node may be used to determine the splits to
use for building the tree. In ordinary decision tree building, the entropy is used as a
measure of the impurity of a node. The goal is to split the training objects such that the
entropy in each leaf node is as small as possible, because then we have found the best
way of discerning objects from the different classes. In thesame way, our goal should
now be to split the training objects in such a way that the uncertainty produced from
the computed belief function is as small as possible.

Thus, we propose to substitute the entropy measure in decision tree learning with a
measure of uncertainty based on belief functions, i.e., theentropy measure given in
Chapter 3:

Entropy(S) �
Xi=1�pi log2 pi
will be substituted with the uncertainty measure proposed in Chapter 4U(m) = NS(m) +D(m)
whereNS is the nonspecificity measure andD is the discord measure.

The idea would now be to use the algorithm of the decision treemethod to build a tree,
but using the uncertainty measure stated above to find the best attribute on which to
split for each node. For all the training objects associatedto a node, we will compute
a belief function, and from this belief function we will compute the measure of uncer-
tainty. We will choose the attribute and the split that results in the smallest possible
uncertainty in the child nodes.

The nonspecificity measure will thus beNS(m) = XA��m(A) log2 jAjNS(m) = m(f1g) log2(1) +m(f2g) log2(1) +m(f1; 2g) log2(2)= m(f1; 2g)

5.2. MODIFICATION OF THE ENTROPY COMPUTATION 31

The discord measure will beD(m) =� XA��m(A) log2BetP (A)D(m) =�m(f1g) log2(m(f1g)1 + m(f1; 2g)2)�m(f2g) log2(m(f2g)1 + m(f1; 2g)2)�m(f1; 2g) log2(1)D(m) =�m(f1g) log2(m(f1g) + m(f1; 2g)2)�m(f2g) log2(m(f2g) + m(f1; 2g)2):
The nonspecificity measure will reflect the uncertainty thatis represented by little in-
formation. If we have observed few objects from each class, the nonspecificity will
be high because there is little information present to support our beliefs. The discord
measure will reflect the uncertainty that is represented by the conflict that may arise
from our information. When we have observed objects from different classes, they
each provide “evidence” in favour of their class, and there would thus be conflicting
evidence present.

We see from this that if we use these measures in the context ofdecision trees, the
nonspecificity at the root node will be relatively small, since we have all the training
objects associated with this node, i.e., we have quite a lot of information present. As
the building of the tree proceeds, the training objects are divided into smaller sets.
This will result in an increase of nonspecificity, since the objects remaining provide
less information. The discord, however, will be relativelyhigh at the root node, since
we probably will have many objects from each class at this stage. During the building
of the tree, the splitting of the training set results in more“pure” sets, i.e., sets with less
conflicting information about the class associated with theremaining training objects.
This will result in the discord decreasing as the tree is grown.

The behaviour of the two measures suggests that during the building of the decision
tree, the uncertainty measure we propose will initially decrease, until a stage where the
nonspecificity increases more than the discord decreases, and the uncertainty will start
to increase. This suggests a criterion to use in order to decide when to stop building
the decision tree. The tree is grown as long as the uncertainty decreases, but when the
uncertainty starts to increase, the growth stops. This way we may avoid the problem
of overfitting, since the nonspecificity will tell us when there are too few objects left
to consider for reliable information, i.e., the information is too specific.

Another point of our approach is that by using belief functions to build the tree, we
will take into account how reliable our previous information is. We will not only get

32 5. THE METHOD PROPOSED IN OUR WORK

a classification, but we will also get a belief function telling what the classification is
based on. It is obvious that if we have a large amount of training objects to build our
tree from, the classifier will be more reliable than if we onlyhad a few training objects.
The belief functions obtained will reflect this difference.In the ordinary method of
decision tree learning, the entropy is based on the concept of proportions, how many
training objects there are from one class relative to how many training objects there
are altogether. That is, the entropy is computed based on theratiopi = nin :
This ratio will be the same for instance in a case where we have1 object from classi
out of 10 objects altogether as in a case where we have 10 objects from classi out of
100 objects altogether.

In our method these two situations will be distinguished, because the belief functions
will be different. Our method would, for two classes, for instance give the results:

Case 1: m(f1g) = 111 = 0:09m(f2g) = 911 = 0:81m(f1; 2g) = 111 = 0:1
Case 2: m(f1g) = 10101 = 0:099m(f2g) = 90101 = 0:891m(f1; 2g) = 1101 = 0:0099
We see from this that the next object observed in both cases would be classified as
belonging to class2, but we will have a more reliable result in the second case than
in the first case. So we see that the belief function can give additional and useful
information.

5.3 Classification with uncertain labels

The method outlined above provides the basis for what we wantto achieve with our
work, to provide a method for building classifiers from training data with uncertainty

5.3. CLASSIFICATION WITH UNCERTAIN LABELS 33

in their class labels. In other words, we would like to be ableto handle situations
where the training data do not have a crisp classification, but a basic belief assignment
associated with them.

In order to understand how this can be done, a more thorough explanation of Smets’
results [16] is needed. As stated above, Smets proposes a method of computing a
belief function when the underlying probability function is only partially known. The
background for his results is outlined here.

Smets’ starting point is that we have a frame of discernment,� = fS; Fg, and a set of
probability functions over�, P� = [0; 1℄. He states that from this we can construct a
new frame of discernment,W = P���, on which we can build a belief structuremW .
All the focal elements ofmW consists of a set of mutually exclusive and exhaustive
intervals that are either in the domain ofS or in the domain ofF . SinceW is not a
finite space, the basic belief masses on it will be regarded asdensities, and are called
basic belief densities. Figure 5.1 shows an example of a basic belief density onW on
the focal element([a; 1℄; S) [([0; a); F).

S

F
a

0 1

10

a

Figure 5.1: An example basic belief density onW
Smets chooses to use the commonality function in order to state our belief onW . The
commonality function is chosen, because it has the propertythat it makes the use of
Dempster’s rule of combination easy.

Suppose that we know that the probability of success,P (S), is somewhere betweena
andb, and0 � a � b � 1. The belief is obtained by integrating on the basic belief
densities, and is in the form of the commonality function given byQ([a; b℄) = Z a0 Z 1b m([x; y℄) dy dx:
The mass function can be obtained fromm([a; b℄) = ��2Q([a; b℄)�a�b
These formulae are generalisations of the corresponding commonality and mass for-
mulae for the finite case given in Chapter 4.

34 5. THE METHOD PROPOSED IN OUR WORK

If we perform independent experiments and observe the number of successes and fail-
ures, the commonality function induced by a success, a failure or byS [F isQ([a; b℄jS) = aQ([a; b℄jF) = 1� bQ([a; b℄jS [F) = 1:
To obtain the commonality function induced byr successes ands failures, we use
Dempster’s rule of combination, which in case of the commonality function corre-
sponds to multiplying all the obtained commonality functions, and we getQ([a; b℄jr; s) = ar(1� b)s
which after derivation and normalisation yieldsm([a; b℄jr; s) = �(r + s+ 1)�(r)�(s) ar�1(1� b)s�1
where� is the gamma function.

If we want to compute the belief in the next outcome being a success given the previous
observations ofr successes ands failures, we getBel(Sjr; s) = Z 10 Z 1a Bel(SjP (S) 2 [a; b℄)m([a; b℄jr; s) db da= Z 10 Z 1a a�(r + s+ 1)�(r)�(s) ar�1(1� b)s�1 db da= rr + s+ 1
which was stated in the previous section.

If for experimenti we have a belief function concerning the outcome, i.e., we havemi(S),mi(F) andmi(S [F), we will getQ([a; b℄jmi) = mi(S)a+mi(F)(1� b) +mi(S [F):
For n experiments we getQ([a; b℄jm1; m2; :::; mn) = nYi=1[mi(S)a+mi(F)(1� b) +mi(S [F)℄= Xi+j�n�ijai(1� b)j
where�ij are constants.

5.4. IMPLEMENTATION OF OUR METHOD 35

We can then compute the belief that our next experiment will result in a success, based
on the previous experimentsbel(Sjm1; m2; :::; mn) = Xi;jji+j�n�ijai(1� b)j ii+ j + 1
For our classification situation, this will give us a way of computing a belief function
based on all the previously observed cases’ belief functions. Then we will be able to
build a classifier with the method outlined in the previous section, but we build it based
on training objects which have uncertain labels instead of crisp labels.

5.4 Implementation of our method

In order to test our method, we have built a program in MATLAB implementing the
above ideas. The source code of the program is shown in Appendix A.

The program is developed to handle continuous attribute values only, since our purpose
is to test our method and not, at this stage, to build a complete program. But the
extension of the program to other attribute types would not involve much work.

The program includes two learning methods, one that is basedon learning from ex-
amples with crisp labels, and one that is based on learning from examples with un-
certain labels. The program is based upon the ID3-algorithmexplained in Chapter
3 and is modified according to what is outlined in the previoussections. The pro-
gram builds a decision tree from given training objects, andthe uncertainty measureU(m) = NS(m) +D(m) is used to decide which attribute and which split to choose
at each node.

To find the best split for each attribute, two methods are used. One method finds the
range of the attribute values, and proposes a split at certain given intervals for this
range. The other method counts the number of objects, and proposes splits so that
the objects are divided in equal groups. Then the uncertainty is computed for each
possible split, and the best one is chosen, i.e., the one which yields least uncertainty.
For the method that learns from crisp labels, the best split is first chosen according to
the amount of objects, and then the split chosen is adjusted by searching in the area
around the split by using both splitting methods and choosing the best one. For the
method that learns from uncertain labels, the computation time is very large, so the
split is chosen only using the method that splits according to the amount of objects and
not adjusted afterwards.

The program takes as input a text file with one training objectrepresented on one
line, with the attribute values succeeding each other separated by blank space, and
the decision attribute as the last attribute. The user can choose between learning from

36 5. THE METHOD PROPOSED IN OUR WORK

crisp or uncertain labels, as well as choose to build a full tree or to use a stop criterion.
The stop criterion is implemented as building the tree as long as the uncertainty is
decreasing. As we will show in the next chapter, the uncertainty measure had to be
adjusted with a parameter in order to demonstrate the expected behaviour of initially
decreasing until a point is reached where it starts to increase. Our uncertainty measure
is therefore implemented asU�(m) = NS(m) + �D(m)
The output of the program is a decision tree. At each node the uncertainty and either
the number of objects from each class or the belief function are stored. The attribute
to split on, the split, and the most common class are also stored at each node. The
program also produces a text file with information from the building of the tree, such
as the uncertainty computation at each node.

For testing the classification, the program takes as input a text file with test objects in
the same format as the training objects. The output of the test classification is a text file
that lists the test objects with their known classification and the produced classification
of the decision tree. Both the belief function and the classification is shown. The error
rate is also computed.

There are two methods of computing the classification error,according to which clas-
sification labels are used for testing. Since we have beief functions as output from the
classifier, the error rate should not be a pure misclassification error rate, but an error
measure stating the difference between the output and the belief that was assigned in
advance.

If objects with crisp labels are used for testing, the error measure is a kind of misclas-
sification error rate. In advance, a class is chosen for each object based on the object’s
belief function. The classifier produces a new belief function, and the class with high-
est belief is chosen as the class of the object. The error measure is thus computed
based on the difference between the class indicated by the previous mass assignment
and the class indicated by the classifier’s output. This error is thus the percentage of
wrongly classified objects given byError = wrongly
lassified obje
tstotal number of obje
ts
For testing objects with uncertain labels, it is not as useful to compute the error measure
given above, since the belief functions given as output should be compared to the belief
functions previously assigned to each object. It would givemore information about the
performance of the classifier to compute the disagreement between each object’s two
belief functions. So, to better assess the classification inthese situations, an error

5.5. SUMMARY 37

measure is computed based on the concept of pignistic probability:Error = 1n nXi=1(1�\BetPi(
mi))
where\BetPi is the pignistic probability for objecti induced by
mi, the belief function
produced for objecti. The pignistic probability for objecti is given by\BetPi(
mi) = XA��mi(A)\BetP (A):
The interpretation of this error measure is that the error issmall if the produced belief
function does not differ much from the previously assigned belief function, but it does
not consider as an error a classification where the mass has been “transferred” from
uncertainty to one of the classes.

5.5 Summary

We have in this chapter outlined our proposed method and given its background and
underlying ideas. We have introduced a method based on the decision tree learn-
ing method, combined with the notions of belief functions. Our method consists of
modifying the entropy measure in the ordinary decision treelearning method to an
uncertainty measure based on belief functions. Our method has two possible ways of
building a classifier, one that concerns learning from objects with crisp labels, and one
that concerns learning from objects with uncertain labels.

This method allows to classify objects with crisp labels at least as well as other meth-
ods, and in addition it offers a way of handling objects with uncertain labels. This
means that one is able to make the most of the information thatis in this kind of rep-
resentation. We will in the next chapter show results obtained from experiments with
our method.

Chapter 6

Experiments and results

6.1 Introduction

For verification of our method, we have performed a test on data from a real world
problem. The results from running these data through our method are compared to
a decision tree learning program developed by Quinlan, based on the ID3/C4.5 algo-
rithm.

This chapter presents the data and a short description of thedomain they are taken
from. It also presents the C4.5 program with which our results were compared. A
presentation of the results obtained is given in the sectioncalled Results. The results
will be analysed in the next chapter.

6.2 The example data set

The chosen data set is taken from the domain of monitoring sleep stages. The problem
stated is to detect different waveforms in the sleep electroencephalogram (EEG), and in
particular detecting the transient EEG pattern of the K-complex wave. For a thorough
presentation of this problem, see [17] and [18].

The activity of the human brain during sleep is classified into stages. The problem
of detecting the K-complex is important in the assessment ofsleep stages. It is a
difficult task, because this transient signal has much in common with the patterns of
a waveform that is called the delta waveform. Figure 6.1 shows examples of a K-
complex waveform and a delta waveform.

The data used to test our classification method are EEG signals measured 64 times
during 2-second intervals for one person during sleep. Eachsuch 2-second interval

39

40 6. EXPERIMENTS AND RESULTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

time(s)

A
/D

 c
on

ve
rt

er
 o

ut
pu

t

K−complex

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

time(s)

A
/D

 c
on

ve
rt

er
 o

ut
pu

t

delta wave

Figure 6.1: Examples of the K-complex and the delta wave

will be regarded as an object with 64 attributes containing values corresponding to
the 64 measured values. Since the problem is to train a classifier to distinguish K-
complex waveforms from delta waveforms, examples of these two waveforms have
been extracted. We have in our data set 781 objects representing patterns of the K-
complex waveform and 397 objects representing patterns of the delta waveform.

Since the K-complex pattern is difficult to detect, five experts on the domain have been
asked to look at the 781 objects that represent the K-complexwaveform and state for
each object whether he believes that the pattern is in fact representing a K-complex
signal or not. We have then for each of these objects five expert opinions of whether it
is a K-complex object, in which case the expert has put the value “1”, or whether the
object is representing some other waveform, in which case the expert has put the value
“0”.

We will also adopt the closed-world assumption that there are only two classes of
objects,K-complex(class2) objects andnot K-complexobjects (class1), in our case
represented by the delta wave objects. The reason for this isthat if an expert says that
the object is not a K-complex pattern, that does not necessarily mean that it is a delta
wave pattern, it may mean that he does not know what it is, or itmay mean that he
has recognised it as something else. However, since the onlyother waveform we have
examples of in our data set is the delta waveform, this is the only other waveform that
the classifier will be trained to recognise.

Figure 6.2 shows how the data are distributed according to the experts’ classifica-
tion.Two attributes containing the most important information regarding the classes
have been found by feature extraction, which makes us able toplot the data in two
dimensions. The K-complex objects with consent from different number of experts
are plotted together with the delta objects to see how they differ from them.

6.2. THE EXAMPLE DATA SET 41

−10 −8 −6 −4 −2 0 2 4 6 8
−10

−5

0

5

10

15
1 expert

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

10
2 experts

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

12
3 experts

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10
4 experts

−10 −8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

10
5 experts

Figure 6.2: The distribution of the objects according to theexperts’ classification

We see from the figure that the objects for which all the experts agree that it is a K-

42 6. EXPERIMENTS AND RESULTS

complex object are quite separate from the delta objects. Asthere is consent from
fewer experts, the K-complex examples tend to move in the direction of the delta
objects and be more uncertain.

We also observe from Figure 6.2 that the objects that have been classified as K-complex
objects by only one expert are widely distributed in the entire space. This confirms our
above statement that if the objects are not K-complex objects, they are not necessarily
delta objects. The figure also confirms that the experts’ classification is quite a realistic
one.

For our method based on classification of objects with crisp labels, we have defined
all the 781 objects representing patterns of the K-complex waveform as objects from
class2, and the 397 objects representing patterns of the delta waveform as objects from
class1.

To use our method for classification with uncertain labels, we have to build a belief
function for each object. For the 781 K-complex objects thisbelief function is based
on the 5 experts’ opinions. There is no common way of assigning belief in a case like
this, so we have suggested a heuristic that assigns belief according to the number of
experts who have classified the object as a K-complex object.If only one expert is
certain that the object is a K-complex object, the belief assigned to class1 should be
quite small, and the belief assigned to1 [2 should be quite high. If all the experts
have classified the objects as a K-complex object, the beliefassigned to class1 should
be high. So, we have used the belief functions shown in Table 6.1 for our K-complex
objects.

Number of experts m(f1g) m(f2g) m(f1; 2g)
1 0 0.2 0.8
2 0 0.4 0.6
3 0 0.6 0.4
4 0 0.8 0.2
5 0 1 0

Table 6.1: Belief functions for uncertain K-complex objects

As shown in Figure 6.2, the objects with assent from a small number of experts can be
anything, they are not necessarily delta objects. This is reflected in our assigned belief
functions, since in these cases the mass of belief is not added to class1, but to1 [2.

For the objects that represent the delta wave pattern, the mass assignment will bem(1) = 1m(2) = 0m(1; 2) = 0

6.3. THE C4.5 PROGRAM 43

since we know for sure that these objects are examples of the delta waveform.

6.3 The C4.5 program

To evaluate the behaviour of our method, we will compare our results with the results
obtained from a traditional decision tree learning method.We have chosen to use the
C4.5 program developed by J. R. Quinlan. His program is fullydescribed in [9].

Quinlan’s C4.5 program is implemented in C for the UNIX environment. It has options
both for building a decision tree and for creating a set of production rules, which is
another way of representing the same information.

The program uses three files of data to build a tree and to test it. The attributes for
the data set have to be defined in a file with the extension.names. This file starts with
a list of all the possible values for the decision attribute,then a list of the conditional
attributes and their type follows which states whether theyare continuous or have cer-
tain predefined discrete values. The training data are listed in a file with the extension
.data, with one line in the file representing one object. The test objects are listed in
a file with the extension.test. All these three files must have the same stem. The
program handles unknown attributes, and these are represented in the data files with a
’?’.

The C4.5 program uses the algorithm stated in Chapter 3 to build a decision tree. The
best attribute to split on is chosen by computing the information gain based on the
entropy. The best tree is found by building a full tree and then pruning it upwards by
looking at how the error rates will change if a subtree is replaced with a leaf node.

The output of the program is a listing which first states what data files and options have
been used, then the produced decision tree is listed followed by a simplified decision
tree, i.e., the pruned version of the tree, and ends with listing the classification results
for both trees on the training data and the test data. The decision tree is shown as a set
of rules testing on an attribute value according to a split. Each leaf node is followed by
some numbers in parentheses, which indicate the number of training objects that are
associated with this leaf node, and the number of misclassified training objects for this
node.

The results are listed both for evaluation on the training data and for evaluation on
the test data. For each case, both the results obtained from the full tree and from the
pruned tree are shown. The results list the size of the tree, i.e., the number of nodes, the
number of misclassified objects and a misclassification error rate given in percentage
of the total number of objects. An estimated error rate is also given, computed from
the upper limit of the confidence limits obtained from regarding the misclassification
error rate as a probability distribution of error occurring. At the end of the output,

44 6. EXPERIMENTS AND RESULTS

a confusion matrix is shown, giving the number of objects that have been classified
correctly and wrongly for each class.

We will run our data set through the C4.5 program, and the output of this program will
be compared to the results obtained from using our method. This way we will be better
able to assess the performance of our method.

6.4 Results

Experiments have been made both with the method for buildinga classifier from train-
ing objects with crisp decision labels and with the method for building a classifier from
training objects with uncertain decision labels. The experiments and their results are
divided in two parts, according to the two methods.

6.4.1 Crisp labels

The first experiment we did was to see how our method worked on an ordinary data
set, i.e., a data set with crisp labels for the decision attribute. We built a data set from
our sleep data described above, with all the 1178 objects, 397 objects representing the
delta wave pattern (class1) and 781 objects representing the K-complex pattern (class2).

With this data set, both the C4.5 program and our method performed poorly, with
a misclassification error rate of around 30 percent. This wasto be expected, since
the data set consists of all the data available from the K-complex class, i.e., it contains
objects which the majority of the experts have classified as not being an example of the
K-complex pattern. Consequently, this set of objects contains uncertain information in
which it will be difficult to find a pattern. The data are shown in Figure 6.3.

In order to get more distinct results, we removed the most uncertain objects from the
data set. We thus built a data set consisting of the 397 objects from the “delta” class
and the most certain objects from the “K-complex” class. From Figure 6.2 we see
that the objects with assent from all the experts obviously can be regarded as certain
K-complex objects, since they are quite separated from the delta objects. In addition,
the objects with assent from 3 and 4 experts can also be regarded as relatively certain,
because the objects do not yet become totally mingled with the delta objects. However,
as the most certain objects we chose the objects for which at least 4 of the experts had
classified it as an instance of the K-complex waveform, to be able to verify our method
with quite certain objects. We thus had 147 certain K-complex objects.

6.4. RESULTS 45

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−5

0

5

10

15

Figure 6.3: All the 1178 data objects. ’+’ are the objects from the K-complex class
and ’o’ are the objects from the delta class.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−5

0

5

10

15

Figure 6.4: All the 1178 data objects. ’+’ are the most certain objects from the K-
complex class, ’.’ are the uncertain objects from the K-complex class and ’o’ are the
objects from the delta class.

46 6. EXPERIMENTS AND RESULTS

In Figure 6.4 the uncertain data are plotted as a separate class in order to illustrate the
difficulty in classifying these objects. As the figure shows,the most uncertain data are
not easy to distinguish from the certain ones. Figure 6.5 shows the situation without
these uncertain objects. We can see from the figure that if we select the most certain
objects, i.e., all the delta objects and the K-complex objects for which 4 or 5 experts
have given their assent, the classification task is easier.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

Figure 6.5: The 544 most certain objects. ’+’ are the most certain objects from the
K-complex class and ’o’ are the objects from the delta class.

The 544 objects of the data set were randomly mixed, in order to avoid any impact from
the fact that all data were measured during the same sleep period, which means that
they were ordered sequentially by time in our initial data files. Five different random
sets were made, and they were each divided in a training set of425 objects and a test
set of 119 objects. The result from running these data through our program is shown
in Table 6.2.

Misclassification error rate
Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Average

Train 0.0024 0.00 0.0024 0.0024 0.0024 0.0019
Test 0.2437 0.2101 0.1513 0.1345 0.1513 0.1782

Table 6.2: Error rates for the 5 data sets.

6.4. RESULTS 47

With these data sets it appeared that even though the stop criterion of building the tree
as long as the uncertainty measure was decreasing was used, an approximately full
tree was built each time. It can be seen from the large difference in the results for
classification on the training set and on the test set that theoverfitting is high. This
suggests that, as presumed, we should modify our uncertainty measure by inserting a
parameter,�, in order to be able to obtain the desired behaviour from the uncertainty
measure. We then modified the uncertainty measure to beU�(m) = NS(m) + �D(m)
Inserting this parameter means that we have to run the data sets through the program
for different values of� in order to choose the best tree. This means that we will have to
adjust the parameter for our data to find which� value gives the most optimal tree. This
is analogous to the pruning method in the C4.5 program, wherethe misclassification
error rate is computed for each size of the tree in order to choose the tree that gives the
lowest error rate.

We tried running the same 5 data sets as above through the program for different values
of �. The results from this experiment can be seen in Table 6.3.

Misclassification error rate� Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Average
1 Train 0.0024 0.00 0.0024 0.0024 0.0024 0.0019

Test 0.2437 0.2101 0.1513 0.1345 0.1513 0.1782
0.5 Train 0.0024 0.00 0.0024 0.0024 0.0024 0.0019

Test 0.2269 0.1849 0.1596 0.1345 0.1513 0.1714
0.2 Train 0.0071 0.0047 0.0094 0.0047 0.0094 0.0071

Test 0.2269 0.2017 0.1177 0.1261 0.1261 0.1597
0.15 Train 0.0071 0.0071 0.0142 0.0118 0.0212 0.0123

Test 0.2269 0.1933 0.1261 0.1092 0.1345 0.1580
0.1 Train 0.0330 0.0566 0.0708 0.0212 0.0566 0.0476

Test 0.1849 0.1681 0.1765 0.1177 0.1261 0.1546
0.075 Train 0.0660 0.0802 0.0943 0.0920 0.0778 0.0821

Test 0.2017 0.1849 0.1429 0.1597 0.1345 0.1647
0.05 Train 0.10142 0.0991 0.0943 0.1274 0.1321 0.1109

Test 0.1765 0.2101 0.1429 0.2017 0.1765 0.1815
C4.5 Train 1.7/2.1 1.2/1.2 1.9/3.5 1.7/3.3 2.1/2.1 1.72/2.44

Test 19.3/19.3 20.2/20.2 13.4/14.3 16.0/19.3 19.3/19.3 17.64/18.48

Table 6.3: Error rates for different values of�
The value� = 1 obviously corresponds to the case above without the� parameter. The

48 6. EXPERIMENTS AND RESULTS

table also shows the results obtained by running the same data sets through the C4.5
program. The C4.5 program gives, as stated earlier, as output the misclassification
error rate in percentage of the total number of objects. There are two numbers given
for each case, the first number is the error rate for the full tree, and the second number
is the error rate for the pruned tree.

We see from these results that for this data set the best tree will be obtained when� = 0:1. We also see that the misclassification error rate is slightly better than before
we introduced the� parameter.

Table 6.4 shows the confusion matrices obtained for the testset of the 5 data sets,
both for our method with� = 0:1 and for the C4.5 program. The confusion matrices
show how many objects have been correctly classified as belonging to class1, how
many objects have been wrongly classified as belonging to class2 and so on. We see
from the results that the two methods perform approximatelyequally, with a small
advantage for our method.

Data set 1 Data set 2 Data set 3
Our C4.5 Our C4.5 Our C4.5

Classified as Classified as Classified as
1 2 1 2 1 2 1 2 1 2 1 2

Real 1 63 17 71 9 1 66 14 67 13 1 70 10 71 9
2 12 27 14 25 2 11 28 11 28 2 8 31 8 31

Data set 4 Data set 5
Our Quin Our Quin

Classified as Classified as
1 2 1 2 1 2 1 2

Real 1 71 9 71 9 1 70 10 69 11
2 7 32 14 25 2 8 31 12 27

Table 6.4: Confusion matrices for the 5 data sets with 544 objects

6.4.2 Uncertain labels

Experiments were also done to test how our method would work for classification with
data labeled with belief functions as decision labels instead of crisp labels. Because
our implementation of the computation of belief functions when building a tree in this

6.4. RESULTS 49

case is very time consuming, we had to build smaller data sets. We also found from
experiments that by using only two attributes found by feature extraction, we got as
good results as when using all the 64 attributes. This also reduced the computation
time. So we decided to use only two attributes for these experiments.

The data sets we used for these experiments were of two types.One data set contained
delta objects and only the most certain K-complex objects, which we chose to be the
objects for which 3,4 or 5 of the experts had classified them asbeing an example of the
K-complex pattern. The other data set contained also the data selected as examples of
the K-complex pattern, but which at least three of the experts classified as not being an
example of such. The “certain” data set used for training contained 100 objects, i.e.,50
randomly drawn objects among the most strong cases of K-complex examples, and 50
randomly drawn objects among the examples of the delta wave.The “uncertain” data
used for training contained 150 objects, i.e., the same 100 certain objects as above and
in addition 50 randomly drawn objects from the uncertain K-complex examples.

These two data sets were used to train the system, both with crisp labels and with belief
function labels. In order to evaluate the two methods’ behaviour in comparison with
each other, two validation sets were also built, consistingof different objects. These
two sets followed the same structure as the training sets, i.e., we made a “certain” val-
idation set containing 100 certain objects and an “uncertain” validation set containing
in addition 50 uncertain objects. Figure 6.6 shows the two training sets and the two
validation sets.

Normally in a classification problem, we have to deal with uncertain objects. We
can then choose to train our classifier on all the objects we have observed, or we can
choose to leave out the uncertain ones and use only the certain objects. To reflect this
real world situation, the idea was to build trees both by using only the uncertain objects
and by including the uncertain objects. The trees obtained should then be validated on
the validation set containing uncertain objects, to see in what way including uncer-
tain objects in the training set would affect the classifiersperformance regarding the
cassification of uncertain objects.

First, we used the certain training set to build trees for both methods. For the method
using crisp labels, all the K-complex objects belong to class 2 and all the delta objects
belong to class 1. For the method using uncertain labels, we assigned a belief function
for each of the objects based on the experts’ opinions, as explained earlier.

For the certain training set, we used crossvalidation in order to find the value of� that
provided the optimal tree. Crossvalidation consists in holding out a certain amount of
objects as test objects chosen randomly from the data set using the remaining objects
to build the tree, and doing this several times with different objects as test objects
each time. We used a 5-fold crossvalidation, which means that we chose test objects
randomly 5 times, so that we got 5 different data sets. Each time we extracted 25
objects as test data and the remaining 75 objects were used astraining data.

50 6. EXPERIMENTS AND RESULTS

−8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

(a) Certain training set, 100 objects

−8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

(b) Uncertain training set, 150 objects

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

10

12

(c) Certain validation set, 100 objects

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

10

12

(d) Uncertain validation set, 150 objects

Figure 6.6: The different data sets used for classification.The data sets on the left
are the certain data sets, and the data sets on the right are the uncertain data sets. The
topmost data sets are the training sets, and the lower data sets are the validation sets.
’+’ are the most certain objects from the K-complex class, ’.’ are the uncertain objects
from the K-complex class and ’o’ are the objects from the delta class.

Then we ran the data through the method based on crisp labels,with different values
for �. The results of this experiment is shown in Table 6.5. As we see from these
results, the best tree is obtained with� = 0:2. Then a tree was built on all the 100
training objects with� = 0:2. This tree was validated on the uncertain validation set,
i.e., the set that contains 150, including 50 of the uncertain K-complex objects. For this
experiment the misclassification error rate was0.333. The disagreement error measure

6.4. RESULTS 51

based on the pignistic probability was0.21.

Misclassification error rate� Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Average
1 Train 0.0133 0.00 0.00 0.0133 0.0080 0.008

Test 0.16 0.28 0.28 0.20 0.28 0.24
0.75 Train 0.0133 0.0133 0.0133 0.0267 0.0267 0.0187

Test 0.32 0.24 0.32 0.20 0.28 0.272
0.5 Train 0.04 0.0267 0.0533 0.0133 0.0267 0.032

Test 0.32 0.24 0.20 0.24 0.32 0.264
0.2 Train 0.12 0.1067 0.12 0.1067 0.08 0.1067

Test 0.20 0.16 0.12 0.20 0.24 0.184
0.1 Train 0.12 0.12 0.1733 0.12 0.08 0.1227

Test 0.20 0.20 0.28 0.20 0.24 0.224

Table 6.5: Crossvalidation for learning on certain data with crisp labels for different
values of�

Disagreement measure� Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Average
1 Train 0.1508 0.1172 0.1312 0.1219 0.1203 0.1283

Test 0.2713 0.2202 0.2193 0.1637 0.2872 0.2323
0.75 Train 0.1508 0.1172 0.1648 0.1303 0.1203 0.1367

Test 0.2713 0.2202 0.2317 0.1902 0.2872 0.2401
0.5 Train 0.1644 0.1172 0.1648 0.1303 0.1203 0.1394

Test 0.2839 0.2202 0.2317 0.1902 0.2872 0.2426
0.2 Train 0.1799 0.1372 0.1648 0.215 0.1311 0.1656

Test 0.2889 0.1774 0.2317 0.2702 0.2911 0.2519

Table 6.6: Crossvalidation for learning on certain data with belief functions as labels
for different values of�
Then the same data were run through the method based on uncertain labels. For this
method we got the results shown in Table 6.6. Since we now wereusing uncertain
labels, the disagreement measure based on the pignistic probability was used as an
error measure for the crossvalidation. The best tree was obtained with� = 1, and
a tree was built from all the 100 training data with� = 1. The classifier was tested
on the same uncertain validation set as above, and the misclassification rate for this

52 6. EXPERIMENTS AND RESULTS

experiment was0.3267. The disagreement measure in this case was0.2008. We see
from these results that the method using uncertain labels performs slightly better than
the method using crisp labels.

The confusion matrices for the two classifiers are shown in Table 6.7. The confusion
matrices show that we get a slightly better result regardingthe objects that are not
K-complex when using uncertain labels than when using crisplabels.

Crisp labels Unc. labels

Classified as Classified as
1 2 1 2

Real 1 37 13 1 38 12
2 37 63 2 37 63

Table 6.7: Confusion matrices for the uncertain validationdata on trees built from
certain training data with crisp labels and uncertain labels

Then we tried to build a classifier from the uncertain data setwith 150 objects. For the
method based on crisp labels, we put in class 2 both the 50 mostcertain K-complex
examples and the 50 uncertain K-complex examples. The 50 delta examples were put
in class 1. For the method based on uncertain labels, the belief functions for the new 50
uncertain objects were assigned based on the experts’ statements, as explained earlier.

We did the same as for the certain training set, we used a 5-fold crossvalidation with
110 training objects and 40 test objects. The results for different values of� for the
5 data sets using crisp labels are shown in Table 6.8. The besttree was obtained with� = 0:1. The results for the method based on belief functions as labels are shown in
Table 6.9. Here the best tree was obtained with� = 0:5.

The uncertain validation set with 150 objects was also run through both of these clas-
sifiers. The misclassification error rate for the tree built from data with crisp labels was
0.3467, and the disagreement measure was0.2625. The misclassification error rate for
the tree built from data with belief functions as labels was0.340, and in this case the
disagreement measure was0.2247. The confusion matrices for both trees are shown in
Table 6.10.

We have now built four trees, two trees built on the certain data training set, one using
crisp labels and one using belief functions as labels, and two trees built on the uncertain
training data set, also in this case using both kinds of labels. All trees have been tested
on the certain validation set of 100 objects. The decision boundaries obtained by the
four trees are shown for the certain validation set in Figure6.7.

6.4. RESULTS 53

Misclassification error rate� Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Average
1 Train 0.00 0.00 0.00 0.00 0.00 0.00

Test 0.35 0.325 0.425 0.30 0.325 0.345
0.75 Train 0.0091 0.00 0.00 0.0091 0.00 0.0036

Test 0.325 0.325 0.425 0.325 0.325 0.345
0.5 Train 0.0364 0.1364 0.00 0.0182 0.0091 0.04

Test 0.35 0.375 0.425 0.30 0.325 0.355
0.2 Train 0.2091 0.2182 0.0625 0.1818 0.20 0.1743

Test 0.40 0.40 0.40 0.25 0.275 0.345
0.1 Train 0.2091 0.2455 0.0625 0.2546 0.30 0.2143

Test 0.40 0.275 0.40 0.25 0.30 0.325

Table 6.8: Crossvalidation for learning on uncertain data with crisp labels for different
values of�

Disagreement measure� Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Average
1 Train 0.1061 0.1196 0.1080 0.1250 0.1174 0.1152

Test 0.2237 0.2729 0.1611 0.2143 0.2147 0.2173
0.5 Train 0.1435 0.1555 0.1597 0.1583 0.1740 0.1566

Test 0.2348 0.2314 0.1557 0.2241 0.2117 0.2115
0.2 Train 0.1688 0.181 0.1859 0.1858 0.2081 0.1859

Test 0.2459 0.2433 0.1701 0.2641 0.2209 0.2289

Table 6.9: Crossvalidation for learning on uncertain data with belief functions as labels
for different values of�

Crisp labels Unc. labels

Classified as Classified as
1 2 1 2

Real 1 35 15 1 37 13
2 37 63 2 38 62

Table 6.10: Confusion matrices for the uncertain validation data on trees built from
uncertain training data with crisp labels and uncertain labels

54 6. EXPERIMENTS AND RESULTS

If we compare these results with the results obtained from the trees trained on certain
labels, we see that it is slightly more difficult to classify the validation objects when
the classifier has been trained on uncertain objects than when it has been trained only
on certain objects. However, it seems in both cases that the method that uses belief
functions as labels for the training data performs slightlybetter than the method that
uses crisp labels for the training data. The confusion matrices show the results more
detailed.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

10

12

1

0

(a) Training on certain data with crisp labels

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

10

12

1

0

(b) Training on certain data with belief func-
tion labels

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

10

12

10

(c) Training on uncertain data with crisp la-
bels

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

10

12

1

1

0

(d) Training on uncertain data with belief
function labels

Figure 6.7: Decision boundaries for the uncertain validation set with 150 objects for
the four different trees built. ’+’ are the most certain objects from the K-complex class,
’.’ are the uncertain objects from the K-complex class and ’o’ are the objects from the
delta class.

6.4. RESULTS 55

The four classifiers built were also tested on the certain validation set, i.e., the set
that contains only the most certain objects of the K-complexexamples. The decision
boundaries for the certain validation set in each case are shown in Figure 6.8.

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

10

12

1

0

(a) Training on certain data with crisp labels

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

10

12

1

0

(b) Training on certain data with belief func-
tion labels

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

10

12

10

(c) Training on uncertain data with crisp la-
bels

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

10

12

1

1

0

(d) Training on uncertain data with belief
function labels

Figure 6.8: Decision boundaries for the certain validationset with 100 objects for the
four different trees built. ’+’ are the most certain objectsfrom the K-complex class
and ’o’ are the objects from the delta class.

When training on certain data using crisp labels, the misclassification error rate was
0.24, and the disagreement measure was0.2546. For the method using uncertain
labels, the misclassification error rate was0.24, and the disagreement measure was

56 6. EXPERIMENTS AND RESULTS

0.2361. When training on uncertain data using crisp labels, the misclassification error
rate was0.24, and the disagreement measure was0.3440. For the method using un-
certain labels, the misclassification error rate was0.24, and the disagreement measure
was0.2712. Again we observe that the method based on uncertain labels performs
slightly better than the method based on crisp labels.

6.5 Summary

We have in this chapter presented experiments performed on data from a real world
classification problem. Experiments have been done on both parts of our proposed
method, the method using crisp labels as decision labels forthe training set, and the
method using belief functions as labels for the training set(uncertain labels). Experi-
ments have been done both with data sets containing only the most certain objects and
with data sets that contain an amount of uncertainty represented by objects for which
the experts did not agree on the classification. The results obtained will be interpreted
and analysed in the following chapter.

Chapter 7

Discussion

7.1 Introduction

In the previous chapter several experiments were describedand the results of the ex-
periments were presented. We will in this chapter look closer at the results in order to
discuss the performance of the method we have proposed in this work. An analysis of
these results will make us able to draw conclusions regarding our method.

In order to refine and improve the method, some further work should be done. In the
last section of this chapter a suggestion of what can be done in the future to extend this
work is given.

7.2 Analysis of the results

We chose to test our method on a real world classification problem, in order to get
an impression of how our method performed. We chose the problem of discerning
K-complex patterns from delta wave patterns in EEG’s measured during sleep. This
problem represented a good example of a problem that our method would be able to
handle. The different objects which were supposed to be examples of the K-complex
pattern were presented to some experts, and they were asked to give their opinion on
the objects. The experts did not always agree on the classification, which introduced
some uncertainty in the labeling of the objects. This is exactly the situation we wanted
to be able to handle with our method.

As we saw it, the data set contained three types of objects. One type of objects con-
sisted in the examples of the delta wave pattern, which had a certain classification.
Then there was the set of objects that was supposed to be examples of the K-complex
pattern, but we considered that this set of objects contained in fact two different sub-

57

58 7. DISCUSSION

classes. One subclass was the objects that were most certainexamples of the K-
complex pattern and the other type was the objects for which there was much doubt as
to whether they were examples of the K-complex pattern or not. Obviously, the latter
would be the hardest to detect. However, for a classifier using crisp labels, they would
all belong to the same class and would consequently make it more difficult to classify
the certain objects as well. We got this confirmed when we tried to build a classifier on
the whole data set with crisp labels, which performed quite badly. This classifier had a
misclassification error rate of around 0.3. This would indicate that a simple classifier
that classified all of the objects as examples of the K-complex class would perform
equally well, which is certainly not a desired result. It wasour belief that a method
that would distinguish between the certain and uncertain objects by using uncertain
labels instead of crisp ones would be better able to detect the different types of objects.

7.2.1 Learning from crisp labels

First we introduced belief functions in the decision tree learning method, which makes
us able to obtain a belief function instead of a crisp classification for each object to be
classified. The belief function will contain more information than just a crisp classifi-
cation, because it will tell us for which class we should havethe highest belief concern-
ing our object. This makes us able to make a decision afterwards about which class
our object most probably belongs to. Our first concern was consequently to test how
our proposed method of substituting the entropy measure in the decision tree learning
algorithm with an uncertainty measure based on belief functions would perform.

We removed the most uncertain objects from the K-complex class, and tested our
method on the remaining objects. This was done in order to getresults that were
not affected by the difficulty introduced by these objects. We built a classifier with the
most certain objects labeled by crisp classes, and computedthe misclassification error
rate from the classification obtained from the belief functions.

The results shown in Table 6.3 show that our method performs quite well, and appar-
ently slightly better than the C4.5 method regarding the misclassification error rate.
However, this difference may not be significant, because this classification problem is
not very difficult when the uncertain objects are removed. Inaddition, it is tested on
a relatively small amount of data. Using crossvalidation also tends to give a slightly
better result, since the average is drawn from different compositions of the same data.
That way the training and test data will be more similar than if there was a totally
different test set to validate the results as is the case whenwe run the C4.5 program.
However, the results at least show that our method performs approximately as well as
the ordinary method for decision tree learning, which is an encouraging result.

7.2. ANALYSIS OF THE RESULTS 59

7.2.2 Learning from uncertain labels

Once we had assured that our method performed well, we could extend our experi-
ments to the more interesting part of our method, the part of handling uncertain labels
in the training data. In order to see how this method performed, we wanted to compare
it to the method we had already introduced, i.e., the method that uses crisp labels. To
do this, we had to test the two methods using the same data sets. The data sets we used
for these experiments were quite small because of the data available and because of the
computation time required for this method, so the results would not be as significant
as desired, but they would still be able to give us an indication of how the method
performed.

A summary of the results described in Chapter 6 is shown in Table 7.1. This table
shows the results obtained with the four different classifiers built, both for the uncertain
validation set and for the certain validation set. The misclassification error rate and
the disagreement measure based on the pignistic probability is given in each case.
Validation with uncertain objects (the topmost part of the table) is the most realistic
situation. In a real world classification problem, the data to be classified would contain
uncertain objects to some extent. This is therefore the situation that gives the most
interesting results. Validation on certain data is included to obtain more information
about the method.

Uncertain validation set

Certain training Uncertain training
Crisp labels Unc. labels Crisp labels Unc. labels

Miscl. error 0.333 0.3267 0.3467 0.340
Disagr. measure 0.21 0.2008 0.2625 0.2247

Certain validation set

Certain training Uncertain training
Crisp labels Unc. labels Crisp labels Unc. labels

Miscl. error 0.24 0.24 0.24 0.24
Disagr. measure 0.2546 0.2361 0.344 0.2712

Table 7.1: Summary of results for the uncertain validation set and the certain validation
set, for both methods of presenting the error measure.

From the results shown in Table 7.1, we see that when validating on uncertain objects,
the method using uncertain labels performs slightly betterthan the method using crisp

60 7. DISCUSSION

labels. This is especially the case when uncertain objects have been used for training.
This indicates that using uncertain labels for classification improves the classifier when
it is trained on uncertain objects. The method using uncertain labels attaches less
importance to the uncertain objects than to the certain objects, and consequently the
classifier is less affected by the uncertainty than the classifier built from crisp labels.

This is confirmed by the results obtained from validating on certain objects. The dis-
agreement measure shows that the method using uncertain labels performs better than
the method using crisp labels. Using uncertain labels is a more realistic way of labeling
uncertain data, and our method takes advantage of this.

Regarding the difference between using uncertain objects for training and using only
certain objects, we see that the error is slightly increasedwhen uncertain objects are
introduced. This was in a way to be expected, because introduction of the uncertain
objects will to a certain extent “confuse” the classifier andmake the classification task
more difficult. However, the increase is not a great one, especially in the situation
where we have validated the method on uncertain objects. Since this is the most realis-
tic situation, we can conclude that the results in fact show that by including uncertain
objects in the training set, it would be possible to obtain classifiers that perform about
as well as when only certain objects are used. In a way this is abit discouraging, be-
cause it would be desirable to find that since the uncertain objects contain additional
information, the classifier would take advantage of this information and improve the
result. However, using uncertain objects does not worsen the situation to a great extent,
which means that we will be able to build classifiers with all the information we have
and still get agreeable results. This agrees quite well withwhat we hoped to find, that
our method makes us able to use all the objects we have previously observed to train a
classifier.

Figure 6.7 shows the decision boundaries for the four classifiers that were built based
on the certain training set and the uncertain training set. We see that the method using
crisp labels creates quite simple classifiers, while the method using uncertain labels
build more complex ones. This suggests that the method usinguncertain labels is able
to differentiate the objects a bit more than the method usingcrisp labels. However, this
does not seem to improve the classification to any great extent.

We are able to conclude that the classification error is not worsened to any great extent
by using uncertain K-complex objects in the training set. This result suggests that our
method gives less importance to the uncertain objects than to the certain objects. With
our method we will be able to use the information contained inthe uncertain objects
without attaching too great importance to them.

These results confirmed our belief that the method using training objects with uncertain
labels results in better classifiers than the ones obtained from methods using crisp
labels. Again it must be stated that the results are not significant because of the small
amount of objects tested. There is only a small difference, which may be the result of

7.3. COMPARISON TO OTHER METHODS 61

some coincidence. However, the results encourage further work.

7.3 Comparison to other methods

It is not easy to compare our method to other methods, since toour knowledge there
are not many other methods available to handle uncertain classification labels.

T. Denoeux’s method combining the k-Nearest-Neighbour approach with the Dempster-
Shafer theory of evidence ([5]) have been tested on our example data set in an informal
way, which gave approximately the same results as we obtained with our method.

What we are able to state is that our method performs at least as well as other deci-
sion tree learning methods, exemplified by Quinlan’s C4.5 program. In addition, our
method provides a way of handling uncertain labeled training objects, which the or-
dinary decision tree learning method can not do. We have thusfound a method that
meets a problem many other methods do not handle. It providesa way of using uncer-
tain information as profitably as possible.

7.4 Further work

The work we have done shows some interesting results concerning the use of belief
functions in decision tree learning. However, in order to beable to obtain more con-
clusive results, further and more extensive experiments should be performed. It is also
possible to envisage certain modifications and extensions to the method outlined in this
work. Some of the possible further work is presented below.� The data on which we have tested our method seem to represent afairly easy

classification problem. This is suggested by the fact that the difference between
classifiers trained on only certain objects and classifiers trained on objects that
contain uncertainty is not very conspicuous. It would be interesting to test the
method on a more difficult classification problem that would demonstrate more
influence by the uncertain objects on the classification result. This could show to
what extent our method can avoid the difficulties the uncertainty will introduce,
and at the same time use the information contained in these uncertain objects
in the best possible way. Other experiments would thus demonstrate to what
extent the uncertain objects have an impact on the result, and whether or not our
method is able to handle this impact in a satisfactory way. Itwould also be of use
to test the classifiers with validation sets that contain a larger amount of objects,
in order to get more reliable results.

62 7. DISCUSSION� It would be interesting to perform experiments on other methods that meet the
problem of training systems on objects for which there is uncertainty about their
classification. Rough set theory provides such a method, andit would be inter-
esting to perform experiments with this method to compare the results with the
results obtained with our method.� For the part of our method that uses uncertain labels for classification we have
implemented a function that computes a belief function froma set of given belief
functions that has been assigned to the training objects. This function uses an
algorithm that is computationally of complexityn3, which means that for a large
amount of objects, it would be very time consuming. An improvement of the
complexity of this algorithm would make it easier to performexperiments on
larger sets of data, which would make our method more flexibleconcerning
what data sets are used for training.� An interesting extension of the method would be to make it able to involve clas-
sification problems with more than two classes. One way of doing this may be
to divide the problem into several two-class problems. For instance, suppose
there are 3 classes,a, b and
. This problem could be divided into three two-
class problems, one that classifies whether the objects belong to classa or not,
one that classifies whether the objects belong to classb or not and so on. The
inconvenience of this method is that we would not get only oneclassifier, but we
would get as many classifiers as there are classes. We would have to run our ob-
jects through all of these classifiers and combine the results in the end. Another
way of including more than two classes would be to modify Smets’ equations on
how to compute a belief function based on a partial knowledgeof the probability
distribution to the case of more than two outcomes. This can possibly be done
by approximation.� It would not be too time consuming to extend the method to cover not only
continuous attributes as it does now, but to make it able to handle binary and
discrete attribute values as well. This would also make our method more flexible
regarding what data sets it is feasible to use.

7.5 Summary

We have in this chapter given an analysis of the results obtained with our method.
Even though our example data set may not represent a very difficult classification task,
the results we obtained using this data set are promising. They show that our method
performs equally well as the ordinary decision tree learning method.

In addition, our method provides a means of using uncertain labeled objects as training
data. It is our belief that this will make the classifier able to extract more information

7.5. SUMMARY 63

from the training data and produce more differentiated information about the objects
to be classified.

The method should be tested further and refined in order to be more solid. Some
suggestions of further testing and modifications to our method are outlined in this
chapter. The results obtained in our work are suggestive andencourage this kind of
further work.

Bibliography

[1] T. M. Mitchell. Machine Learning. McGraw-Hill Companies, Inc., New York,
1997.

[2] S. Russel and P. Norvig.Artificial Intelligence - a modern approach. Prentice-
Hall International, Inc., New Jersey, 1995.

[3] L. Polkowski J. Komorowski, Z. Pawlak and A. Skowron. A rough set perspective
on data and knowledge. InHandbook of Data Mining and Knowledge Discovery.
Oxford University Press, 2000.

[4] S. Pöhlmann K. Weichselberger.A Methodology for Uncertainty in Knowledge-
Based Systems. Springer-Verlag, Heidelberg, 1990.

[5] T. Denœux. Ak-nearest neighbor classification rule based on Dempster-Shafer
theory. IEEE Transactions on Systems, Man and Cybernetics, 25(05):804–813,
1995.

[6] T. Denœux. Analysis of evidence-theoretic decision rules for pattern classifica-
tion. Pattern Recognition, 30(7):1095–1107, 1997.

[7] L. M. Zouhal and T. Denœux. An evidence-theoretick-NN rule with param-
eter optimization. IEEE Transactions on Systems, Man and Cybernetics C,
28(2):263–271, 1998.

[8] R. A. Olshen L. Breiman, J. H. Friedman and C. J. Stone.Classification and
Regression Trees. Chapman and Hall, London, 1984.

[9] J. R. Quinlan.Programs for Machine Learning. Morgan Kaufmann Publishers,
San Francisco, 1993.

[10] M. S. Bjanger. Vibration analysis in rotating machinery using rough set theory
and rosetta. Project report, NTNU, Department of Computer and Information
Science, April 1999.

[11] G. Shafer.A mathematical theory of evidence. Princeton University Press, Prince-
ton, N.J., 1976.

65

66 BIBLIOGRAPHY

[12] P. Smets and R. Kennes. The Transferable Belief Model.Artificial Intelligence,
66:191–243, 1994.

[13] P. Smets. The Transferable Belief Model for quantified belief representation.
In D. M. Gabbay and P. Smets, editors,Handbook of Defeasible reasoning and
uncertainty management systems, volume 1, pages 267–301. Kluwer Academic
Publishers, Dordrecht, 1998.

[14] P. Smets. What is Dempster-Shafer’s model ? In R. R. Yager, M. Fedrizzi, and
J. Kacprzyk, editors,Advances in the Dempster-Shafer theory of evidence, pages
5–34. Wiley, New-York, 1994.

[15] G. J. Klir. Measures of uncertainty in the Dempster-Shafer theory of evidence.
In R. R. Yager, M. Fedrizzi, and J. Kacprzyk, editors,Advances in the Dempster-
Shafer theory of evidence, pages 35–49. John Wiley and Sons, New-York, 1994.

[16] P. Smets. Belief induced by the partial knowledge of theprobabilities. In
D. Heckerman, D. Poole, and R. Lopez de mantaras, editors,Uncertainty in
AI’94, pages 523–530. Morgan Kaufmann, San Mateao, 1994.

[17] C. Richard. Une ḿethodologie pour la d́etectionà structure impośee. Appli-
cations au plan temps-fréquence. PhD thesis, Université de Technologie de
Compiègne, Compiègne, France, 1998.

[18] C. Richard and R. Lengellé. Data driven design and complexity control of time-
frequency detectors.Signal Processing, 77:37–48, 1999.

Appendix A

Source code

The MATLAB implementation of our method is shown in this Appendix. The Ap-
pendix is divided in three parts. The first part shows the mainfunctions of the program,
i.e., the main file to run when building a tree, the main function that builds a tree and
the main function that classifies test objects. The second part shows the functions used
to compute the uncertainty measure (the entropy) and the belief function computation.
The third part shows the auxiliary functions.

The tree data structure has been used to build the decision trees. MATLAB functions
for this data structure were distributed free for use by a MATLAB programmer and are
not included in this Appendix.

A.1 Main functions

A.1.1 buildtree.m

%%%
%%% Main file to run when building a decision tree
%%%

% Ask user for text file to use to build decision tree
[fname,pname] = uigetfile(’*.dat’,’Load Training Data’) ;

% Ask for number of attributes in text file
prompt = {’Enter number of conditional attributes:’};
title = ’Attributes’;
answer = inputdlg(prompt,title);

% Load text file and store objects in matrix a
numatts = str2num(answer{1});
num = [];
for i = 1:numatts

num = [num ’%g’];
end

67

68 A. SOURCE CODE

file = strcat(pname,fname);

% Ask if the data are labelled with crisp or uncertain labels
button = questdlg(’Which labels?’, ’Labels’, ’Crisp’, ’Un certain’, ’Uncertain’);
if strcmp(button,’Crisp’)

label = 0;
elseif strcmp(button,’Uncertain’)

label = 1;
end
fid = fopen(file);
if label == 0

a = fscanf(fid, num, [(numatts+1) inf]);
elseif label == 1

a = fscanf(fid, num, [(numatts+3) inf]);
end
a = a’;
fclose(fid);

% Ask if the user wants to build a full tree or not
stop = 0;
button = questdlg(’How to build tree?’, ’Building tree’, ’U se stop criterion’, ’Build full tree’,

’Use stop criterion’);
if strcmp(button,’Use stop criterion’)

stop = 1;
elseif strcmp(button,’Build full tree’)

stop = 0;
end

% Ask for parameter to use in entropy computation
prompt = {’Enter parameter to use for uncertainty measure:’ };
title = ’Entropy Parameter’;
answer = inputdlg(prompt,title);
lambda = str2num(answer{1});

% Open file for writing results
fid = fopen(’results.txt’, ’w’);
fprintf(fid, ’Entropy parameter: %4.3f\n\n’, lambda);

% Initialize entropy value
[m,n] = size(a);
fprintf(fid, ’Root node! \n\nNumber of objects: %5u\n’, m) ;

if label == 0
% Check number of values for the decision attribute
attval = attvallist(a, n, m);
[y,x] = size(attval);

% Count number of objects from each class
% (n1=class 1, n2=class 2)
n1 = 0;
n2 = 0;
if x == 2

for i = 1:m
if a(i,n) == 0

n1 = n1 + 1;
elseif a(i,n) == 1

n2 = n2 + 1;
end

end
elseif x == 1

if a(1,n) == 0
n1 = m;

elseif a(1,n) == 1
n2 = m;

end

A.1. MAIN FUNCTIONS 69

end
fprintf(fid, ’Number of objects from class 1: %5u\n’, n1);
fprintf(fid, ’Number of objects from class 2: %5u\n\n’, n2) ;
m1 = n1/(n1+n2+1);
m2 = n2/(n1+n2+1);
mOm = 1/(n1+n2+1);
BetP1 = m1+mOm/2;
BetP2 = m2+mOm/2;
NS = mOm*log2(2);
D = -(m1*log2(BetP1))-(m2*log2(BetP2));
E = NS+(lambda*D);

elseif label == 1
bfmat = a(:,n-2:n);
[mlist,A] = labelcomb(bfmat);
m1 = mlist(1);
m2 = mlist(2);
mOm = mlist(3);
BetP1 = m1+mOm/2;
BetP2 = m2+mOm/2;
NS = mOm*log2(2);
D = -(m1*log2(BetP1))-(m2*log2(BetP2));
E = NS+(lambda*D);

end
fprintf(fid, ’Entropy: %9.4f\n\n’, E);

% Build tree
if label == 0

[tree, root] = DT(a, E, n1, n2, stop, fid, lambda, label);
elseif label == 1

[tree, root] = DT(a, E, m1, m2, stop, fid, lambda, label);
end

% Prune leafnodes which have the same target value
tree = prunetree(tree, root);

% Draw decision tree on screen
DrawTree(tree, ’num2str(data(5))’, ’num2str(data(6))’);
save tree tree;

if label == 0
% Find number of objects from each class at each node,
% and the entropy
NValues = ncont(tree, 1, [], 1);

% Write results to file
OutNValues = NValues’;
fprintf(fid, ’\nNumber of objects at each node \n--------- ------------\n\n’);
fprintf(fid, ’Level: N1:\t N2:\t Entropy:\n’);
fprintf(fid, ’%2u\t%5u\t%5u\t%9.4f\n’, OutNValues);

end

% Ask if user wants to classify any objects

button = questdlg(’Classify test objects?’, ’Classify’, ’ Yes’, ’No’, ’No’);
if strcmp(button,’No’)

classify = 0;
elseif strcmp(button,’Yes’)

classify = 1;
end
if (classify == 1)

classifytest(tree, label);
end

% Ask if user wants to classify again
if (classify == 1)

70 A. SOURCE CODE

button = questdlg(’Classify again?’, ’Classify’, ’Yes’, ’ No’, ’No’);
while strcmp(button,’Yes’)

classifytest(tree, label);
button = questdlg(’Classify again?’, ’Classify’, ’Yes’, ’ No’, ’No’);

end
end
fclose(fid);

%%%
%%% END
%%%

A.1.2 DT.m

function [newtree, newroot] = f(Examples, E, m1, m2, stop, f id, lambda, label)
%
% Function DT is the main function that builds a decision tree
%
% Examples is a two-dimensional matrix where each row
% contains an example with its attribute values and a
% decision value
%
% E is the value of the Entropy for this new node
%
% m1, m2 is either the number of objects from each class
% for this new node (if crisp labels are used) or the mass
% assignment for the two classes (if uncertain labels are use d).
%
% stop is a parameter which tells whether or not to use
% the stop criterion. stop = 0 builds a full tree,
% stop = 1 stops when there is no more decrease in Entropy
%
% fid is the file identifier of the file to which the
% results are written
%
% lambda is a parameter to use when the entropy is computed
%
% label says what labels are used for building the tree
% (0 = crisp labels, 1 = uncertain labels)
%
% The data field of the nodes in the tree are built
% in this way:
% [[decision value] [entropy] [n1/m1] [n2/m2] [split attri bute] [split value]]

% Build a root node for a tree
[newtree, newroot] = NewTree(2,6);
leafnode = 0;

% Display on screen that a new node has been made
disp(’New node...’)
fprintf(fid, ’New node!\n---------\n\n’);

% Check size of Examples-matrix
[m,n] = size(Examples);
fprintf(fid, ’Number of objects: %5u\n’, m);

% Build list of attributes to be checked
atts = [];
if label == 0

decatt = 1;
elseif label == 1

decatt = 3;

A.1. MAIN FUNCTIONS 71

end
for i = 1:(n-decatt)

atts = [atts i];
end

if label == 0
% Check number of values for the decision attribute
attval = attvallist(Examples, n, m);
[y,x] = size(attval);
dec = findmostcommon(Examples, attval, m, n);

% If all examples are of the same class, return node
% with value as decision value for this class
if x == 1

data = [attval(1) E m1 m2 attval(1)];
newtree = TreeNodeData(newtree, newroot, data);
fprintf(fid, ’A leaf node with decision: %1u\n\n’, attval(1));
fprintf(fid, ’Data written to node: %1u\t%5.4f\t%4u\t%4u \t%1u\n\n’, data);
leafnode = 1;

end
elseif label == 1

equal = 1;
i = 1;
exbf = Examples(:,n-2:n-1);
while (i<m)&(equal==1)

if ˜(exbf(i,:) == exbf(i+1,:))
equal = 0;

end
i = i+1;

end
count1 = 0;
count2 = 0;
for i = 1:m

if (exbf(i,1)>exbf(i,2))|(exbf(i,1)==exbf(i,2))
count1 = count1 + 1;

elseif exbf(i,1)<exbf(i,2)
count2 = count2 + 1;

end
end
if (count1>count2)|(count1==count2)

dec = 0;
elseif count1<count2

dec = 1;
end
if (m < 5)|(equal == 1)

data = [dec E m1 m2 dec];
newtree = TreeNodeData(newtree, newroot, data);
fprintf(fid, ’A leaf node with decision: %1u\n\n’, dec);
fprintf(fid, ’Data written to node:\n Dec: %1u\t E:%6.4f\t m1:%4.3f\t m2:%4.3f\t

Dec:%1u\n\n’, data);
leafnode = 1;

end
end

if leafnode == 0
% Initialize main storage matrix for entropy
Entropy = [];

% Count number of attributes (b = number of attributes)
[a, b] = size(atts);

%%%% ENTROPY COMPUTATION

% Do for every conditional attribute left
for j = 1:b

72 A. SOURCE CODE

% Display on screen which attribute is checked
out = strcat(’Attribute ’,num2str(j));
disp(out)
fprintf(fid, ’Attribute checked: %1u\n\n’, j);

% Find range for the attribute’s values
[min, max] = findrange(Examples, m, atts(j));

% Compute interval for splits to test (10% of the range)
int = (max-min)/10;

if ˜(min == max)
% (If min = max, all the objects have the same
% attribute value, and no splits can be made)

% Entropy-computation with 10% of objects as step
% for choosing splits
Ent = compute_entropy_obj(Examples, m, n, atts(j),

lambda, label);
OutEnt = [Ent(:,1) Ent(:,2)]’;
fprintf(fid, ’Computed entropy for suggested splits:\n’) ;
fprintf(fid, ’Split:\t Entropy:\n’);
fprintf(fid, ’%9.4f\t%9.4f\n’, OutEnt);

% Find the split with the smallest entropy for this attribute
EntVal = Ent(:,2);
[Echeck,I] = min(EntVal);
split = Ent(I,1);
m1min = Ent(I,4);
m2min = Ent(I,5);
m1max = Ent(I,6);
m2max = Ent(I,7);
Emin = Ent(I,8);
Emax = Ent(I,9);
fprintf(fid, ’\nSmallest entropy: %9.4f\n\n’, Echeck);
fprintf(fid, ’Corresponding split: %9.4f\n\n’, split);
if label == 0

[u,v] = size(Ent);
if (u>1)

% Adjust the split in the interval around the split 10% of obje cts
Entropylist = bestsplit(Examples, atts(j), split, Ent, I, fid, lambda);
split = Entropylist(1);
Echeck = Entropylist(2);
m1min = Entropylist(3);
m2min = Entropylist(4);
m1max = Entropylist(5);
m2max = Entropylist(6);
Emin = Entropylist(7);
Emax = Entropylist(8);
fprintf(fid, ’\nAdjusted split and entropy: %9.4f\t%9.4f \n\n’, split, Echeck);

end
end

% Store the attribute with the split and the entropy value
Entropy = [Entropy; atts(j) split Echeck m1min m2min m1max m 2max Emin Emax];

else
fprintf(fid, ’Not enough different attribute values to con sider splits on this

attribute\n\n’);
end

end % for i = j:b (ENTROPY COMPUTATION)

OutEntropy = Entropy’;
fprintf(fid, ’Computed entropy for all attributes:\n’);
if label == 0

fprintf(fid, ’Att:\t Split:\t Entropy:\t n1min:\t n2min: \t n1max:\t n2max:\t

A.1. MAIN FUNCTIONS 73

Emin:\t Emax:\n’);
elseif label == 1

fprintf(fid, ’Att:\t Split:\t Entropy:\t m1min:\t m2min: \t m1max:\t m2max:\t
Emin:\t Emax:\n’);

end
fprintf(fid,’%1u\t%9.4f\t%9.4f\t%3u\t%3u\t%3u\t%3u\ t%9.4f\t%9.4f\n’, OutEntropy);

if ˜(isempty(Entropy))
% Find the attribute with the smallest entropy
EntropyVal = Entropy(:,3);
[Echosen,I] = min(EntropyVal);
j = Entropy(I,1);
k = Entropy(I,2);
m1min = Entropy(I,4);
m2min = Entropy(I,5);
m1max = Entropy(I,6);
m2max = Entropy(I,7);
Emin = Entropy(I,8);
Emax = Entropy(I,9);

fprintf(fid, ’\nSmallest entropy: %9.4f\n\n’, Echosen);
fprintf(fid, ’Corresponding attribute: %1u\n\n’, j);
fprintf(fid, ’Corresponding split: %9.4f\n\n’, k);

% Build subtrees for this attribute

% Initialise matrix for examples to build subtree
newExamplesmin = [];
newExamplesmax = [];

% Fill matrix with examples that have this att-value
for i = 1:m

if (Examples(i,j) < k) | (Examples(i,j) == k)
newExamplesmin = [newExamplesmin; Examples(i,:)];

elseif (Examples(i,j) > k)
newExamplesmax = [newExamplesmax; Examples(i,:)];

end
end

% Check size of the two new Examples matrices
[mchild1,nchild1] = size(newExamplesmin);
[mchild2,nchild2] = size(newExamplesmax);

if ((stop == 1) & ˜(Echosen < E)) % Use stop criterion
% Return a leaf node with the most common decision value
data = [dec E m1 m2 dec];
newtree = TreeNodeData(newtree, newroot, data);
fprintf(fid, ’STOP! A leaf node with decision: %1u\n\n’, de c);
fprintf(fid, ’Data written to node: %1u\t%4.3f\t%4u\t%4u \t%1u\n\n’, data);

else
% Add the first child (left branch) to the existing tree for
% this attribute

[newtree, child] = AddChild(newtree, newroot, 1, []);
fprintf(fid, ’Adding first child node\n\n’);
fprintf(fid, ’Number of objects: %5u\n’, mchild1);
if label == 0

fprintf(fid, ’Number of objects from class 1: %5u\n’, m1min);
fprintf(fid, ’Number of objects from class 2: %5u\n’, m2min);

end
fprintf(fid, ’Entropy: %9.4f\n\n’, Emin);

% Merge the existing tree with a computed subtree at the child node
newtree = GraftTrees(newtree, child, DT(newExamplesmin, Emin, m1min, m2min, stop, fid,

lambda, label));
% Add splitting information to parent node of new child node

74 A. SOURCE CODE

parent = GetParent(newtree, child);
data = [dec E m1 m2 j k];
newtree = TreeNodeData(newtree, parent, data);
fprintf(fid, ’Data written to parent node: %1u\t%4.3f\t%4 u\t%4u\t%2u\t

%5.2f\n\n’, data);
% Add the second child (right branch) to the existing tree for this attribute
[newtree, child] = AddChild(newtree, newroot, 2, []);
fprintf(fid, ’Adding second child node\n\n’);
fprintf(fid, ’Number of objects: %5u\n’, mchild2);
if label == 0

fprintf(fid, ’Number of objects from class 1: %5u\n’, m1max);
fprintf(fid, ’Number of objects from class 2: %5u\n’, m2max);

end
fprintf(fid, ’Entropy: %9.4f\n\n’, Emax);

% Merge the existing tree with a computed subtree at the child node
newtree = GraftTrees(newtree, child, DT(newExamplesmax, Emax, m1max, m2max, stop, fid,

lambda, label));
end

else % (Entropy = [], no more attributes or possible splits to check)
% Return leaf node with most common value
data = [dec E m1 m2 dec];
newtree = TreeNodeData(newtree, newroot, data);
fprintf(fid, ’A leaf node with decision: %1u\n\n’, dec);
fprintf(fid, ’Data written to node: %1u\t%4.3f\t%4u\t%4u \t%1u\n\n’, data);

end
end
return

A.1.3 classifytest.m

function f(tree, treelabel)
%
% Function classifytest takes a tree and classifies objects
% with this tree.
%
% tree is the decision tree to be used
%
% treelabel says what labels have been used for building the t ree
% (0 = crisp labels, 1 = uncertain labels)

% Open file for writing results
fid1 = fopen(’classify.txt’, ’w’);

if isempty(tree)
% Get file with decision tree
[fname,pname] = uigetfile(’*.mat’,’Load Tree’);
file = strcat(pname,fname);
load (file);

% Ask if the tree were built with crisp or uncertain labels
button = questdlg(’Tree built from which labels?’, ’Labels ’, ’Crisp’, ’Uncertain’,

’Uncertain’);
if strcmp(button,’Crisp’)

treelabel = 0;
elseif strcmp(button,’Uncertain’)

treelabel = 1;
end

end

% Get text file with test data

A.1. MAIN FUNCTIONS 75

[fname,pname] = uigetfile(’*.dat’,’Load Test Data’);

% Ask for number of attributes in text file
prompt = {’Enter number of attributes:’};
title = ’Attributes’;
answer = inputdlg(prompt,title);

% Ask if the test data are labelled with crisp or uncertain lab els
button = questdlg(’Which labels on test data?’, ’Labels’, ’ Crisp’, ’Uncertain’, ’Uncertain’);
if strcmp(button,’Crisp’)

classlabel = 0;
elseif strcmp(button,’Uncertain’)

classlabel = 1;
end

% Load file with objects, and store the objects in matrix a
numatts = str2num(answer{1});
num = [];
for i = 1:numatts

num = [num ’%g’];
end
file = strcat(pname,fname);
fid = fopen(file);
if classlabel == 0

a = fscanf(fid, num, [(numatts+1) inf]);
elseif classlabel == 1

a = fscanf(fid, num, [(numatts+3) inf]);
end
a = a’;
fclose(fid);
[x,y] = size(a);

% Add empty columns at the end of the matrix, new matrix is obje cts
objects = [a zeros(x,1) zeros(x,1) zeros(x,1) zeros(x,1)] ;

% Do for each object to be classified
for i = 1:x

% Extract object and empty last column for this object
object = objects(i,:);

% Classify object
[cl, m1, m2] = classify_rek(tree, object, 1, treelabel);
mOm = 1 - (m1+m2);

% Store the classification value in the last column for this o bject
object(y+1) = cl;
object(y+2) = m1;
object(y+3) = m2;
object(y+4) = mOm;
objects(i,:) = object;

end

% Build format for output to file
format = [];
for i = 1:numatts

format = [format ’%5.4f\t’];
end
if classlabel == 0

format = [format ’%1u\t %1u\t %5.3f\t %5.3f\t %5.3f\n’];
elseif classlabel == 1

format = [format ’%5.3f\t %5.3f\t %5.3f\t %1u\t %5.3f\t %5. 3f\t %5.3f\n’];
end

% Print result to file
fprintf(fid1, ’\nClassification of file %s:\n---------- -----\n’,fname);

76 A. SOURCE CODE

for i = 1:x
fprintf(fid1, format, objects(i,:));

end

if classlabel == 0
% Compute error rate and values for confusion matrix
right0 = 0;
right1 = 0;
wrong1 = 0;
wrong0 = 0;
for i = 1:x

if objects(i,y) == 1
if objects(i,y+1) == 1

right1 = right1 + 1;
elseif objects(i,y+1) == 0

wrong1 = wrong1 + 1;
end

elseif objects(i,y) == 0
if objects(i,y+1) == 0

right0 = right0 + 1;
elseif objects(i,y+1) == 1

wrong0 = wrong0 + 1;
end

end
end

fprintf(fid1, ’\nConfusion matrix:\n----------------- \n’);
fprintf(fid1, ’(0)\t(1)\t\t<- classified as\n--------- ------\n’);
fprintf(fid1, ’%3u\t%3u\t\t(0)\n’, right0,wrong0);
fprintf(fid1, ’%3u\t%3u\t\t(1)\n’, wrong1,right1);

right = right0 + right1;
wrong = wrong0 + wrong1;
Err = wrong/(right+wrong);
fprintf(fid1, ’\nError rate = %6.4f\n\n’, Err);

% Print error rate to screen
e = num2str(Err);
error = strcat(’Error rate for file ’,fname);
error = strcat(error,’ = ’);
error = strcat(error, e);
errordlg(error, ’Error rate’);

elseif classlabel==1
Error = [];
for i = 1:x

m1 = objects(i,y-2);
m2 = objects(i,y-1);
mOm = objects(i,y);
m1hat = objects(i,y+2);
m2hat = objects(i,y+3);
mOmhat = objects(i,y+4);
BetPm = (m1*(m1hat+mOmhat/2)) + (m2*(m2hat+mOmhat/2)) + m Om;
Error = [Error; 1-BetPm];

end
err = sum(Error)/x;
fprintf(fid1, ’\nError rate = %6.4f\n\n’, err);

% Print error rate to screen
e = num2str(err);
error = strcat(’Error rate for file ’,fname);
error = strcat(error,’ = ’);
error = strcat(error, e);
errordlg(error, ’Error rate’);

end
fclose(fid1);

A.2. FUNCTIONS FOR COMPUTING THE UNCERTAINTY 77

return

A.2 Functions for computing the uncertainty

A.2.1 entropybel.m

function [Emin, Emax] = f(n1min, n2min, n1max, n2max, lambd a)
%
% Function entropybel computes the entropy (belief functio ns method)
% for some given values of n1 and n2
%
% n1min/n2min are the number of objects from class 1 and class 2
% that have an attribute value smaller than a certain split
%
% n1max/n2max are the number of objects from class 1 and class 2
% that have an attribute value greater than a certain split
%
% lambda is a parameter to use when computing the entropy

nmin = n1min + n2min;
nmax = n1max + n2max;
n = nmin + nmax;

% Entropy for attribute values smaller than split
m1_min = n1min/(nmin + 1);
m2_min = n2min/(nmin + 1);
mOm_min = 1/(nmin + 1);

BetP1_min = m1_min + mOm_min/2;
BetP2_min = m2_min + mOm_min/2;

NS_min = mOm_min*log2(2);
D_min = -(m1_min*log2(BetP1_min)) - (m2_min*log2(BetP2_ min));

% Entropy for attribute values greater than split
m1_max = n1max/(nmax + 1);
m2_max = n2max/(nmax + 1);
mOm_max = 1/(nmax + 1);

BetP1_max = m1_max + mOm_max/2;
BetP2_max = m2_max + mOm_max/2;

NS_max = mOm_max*log2(2);
D_max = -(m1_max*log2(BetP1_max)) - (m2_max*log2(BetP2_ max));

% Total entropy
Emin = NS_min + lambda*D_min;
Emax = NS_max + lambda*D_max;

return

A.2.2 entropybelbf.m

function [Emin,Emax] = f(m1min, m2min, mOmmin, m1max, m2ma x, mOmmax, lambda)
%
% Function entropybelbf computes the uncertainty/entropy

78 A. SOURCE CODE

% (belief functions method) for some given values of m1 and m2
%
% m1min/m2min/mOmmin is a belief function for the objects th at
% have an attribute value smaller than a certain split
%
% m1max/m2max/mOmmax is a belief function for the objects th at
% have an attribute value greater than a certain split
%
% lambda is a parameter to use when computing the entropy

% Entropy for attribute values smaller than split

BetP1min = m1min + mOmmin/2;
BetP2min = m2min + mOmmin/2;

NSmin = mOmmin*log2(2);
Dmin = -(m1min*log2(BetP1min)) - (m2min*log2(BetP2min)) ;

% Entropy for attribute values greater than split

BetP1max = m1max + mOmmax/2;
BetP2max = m2max + mOmmax/2;

NSmax = mOmmax*log2(2);
Dmax = -(m1max*log2(BetP1max)) - (m2max*log2(BetP2max)) ;

% Total entropy
Emin = NSmin + lambda*Dmin;
Emax = NSmax + lambda*Dmax;

return

A.2.3 labelcomb.m

function [mX,A] = labelcomb(m)
%
% Function labelcomb computes a belief function from a
% set of belief functions given in matrix m.

n=size(m,1);
mX=zeros(1,3);
A=zeros(n+1,n+1);

A(1,1)=m(1,3);
A(1,2)=m(1,2);
A(2,1)=m(1,1);
for k=2:n,

B=zeros(n+1,n+1);
for i=0:k,

for j=0:k-i,
i1=i+1;j1=j+1;
B(i1,j1)=A(i1,j1)*m(k,3);
if i>=1,B(i1,j1)=B(i1,j1)+A(i1-1,j1)*m(k,1);end;
if j>=1,B(i1,j1)=B(i1,j1)+A(i1,j1-1)*m(k,2);end;

end;
end;
A=B;

end;

for r=0:n,
for s=0:n-r,

mX=mX+A(r+1,s+1)*[r s 1]/(r+s+1);

A.2. FUNCTIONS FOR COMPUTING THE UNCERTAINTY 79

end;
end;

A.2.4 computeentropy obj.m

function Ent = f(Examples, m, n, j, lambda, label)
%
% Function compute_entropy_obj computes the entropy for a g iven attribute
% by using steps containing 10% of the objects to find possibl e splits
%
% Examples is a matrix that contains all the training objects
%
% m is the number of training objects
%
% n is the number of attributes, including the decision attri bute
%
% j is the attribute for which the entropy is computed
%
% label says what labels are used for building the tree

% Initialize temporary entropy storage matrix
Ent = [];

Sorted = sortrows(Examples, j);
step = m/10;

i = 1;
while (i<m)

count = 0;
while (count<step) & (i<m)

count = count + 1;
i = i+1;

end
if ˜(i>m)

k = (Sorted(i-1,j) + Sorted(i,j))/2;
if ˜(ismember(k, Ent))

if label == 0
[m1min, m2min] = countmin(Examples, j, m, k, n);
[m1max, m2max] = countmax(Examples, j, m, k, n);
nmin = m1min + m2min;
nmax = m1max + m2max;
ntot = nmin + nmax;
[Emin, Emax] = entropybel(m1min, m2min, m1max, m2max, lamb da);
newentropy = (nmin/ntot)*Emin + (nmax/ntot)*Emax;

elseif label == 1
[u,v] = size(Examples);
Examplesmin = [];
Examplesmax = [];
for y = 1:u

if (Examples(y,j) < k) | (Examples(y,j) == k)
Examplesmin = [Examplesmin; Examples(y,:)];

elseif (Examples(y,j) > k)
Examplesmax = [Examplesmax; Examples(y,:)];

end
end
[min,st] = size(Examplesmin);
[max,st] = size(Examplesmax);
if (min>0)&(max>0)

bfmatmin = Examplesmin(:,v-2:v);
bfmatmax = Examplesmax(:,v-2:v);
[mlistmin,A] = labelcomb(bfmatmin);
[mlistmax,A] = labelcomb(bfmatmax);

80 A. SOURCE CODE

m1min = mlistmin(1);
m2min = mlistmin(2);
mOmmin = mlistmin(3);
m1max = mlistmax(1);
m2max = mlistmax(2);
mOmmax = mlistmax(3);
[Emin,Emax] = entropybelbf(m1min, m2min, mOmmin,

m1max, m2max, mOmmax, lambda);
newentropy = (min/u)*Emin + (max/u)*Emax;

end
end
Ent = [Ent; k newentropy i m1min m2min m1max m2max Emin Emax];

end
end

end
return

A.3 Auxiliary functions

A.3.1 attvallist.m

function attval = f(Examples, dec_att, nobj)
%
% Function attvallist takes a set of training examples
% and returns a list of the possible decision values
% for the examples in the given training set.
%
% Examples is the matrix containing the training examples
%
% dec_att is the column number of the decision attribute
%
% nobj is the number of objects in Examples

% Add the first decision value to a storage matrix
attval = [Examples(1,dec_att)];

%Do for every remaining example in Examples
for i = 2:nobj

% Check if decision value is already represented in attval
exist = ismember(Examples(i,dec_att), attval);
if exist == 0 % (If new decision value)

% Add new value to storage matrix attval
attval = [attval Examples(i,dec_att)];

end
end
return

A.3.2 bestsplit.m

function Entropylist = f(Examples, att, split, Ent, ind, fi d, lambda)
%
% Function bestsplit takes a set of training examples, an att ribute
% and a split, and adjusts the split for this attribute
% by computing the entropy for splits in an interval area arou nd
% the given split
%

A.3. AUXILIARY FUNCTIONS 81

% Examples is the matrix with the training examples
%
% att is the attribute in question
%
% split is the chosen split
%
% Ent is the Entropy-matrix already computed for this attrib ute
%
% ind is an index that tells where in Ent the smallest Entropyv alue
% is
%
% fid is the file handle for the file to which the output is writ ten
%
% lambda is a parameter used to compute the entropy

% Check the size of the matrix Examples
[m,n] = size(Examples);

% Sort the Examples matrix according to the given attribute
Sorted = sortrows(Examples, att);

% Initialize the storage matrix or the entropy
Entro = [];

% Set values to use for adjusting the split
[u,v] = size(Ent);
if ind == 1 %(if split is the first value in the list)

kmin = Sorted(1,att);
kmax = Ent(ind+1,1);
imin = 1;
imax = Ent(ind+1,3);

elseif ind == u %(if split is the last value in the list)
kmin = Ent(ind-1,1);
kmax = Sorted(m,att);
imin = Ent(ind-1,3);
imax = m;

else
kmin = Ent(ind-1,1);
kmax = Ent(ind+1,1);
imin = Ent(ind-1,3);
imax = Ent(ind+1,3);

end

step = (imax - imin)/10;
i = imin;

% Compute entropy for splits around given split
while (i<imax)

count = 0;
while (count<step) & (i<imax)

count = count + 1;
i = i+1;

end
if ˜(i>imax)

k = (Sorted(i-1, att) + Sorted(i,att))/2;
[n1min, n2min] = countmin(Examples, att, m, k, n);
[n1max, n2max] = countmax(Examples, att, m, k, n);
nmin = n1min + n2min;
nmax = n1max + n2max;
ntot = nmin + nmax;
[Emin,Emax] = entropybel(n1min, n2min, n1max, n2max, lamb da);
entropy = (nmin/ntot)*Emin + (nmax/ntot)*Emax;
Entro = [Entro; k entropy n1min n2min n1max n2max Emin Emax];

end
end

82 A. SOURCE CODE

% Print results to file
OutEntro = [Entro(:,1) Entro(:,2)]’;
fprintf(fid, ’\tComputed adjusted entropy, related to num ber of objects:\n’);
fprintf(fid, ’\tSplit:\t Entropy:\n’);
fprintf(fid, ’\t%9.4f\t%9.4f\n’, OutEntro);

% Find split with smallest entropy
EntVal = Entro(:,2);
[Entr1,I] = min(EntVal);
split1 = Entro(I,1);
n1min1 = Entro(I,3);
n2min1 = Entro(I,4);
n1max1 = Entro(I,5);
n2max1 = Entro(I,6);
Emin1 = Entro(I,7);
Emax1 = Entro(I,8);

% Check if method with intervals gives a different result
int = kmax - kmin;
Entropylist2 = bestsplit_int(Examples, att, split, int, f id, lambda);
Entr2 = Entropylist2(2);

% Choose the best result
Entr = min(Entr1,Entr2);
if Entr == Entr1

split = split1;
n1min = n1min1;
n2min = n2min1;
n1max = n1max1;
n2max = n2max1;
Emin = Emin1;
Emax = Emax1;

elseif Entr == Entr2
split = Entropylist2(1);
n1min = Entropylist2(3);
n2min = Entropylist2(4);
n1max = Entropylist2(5);
n2max = Entropylist2(6);
Emin = Entropylist2(7);
Emax = Entropylist2(8);

end

Entropylist = [split Entr n1min n2min n1max n2max Emin Emax] ;

return

A.3.3 bestsplit int.m

function Entropylist = f(Examples, att, s, int, fid, lambda)
%
% Function bestsplit_int takes a set of training examples, a n attribute,
% a split and an interval, and adjusts the split for this attri bute
% by computing the entropy for splits in the interval area aro und
% the given split
%
% Examples is the matrix with the training examples
%
% att is the attribute in question
%
% s is the chosen split
%

A.3. AUXILIARY FUNCTIONS 83

% int is the interval that has been used to find the split
%
% fid is the file handle for the file to which the output is writ ten
%
% lambda is a parameter used to compute the entropy

% Check the size of the matrix Examples, m=number of objects,
% n=number of attributes
[m,n] = size(Examples);

% Initialize the storage matrix of the entropy
Entro = [];
newint = int/5;

%Compute entropy for splits around the given split
for k = (s-int):newint:(s+int)

[n1min, n2min] = countmin(Examples, att, m, k, n);
[n1max, n2max] = countmax(Examples, att, m, k, n);
nmin = n1min + n2min;
nmax = n1max + n2max;
ntot = nmin + nmax;
[Emin, Emax] = entropybel(n1min, n2min, n1max, n2max, lamb da);
entropy = (nmin/ntot)*Emin + (nmax/ntot)*Emax;
Entro = [Entro; k entropy n1min n2min n1max n2max Emin Emax];

end

% Print results to file
OutEntro = [Entro(:,1) Entro(:,2)]’;
fprintf(fid, ’\tComputed adjusted entropy, related to giv en intervals:\n’);
fprintf(fid, ’\tSplit:\t Entropy:\n’);
fprintf(fid, ’\t%9.4f\t%9.4f\n’, OutEntro);

% Find split with smallest entropy
EntVal = Entro(:,2);
[Ent,I] = min(EntVal);
split = Entro(I,1);
n1min = Entro(I,3);
n2min = Entro(I,4);
n1max = Entro(I,5);
n2max = Entro(I,6);
Emin = Entro(I,7);
Emax = Entro(I,8);

Entropylist = [split Ent n1min n2min n1max n2max Emin Emax];

return

A.3.4 classifyrek.m

function [cl, m1, m2] = f(tree, obj, root, label)
%
% Function classify_rek is a recursive function that goes th rough a
% binary decision tree in order to classify a given object
%
% tree is the decision tree in which to search
%
% obj is the object to be classified
%
% root is the node in the tree from which to start the search
%
% label says what labels have been used for building the tree
% (0 = crisp labels, 1 = uncertain labels)

84 A. SOURCE CODE

% Get the data stored at root

data = TreeNodeData(tree, root);

if IsLeaf(tree, root)
if label == 0

cl = data(1);
n1 = data(3);
n2 = data(4);
m1 = n1/(n1+n2+1);
m2 = n2/(n1+n2+1);

elseif label == 1
m1 = data(3);
m2 = data(4);
if (m1 > m2) | (m1 == m2)

cl = 0;
elseif m2 > m1

cl = 1;
end

end
else

% Find the attribute to check
att = data(5);

% Find the split to use
split = data(6);

% Find the children of root
children = GetChildren(tree, root);

% If the object’s value for the given attribute is smaller tha n
% or equal to the split, go down left branch of root
if (obj(att) < split) | (obj(att) == split)

root = children(1);

% If the object’s value for the given attribute is greater tha n
% the split, go down right branch of root
elseif (obj(att) > split)

root = children(2);
end
[cl, m1, m2] = classify_rek(tree, obj, root, label);

end
return

A.3.5 countmax.m

function [n1max, n2max] = f(Examples, att, nobj, split, dec _att)
%
% Function countmax counts the number of objects from each
% decision class that has attribute value over a given split
% for a given attribute
%
% Examples is the example matrix
%
% att is the attribute in question
%
% nobj is number of objects in Examples
%
% split is the split for attribute att
%
% dec_att is the target attribute

A.3. AUXILIARY FUNCTIONS 85

% Initiallize values
n1max = 0;
n2max = 0;

% Do for each object in the examples matrix
for i = 1:nobj

if (Examples(i,att) > split)
if Examples(i,dec_att) == 0

n1max = n1max + 1;
elseif Examples(i,dec_att) == 1

n2max = n2max + 1;
end

end
end
return

A.3.6 countmin.m

function [n1min, n2min] = f(Examples, att, nobj, split, dec _att)
%
% Function countmin counts the number of objects from each
% decision class that has attribute value under a given split
% for a given attribute
%
% Examples is the example matrix
%
% att is the attribute in question
%
% nobj is number of objects in Examples
%
% split is the split for attribute att
%
% dec_att is the target attribute

% Initialize the values
n1min = 0;
n2min = 0;

% Do for each object in the examples matrix
for i = 1:nobj

if (Examples(i,att) < split) | (Examples(i,att) == split)
if Examples(i,dec_att) == 0

n1min = n1min + 1;
elseif Examples(i,dec_att) == 1

n2min = n2min + 1;
end

end
end
return

A.3.7 findmostcommon.m

function commonclass = f(Examples, attval, nobj, dec_att)
%
% Function findmostcommon finds the most common decision va lue
% among the objects in an examples matrix
%

86 A. SOURCE CODE

% Examples is the example matrix
%
% attval is a vector containing all the values for the
% decision attribute
%
% nobj is number of objects in Examples
%
% dec_att is the decision attribute (last in Examples)

% Find number of values for decision attribute, ntarg=numbe r of values
[n,ntarg] = size(attval);

% Initialize temporary count matrix
C = [];

% Do for each value of decision attribute
for j = 1:ntarg

% Initialize counter
count = 0;
% Do for each object in the examples matrix
for i = 1:nobj

if Examples(i,dec_att) == attval(j)
count = count + 1;

end
end
% Store number for decision value in count matrix
C = [C count];

end

% Find largest number in count matrix
countmax = max(C);

% Find decision class corresponding to this number
index = find(C == max(C));
commonclass = attval(index);
[x,y] = size(commonclass);
if y>1 % If there are an equal number of objects from several cl asses

commonclass = commonclass(1);
end
return

A.3.8 findrange.m

function [min, max] = f(Examples, nobj, att)
%
% Function findrange finds the range of values for a given att ribute
%
% Examples is the example matrix
%
% nobj is number of objects in Examples
%
% att is the attribute in question

% Initialize min and max values
min = 1000;
max = -1000;

% Do for each object in the examples matrix
for i = 1:nobj

if Examples(i,att) < min
min = Examples(i,att);

end

A.3. AUXILIARY FUNCTIONS 87

if Examples(i,att) > max
max = Examples(i,att);

end
end
return

A.3.9 ncont.m

function NValues = f(tree, root, N, level)
%
% Function ncont finds the number of objects and the entropy
% value stored at each node in a binary decision tree
%
% tree is the decision tree in which to search
%
% root is the root of the tree
%
% N is the matrix in which the found values are stored
%
% level says which level in the tree is reached

% Get data from root
data = TreeNodeData(tree, root);

Entropy = data(2);
n1 = data(3);
n2 = data(4);
NValues = [N; level n1 n2 Entropy];

if ˜(IsLeaf(tree, root)) % If root is not leaf node
% Get the child nodes and their values
children = GetChildren(tree, root);
level = level + 1;
NValues = ncont(tree, children(1), NValues, level);
NValues = ncont(tree, children(2), NValues, level);

end
return

A.3.10 prunetree.m

function [tree, root] = f(tree, root)
%
% Function prunetree prunes the leaf nodes in a binary
% decision tree if two descending leaf nodes from a node
% have the same decision value
%
% tree is the decision tree in which to search
%
% root is the root of the tree

% Get the children of root
children = GetChildren(tree, root);

% If not both of the children are leaf nodes
if ˜(IsLeaf(tree, children(1)) & IsLeaf(tree, children(2)))

% If child 1 is a leaf node
if IsLeaf(tree, children(1))

% Prune the subtree with child 2 as a root

88 A. SOURCE CODE

[tree, root] = prunetree(tree, children(2));

% Find the parent of the new pruned subtree, and
% its new children for further pruning
root = GetParent(tree, root);
children = GetChildren(tree, root);

% If child 2 is a leaf node
elseif IsLeaf(tree, children(2))

% Prune the subtree with child 1 as root
[tree, root] = prunetree(tree, children(1));

% Find the parent of the new pruned subtree, and
% its new children for further pruning
root = GetParent(tree, root);
children = GetChildren(tree, root);

% If none of the children are leaf nodes, prune both subtrees
else

[tree, root] = prunetree(tree, children(1));
[tree, root] = prunetree(tree, children(2));

end
end

% If both of the children are leaf nodes
if IsLeaf(tree, children(1)) & IsLeaf(tree, children(2))

% Get data from both of the leaf nodes
data1 = TreeNodeData(tree, children(1));
data2 = TreeNodeData(tree, children(2));

% If the two leaf nodes have the same decision value
if data1(1) == data2(1)

% Remove child 1 and child 2
[tree, root] = Prune(tree, children(1));
[tree, root] = Prune(tree, children(2));

% Add decision value to parent node of the
% two pruned leaf nodes
tree = TreeNodeData(tree, root, data2(1));

end
end
return

