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Abstract

The work described in this report concerns the problem cdwaang with uncertainty,
in particular the problem of building classifiers based owrartain data. The kind
of uncertainty we have been concerned with has been uncertassification, i.e.,
classification of data for which the classification labeks @t crisp.

We have proposed a method to handle this kind of uncertaiatyis sometimes present
in the training objects used to build classifiers. Our metpiagposes to introduce the
concept of belief functions, as defined in the Dempster-&ttakory of evidence, in
the well known decision tree learning method. Belief fuont is a means of stating the
kind of uncertainty we are interested in and give valuablermation as output from
the classifier. This makes the classifier able to give a mdferdntiated result. Also,
the classifier will be able to use the information given in entain labeled training
objects in a profitable way.

We have implemented our method in MATLAB, to test it on a reatld classification

problem. The results obtained from these experiments shatwur method performs
at least as well as the ordinary decision tree learning nietho addition they show
that our method offers a way of handling problems for whiah thassification is not
entirely known for the training objects. This means that mirethod will be able to
handle classification problems which for instance the @djirdecision tree learning
method is not able to handle.

In order to be able to obtain substantial conclusions abdmitmethod, further work
will have to be done to test the method more extensively amehpoove it. However,
our results are promising and encourage further work wiih itiethod.
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Chapter 1

Introduction

1.1 The purpose of our work

The work we present in this report adresses the problem sbreag with uncertainty,
in particular the problem of building classifiers based opartain data. The kind of
uncertainty we were concerned with is uncertain classiioat.e., training a classifier
on data for which the knowledge of which class it belongs twoiscertain.

The purpose of our work has been to develop a method that émituk kind of un-

certainty. Our method is based on the decision tree leamietipod, which we modify
with the use of belief functions. Belief functions are usea¢dmpute an uncertainty
measure that will replace the concept of entropy used imarglidecision tree learning
methods. It was our belief that the introduction of beligidtions would enable us to
train the classifier on data with the kind of uncertainty nimmed above.

1.2 Reader’s guide

This report is roughly divided in three parts. The first patroduces the important
concepts related to the problem domain. This part is sugptusgive the reader the
necessary knowledge about the issues in question. It is tedaeded as an introduc-
tion to what is presented in the following parts. The secoad presents the method
we propose in our work and the theory it is based upon. Thd fyart presents exper-
iments we have performed in order to test our method.

The first part of the report starts with a chapter giving a simdroduction to the domain
of classification, and in particular to the domain of clagsij with uncertain data.
Chapter 3 provides an introduction to the decision treeniegrmethod. Chapter 4
defines the concepts of the Dempster-Shafer theory of eséemnd in particular the

1



2 1. INTRODUCTION

interpretation of this theory that constitutes the trarediée belief model.

The second part consists of Chapter 5, which presents oas ifte a new method
combining decision tree learning and the Dempster-Shaforiy of evidence. This
chapter elaborates the mathematical foundation for oysgeed method and gives a
short description of our implementation of the method.

The third part presents experiments and results. In Ch&ptee describe how our
method has been tested on a real world classification probl&incompared to an
ordinary decision tree learning program. Chapter 7 analysg results and gives an
evaluation of our method as well as proposing further wogk thay be done to obtain
more solid results and to improve our method.



Chapter 2

Classification of uncertain data

2.1 Introduction

A common problem in the context of machine learning is th& tdslassification, or
diagnosis. Examples of “diagnostic systems” are medicstiesys, that use observed
symptoms for a patient to assess whether some disease énpoesnot, or technical
systems, that for instance can use the observed behavieanod machine to assess
whether this machine is in a fault state or not.

In order to build a reliable “diagnostic system”, a good slfier has to be found. There
exist several methods to produce classifiers, such as Neetabrks, Decision trees,
k-Nearest neighbour and Rough Set theory to mention soneof.tA lot of work has
been done to find new methods and to improve existing methodder to increase
the reliability of the classifiers the different methodsguoe.

Not all of the existing methods are able to handle adequalaig that contain some
sort of uncertainty. However, as most of the data used as ia fasclassification
that reflect real world situations contain uncertainty ireomay or another, it is an
important task to find a method that is able to handle uncedaia.

This chapter gives an overview of the classification taskl explains some of the
problems involved in dealing with uncertain data. Sometegsmethods are men-
tioned, and a summary of our proposed method is given.

2.2 Classification

The classification process consists of deciding wklalssamong two or more possible
classes some instances or objects of a kind belong to. Thetces or objects in

3



4 2. CLASSIFICATION OF UNCERTAIN DATA

guestion are commonly gathereddata sets

Each instance in a data set can be regarded as a vector withrargimber of values.
Each of the values representsattribute valuemeasured or chosen for the instance in
guestion. The attributes that are considered for the sestdinces are often calledn-
ditional attributes The collection of possible attribute values canblr@ary, discrete

or continuous

In order to make a classifier, one needs to have a set of aldaslyified instances to
train the system. The set of already classified instancekfos¢his purpose is called
thetraining set In addition to all the conditional attributes, these insts also have
an attribute called theecision attribute which represents the classification of each
instance. The values of this attribute represent the plessiisses the instances from
this particular distribution can belong to. Thus, thesaigalcan either bbinary, if
there are only two classes, discrete

An example of a data set that can be used as a basis for learclagsification task is
shown in Table 2.1. The example is taken from [1] and repissie task of learning
how to choose whether to play tennis or not on a given day bas@tformation about
the weather conditions.

Day | Outlook | Temperaturg Humidity | Wind || PlayTennis|

D1 || Sunny | Hot High Weak || No
D2 | Sunny | Hot High Strong|| No
D3 || Overcast| Hot High Weak | Yes
D4 | Rain Mild High Weak | Yes
D5 | Rain Cool Normal | Weak | Yes
D6 | Rain Cool Normal | Strong|| No
D7 | Overcast| Cool Normal | Strong| Yes
D8 | Sunny | Mild High Weak || No
D9 | Sunny | Cool Normal | Weak | Yes
D10 || Rain Mild Normal | Weak | Yes
D11 | Sunny | Mild Normal | Strong| Yes
D12 | Overcast| Mild High Strong|| Yes
D13 | Overcast| Hot Normal | Weak | Yes
D14 || Rain Mild High Strong || No

Table 2.1: Example data set

When a classifier has been constructed, its performance eaested by using a set

of instances that have not yet been classified. The set afnioss used to test the

system'’s performance is called thest set This set should be drawn from the same
distribution as the training set.

If the classifier performs adequately, one can classifyreutnstances for which one
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does not know the class by running them through the classifter instance, if a
classifier was built based on the data in Table 2.1, one caly es® this classifier
to decide whether or not to play tennis one particular dagwithis day’s weather
conditions.

2.3 Data sets with uncertainty

Classification systems that are based on empirical dath,asitechnical systems that
are designed to monitor the state of a machine, have to ievimethod of handling

uncertainty. The classifier in such systems are built bagediata observed during a
period of time, and if the classifier is to be reliable withpest to classifying states
that will occur in the future, it has to take into considesatthe uncertainty inherent
in the collected data.

Uncertainty in data may have different causes. If the datd as basis are constructed
from some expert’s opinion, which in turn is based on thisesKp experience and
earlier observations, assumptions that this expert makestaaome observation can
introduce uncertainty in the data. Uncertainty also aritfsere are several experts
who each have their opinion, since these opinions may canflic

Another source of uncertainty may simply be measuremergri@iaoty when data are
collected. If the means of measuring or observing is not detaly reliable, the mea-
sured data will consequently not be completely reliable.

It is also necessary to take into consideration the podsiltilat an event may occur
given some conditions, but may not occur later given the saonditions. This induces
an uncertainty in our experienced data, because the twov@gksituations, that the
event did occur and that the event did not occur, producesficdn our statements.

Other causes of uncertainty may be imprecision in the remtasion method of the
data or simply vague terminology, for instance if objects elassified as “small” or
“large” without any definite limit between the two values.

Since we know that uncertainty may be contained in the tnginiata we use to build
our classifier, the classification results should also refles situation. It is desirable to
have a classifier that not only classifies the instances asdielg to one of the classes,
but is able to say something about the degree of reliabilitthis classification. It
should be able to give us a clue about how much we should leehethe classification
it produces.
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2.4 Method proposed in our work

In order to use uncertain data in a profitable way, one has tbdimethod for rep-
resenting and taking care of the uncertainty. There arerakways of doing this.
Methods have for instance been developed based on the ¢arfcpmbability, but
other methods have also been developed.

The theories of fuzzy sets and rough sets address the prablemcertainty in data, see
for instance [2] and [3] for a description of fuzzy sets andgb sets. A method based
on interval estimation of probabilities has been develdpelurt Weichselberger and

Sigrid Péhimann, see [4]. Thierry Denoeux has developecthaod for pattern clas-

sification that uses the k-Nearest Neighbour method basetieDempster-Shafer
theory of evidence, see [5], [6] and [7].

Uncertainty may be present in many forms. In our work we areceoned with uncer-
tainty in class labels, for instance if we do not know for aartwhich of the possible
classes a given instance belong to. Our work has the purgdselimg a way to build
reliable classifiers when the values of ttlecision attributeare uncertain, i.e., find-
ing a way to train the system even though the training attefpalo not have a crisp
classification.

We propose a method that combines the decision tree leanm@tigod with the con-
cepts of the Dempster-Shafer theory of evidence for reptasgthis kind of uncer-
tainty. The method of decision tree learning does not iffits#dress the problems of
uncertain class labels in training data as described albow&e propose to extend this
method with the use of belief functions in order to be able tokawith uncertainty.

Our method will be fully described in Chapter 5. The next dbepgive an overview
of respectively the decision tree learning method and the3er-Shafer theory of
evidence.



Chapter 3

Decision trees

3.1 Introduction

The decision tree learning method is one of the methods thatssed for classification
or diagnosis. As for many other machine learning methods)ehrning in decision
trees is done by using a data set of already classified inssaonduild a decision tree
which will later be used as a classifier. The set of instansed to “train” the decision
tree is called the training set.

When the decision tree has been built based on the traintnthsgesting of the sys-

tem’s performance is done by using a test set with instari@sate not yet classified,

but which are taken from the same distribution of instansaba training set. The test
set instances are put through the resulting decision treedier to get a classification

for each of the test instances. The goal is to get a tree whaded on the instances in
the training set, is able to classify the instances in thiestetscorrectly.

Decision tree learning has several advantages. One of trantadjes is that it gives a
graphical representation of the classifier which makessiiegéo understand. However,
this is not the case for large trees, which tend to get overgtex and difficult to
follow. Another advantage is that this method can handlesimgsattribute values in
the training data.

This chapter gives a definition of some basic notions in treesiten tree method, and
gives a description of the common procedure used when bgildecision trees. An
example is also provided, in order to illustrate the consepthis chapter is to be
regarded as an overview only. For a more thorough descngtialecision trees, refer
to [8], [9] and [1].
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3.2 Basic concepts

In order to understand how decision trees are used for @lzestsdn purposes, some
basic notions have to be defined.

Decision trees consist ofodesandbranches The nodes can either be ordinary nodes
with other descendant nodes,leaf nodesvhich do not have descendants. Trhet
nodeis the first node on top of the tree. Figure 3.1 illustrateséhancepts.

/ < Root
node

Nodes

N\

v/

~ 7

Branches

\

Figure 3.1: An example tree

S~

Leaf nodes

Each of the ordinary nodes represents a test on one of tliteustis that are measured
for each object, and each of the leaf hodes represents #iclaissn of the object. The
branches descending from a node corresponds to the posalbkes for the attribute
in question, and consequently there are as many branchesamode as there are
attribute values for the attribute which is tested by theendéithe attribute values are
continuous, there are usually two branches descendingtinemode, corresponding
to a division of the objects according to some spl& =; andz > xz;, wherez is the
attribute value for the object tested at the node, angd some defined split value for
the attribute in question.

Another important concept in the decision tree method ictreept ofentropy The
entropy is a value that is used when the tree is being buitt jtaneflects how well the
objects in the training set are separated with respect talifferent classes at some
node. If there are an approximately equal amount of traioijgcts from each class
connected to the node, the entropy is large, and if thererdyet@ining objects from
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one class connected to the node, the entropy is 0. The entmmept is explained in
detail later.

3.3 The decision tree algorithm

There are several procedures and methods for building idecieees, such as ID3,
C4.5 and CART (see [9] and [8]). We have chosen to base our worthe ID3-
algorithm, because this algorithm visualises well the garegpproach to building de-
cision trees. As a consequence, this algorithm forms thes lmdigshe description of
decision trees in this chapter. The ID3-algorithm is showAlgorithm 3.1.

The ID3-algorithm employs a top-down, greedy search thindhg possible trees, and
it never backtracks to reconsider the choices it takes dt rade.

To build a decision tree, one has to have a set of trainingctdjen which to base
the learning of the tree. These training objects have a kndassification before the
building of the tree starts.

The general concept of the building phase consists of finthegattribute that best
separates the remaining objects in the training set, and ¢heose this attribute as
the attribute to be represented in the node. The building #tarts with finding the
best overall attribute that discerns the objects in theningi set based on the deci-
sion classes they belong to. This attribute is chosen asttifiieuse for the root node.
Then one adds as many branches to the root node as thererémet@ttalues for the
chosen attribute and separates the training set objedsyinoups corresponding to
the different values the attribute may take. Each groupalhing objects follows its
corresponding branch from the root node.

Then one builds the tree downwards by choosing for each riealerte attribute out
of the remaining attributes which best separates the abfemin the training set that
belong to this part of the tree.

If in a node there are no more attributes to check on, the nederhes a leaf node
with a label corresponding to the decision class which hasighest number of rep-
resentatives among the remaining training set objects.

If all the remaining training set objects in a node belongh® $ame class, the node
becomes a leaf node with a label corresponding to this dectdass, as there is no
use in separating the objects further.

To find the attribute that best separates the training settdjthe ID3-algorithm uses a
concept that is callemhformation gain Information gain is a measure on how well one
can discern the remaining objects according to their ctabgaising a given attribute
as a separator. Associated to the concept of informatianigdine concept oéntropy
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Algorithm 3.1 The ID3-algorithm

ID3(Examples, Decision attribute, Attributes)
Examples are the training objects. Decision attribute esdttribute
whose value is to be predicted by the tree. Attributes istafis
other attributes that may be tested by the learned decisen t
Returns a decision tree that correctly classifies the gixamgles.
Create aRoot node for the tree.
if all Examples are positive Return the single-node tre®oot, with label = +
end
if all Examples are negativeReturn the single-node tre®oot, with label = —
end
if Attributes is empty,Return the single-node tre®oot, with label = most
common value oDecision attribute in Examples
end
Otherwise
begin
A « the attribute fromAttributes that best* classifie& zamples
The decision attribute faRoot + A
for each possible value;, of A,
Add a new tree branch belowoot, corresponding to the test = v;
Let Examples,, be the subset dbxamples that have value; for A
it Examples,, 1S empty
then below this new branch add a leaf node wiile/ = most common
value of Decision attribute in Examples
else below this new branch add the subtree
ID3(Examples,,, Decision attribute, Attributes — {A})

(0]
o

n

o

n

end
end
RETURN Root

* The best attribute is the one with the highagbrmation gain
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Entropy is a measure of the “impurity” of the set of trainingjects.

The entropy is defined as

E(S)=)_ —pilog,pi
=1
whereS is the set of training objects containing objects fromifferent classes, and
p; Is the proportion of objects in the s&tfrom classi. The entropy is O if all objects
in S belong to the same decision class, and can be as lalge, as

For the special case where the objects are divided betwdgrvem decision classes,
let us say a positive class and a negative class, the entedpges to

E(S) = —pglogy pe — po logy pe

In this case, the entropy is between 0 and 1, and 1 if thereraegaal number of
objects from each of the two decision classes.

The information gain measure is based on the computed grivopach attribute, and
states the expected reduction in entropy if the trainingcisjare separated by using
the attribute in question. The information gain of an atttéoA relative to a set of
objectsS is defined as

GS, A)=ES) - %

veValues(A) ‘ ‘

whereValues(A) contains all possible values of the attributeand S, is the set of
objects inS for which attribute A has valuev. We see from the equation that the
information gain is a measure on how much the entropy is depdo decrease if we
partition the training set based on a given attribute. Beeanf this we choose as the
“best” attribute the attribute which gives the highest mfation gain, since our goal
is to decrease the entropy as we split the training objects.

When there are no more training objects, or there are no nttiileldes to split on, we
have a final decision tree which can be used as a classifiepdrfmance of the tree
can now be tested by running pre-classified test objectsigiiréhe tree, and observe
whether or not the tree classifies them correctly.

3.4 Anexample

To illustrate the procedure of the decision tree methodarpt in this chapter, an
example is presented. The example objects are taken frojngid® modified slightly.
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The example objects given in Table 3.1 will be used as a basisuilding a decision
tree.

Theobjectqrows) in this example are bottles of red wine. Differatttibutes(columns)
are measured for each bottle. The measured attributed/exe district Main grape
variety, VintageandStorage temperaturd-or each bottle we have a classification that
says whether the bottle is ready to be drunk now or if it shdaédkept in store.

| Wine district| Main grape variety | Vintage | Storage temp| Decision|

T Bordeaux Cabernet Sauvignopn1992 12-15 Drink
o || Rhbdne Syrah 1992 <12 Hold
x5 || Chile Cabernet Sauvignon1995 12-15 Drink
x4 | Bordeaux Merlot 1995 >15 Drink
x5 || Chile Cabernet Sauvignon1992 12-15 Hold
s | Rhone Merlot 1992 12-15 Hold
r7 | Bordeaux Merlot 1995 12-15 Drink
xrg | Chile Merlot 1992 <12 Hold
T9 | Bordeaux Merlot 1992 >15 Drink
19 || Rhéne Syrah 1995 <12 Hold
11 || Chile Merlot 1992 12-15 Drink

Table 3.1: Example objects

The first step in building a decision tree, according to IB33ta create a root node.
Then we have to choose which attribute is to be tested on thtenmde. The best
attribute is the one with the highest Information Gain, sohaee to compute the In-
formation Gain for each possible attribute, which at thistfatep are all the attributes.

At the root node we consider all the example objects, becardeave not yet started
to divide them into groups, so in this case the set of all irgiexamplesS, contains
all 11 objects from Table 3.1. We observe that we have 6 abjeetonging to the
decision clas®rink, and 5 objects belonging to the decision cleigdd. We are then
able to compute the Entropy for this set.

E(S) = —DDrink 1082 PDrink — PHold 1082 PHold
6 6 5

5
—1 —) - —1 —) = 0.994
OgQ(ll) 11 OgQ(H)

We then compute the information gain for the attribWe district To simplify the
notation,Wine districtis represented byi’ D, Bordeauxis represented by and so



3.4. AN EXAMPLE 13

on:
G(S,WD)=E(S) - ||‘Zi’|E(Su)
veValues(A)
a(s,wo) = B(s) 58 p(s,) - Sl ps, - Selps,)
5] s 5]
E(Sn) = logy(7) = 0
B(Sg) = —5 logy(3) = 0
B(Se) = log(3) — ; logy(7) =1
G(S, WD) = 0.994 — %*0 %*o %*1—0.6304

The entropy and the information gain for the remaining bitités are computed the
same way and we get these information gain values for thedttributes at the root
node level:

G(S, Wine district) = 0.6304

G(S, Main grape variety) = 0.2427
G(S, Vintage) = 0.0721

G(S, Storage temperature) = 0.4931

We see from these results that if we choose to split on ategMine districtat the root
node, we will get the highest information gain. This tellstiat this split will divide
the training objects in the best possible way concernindwloedifferent classes. Our
goal is to have as “pure” nodes as possible in the end, nodéesdhtain - if possible -
objects from only one class. Thus, we choose to split thectden the attribut&Vine
district at the root node.

We now have the tree shown in Figure 3.2. At the root node weléithe training
objects into groups according to which value they have ferattributeWine district
and create a child node for each possible attribute value.

The next step is to consider which attribute to split on fa tiild nodes we have
created. For the child node corresponding to the attribateeBordeaux we have
four training objects that havBordeauxas value for the attribut@/ine district We
observe that all these objects belong to the cl@gsk, and according to ID3, this
means that the child node correspondin@twdeauxcan be a leaf node with decision
Drink.

The same applies to the child node corresponding to théattrvalueRhdne For this
node we have three training objects, which all belong to tasstiold. We can then
let this child node be a leaf node with decisidold.
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Wine district

|

Bordeaux Rhoéne Chile
— -

Figure 3.2: Our decision tree at the first stage

The third child node, the one corresponding to the attribataeChile, has four train-
ing objects connected to it. Among these objects there aveobjects that belong to
the classDrink and two objects that belong to the clddsld. This means that we
have to split these objects in two, based on one of the threaireng attributesiiain
grape variety Vintageor Storage temperatureWe apply the same method as above
and compute the information gain for each attribute. No#t tiow the starting point
is the set with the four training objects that belong to thege, which we denots.
The computation results are as follows:

G(Sc, Main grape variety) = 0
G(Se, Vintage) = 0.3113
G(S, Storage temperature) = 0.3113

The information gain values obtained by splitting on thalaitesVintageandStorage
temperatureare equal, so we can choose any one of them. We chdoszgeas the
attribute to split on for the child node in question. We nowdghe tree shown in
Figure 3.3.

If we continue like this, until the training objects are died into groups with objects
from only one class, we finally get the tree shown in Figure 3.4

The tree is now ready to be used for classification. The dlaasbn is done by running
objects, for which we do not know the class, through the decisee. Let us say that
we have another bottle of wine, and we want to find out whethsiietter to keep this
bottle in store or if it is ready to be drunk. This bottle is regented in Table 3.2.

| Wine district| Main grape variety Vintage | Storage temp| Decision|
1 || Chile | Merlot 1995 | >15 | 2 |

Table 3.2: Object to be classified
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Wine district

RN

Bordeaux Rhoéne Chile
Drink Hold Vintage
1992 1995

/

Figure 3.3: Our decision tree at the second stage

According to our tree in Figure 3.4 we should first check thelaite Wine districtfor
this object to be classified. We observe that the object s fihile, and according to
our tree, the object should follow the branch down to the nlatfeledVintage We
check the attribute value fovintagefor our object, and we observe that it is from
1995 The object should follow the branch representi®5 The node connected to
this branch is a leaf node with decisidmink. We can then conclude that our bottle is
ready to be drunk.

3.5 The problems

Building a decision tree consists of several problems,ristance finding out how to
consider which attribute is best for each node, and findirtgrdien to stop building
the tree, i.e. how deeply one should grow the tree.

The problem of finding out when to stop growing the tree is @mted to a problem
called overfitting the data. Overfitting means that if onewga tree that classifies
perfectly the objects in the training set, this tree may tetsify other objects too well,
because the tree is too specific. The result of growing toalirge may accordingly
be that the tree is too specifically trained to handle exabitydetails of the objects
in the training set, and poorly trained to handle anythirggelThe classification of
objects outside the training set will consequently be woese which is not a desired
behaviour.

Mitchell, [1], gives this definition of overfitting:
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Wine district

Bordeaux Rhone Chile
Drink Hold Vintage
1992 1995
Main grape Drink
variety

Cabernet  Merlot
Sauvignon AN

/ Storage

temperature

Hold / \

<12 12-15

- \

Hold Drink

Figure 3.4: Our final decision tree

Definition: Given a hypothesis spacé], a hypothesig: € H is said to
overfit the training data if there exists some alternative hypashése H,

such thath has smaller error thah' over the training examples, bit has a
smaller error thark over the entire distribution of instances.

The problem of overfitting is particularly present in theesiwhere the training objects
contain noise or errors. Then a full grown tree will be toostve with respect to the
noise or errors in the data, and the result is that the tressifiar performs badly on
other data sets.

Figure 3.5 is taken from [1] and illustrates the consequa&faerfitting. The results
in this figure were obtained by applying the 1D3-algorithmtke task of learning
which medical patients have a form of diabetes. The numbergyahe horizontal
axis represents the size of the tree as it is grown. As thedighows, the accuracy
over the training objects increases as the tree grows, bedhe tree learns gradually
more from the training objects as it grows. However, the samcyion the independent
test objects increases from a certain size of the tree, whaibates that when the tree
grows larger than this size, it gets too specific in relatmthie test data.
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Figure 3.5: Overfitting in decision tree learning

The most common methods to avoid overfitting in decisionstrae to either stop
growing the tree before it is fully grown, or to grow a full &#@nd then prungit. In
either case the problem is to find a criterion to use as anatidic of which sized tree
will be the tree to perform best. It is not easy to know exawthen to stop in order
to get the best tree. Too large a tree will use too much of theildd information
contained in the training set, while too small a tree may nakeruse of all the helpful
information contained in the training set. There are sdwagpproaches to finding the
right sized tree. The most common of them is to use a validat@ of objects, which
should be distinct from the training objects, to evaluate hauch post-pruning a node
will improve the tree classifier.

In order to decide which nodes to prune, by using the valitesiet, one can use the
concept oferror rate estimation The validation set can be run down trees of different
sizes, and for each tree one can use the classificationggsudompute an estimated
error rate. For instance, if one first grows a full tree basethe training set, and then
prune the full grown tree node by node and run the validateirdewn the tree each
time a node has been pruned, one will get an error rate estimftr each possible
tree size. By comparing the computed values, one can seth#ratare tree sizes that
are better than others. The typical results will be that a&spmmunes the full grown tree,
the error rate estimate will decrease, until one reacheseangiere continued pruning
will result in increasing error rate estimates.

The problem with this approach is that it requires a large @mhof available data. If
the data available is limited, it may not be desirable to hmitla set of objects for
validation, because that would result in a smaller trairsegy which in turn would
result in a less reliable decision tree than if all the alddanformation was used to
build the tree.

1To prune a node from a decision tree is to remove the subtréfebhode, and to make the node a
leaf node with decision value the most common value of thaitrg objects connected to that node.
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Another problem in decision tree building is to find a good vedychoosing splits
for continuous attribute values. The common way of splitidjects with continuous
attribute values is to divide the objects in two groups, aditg to whether or not they
have an attribute valuewhich is smaller than or greater than some vatueThe split
divides the objects in two groups with< x; andz > z;. The difficulty is to find the
best split for the attribute in question, i.e., to decidevhkie:r.

3.6 Summary

The decision tree learning method is widely used for classifin purposes, and this
chapter has presented the method and its concepts. Detris@mlearning represents
an understandable and reliable method for constructirgsiflars. The tree structure
makes it intuitively easy for humans to visualise the cliessi

There are however several problems connected to the usecisia@®etrees as a clas-
sification method, and some of them were outlined here. Aergihoblem, which we
have been concerned with in our work, is that decision tramiag does not cover a
good method for handling uncertainty in the training datiaisproblem will be further
outlined in the remaining chapters.



Chapter 4

Dempster-Shafer Theory of Evidence

4.1 Introduction

The Dempster-Shafer theory of evidence is a mathematiealryhconcerning belief
and uncertainty and was evolved by Arthur Dempster and G8ader [11]. The the-
ory in large involves assigning a value betwéesind1 to some hypothesis, regarding
this value as the degree of belief in the hypothesis in qoestased upon a given
body of evidence.

The theory differs from probability-based methods in thiadaes not claim that the
sum of the belief in a hypothesis and its negation has to lbfefor instance, the belief

in a hypothesis is assigned the valuethe negation of the hypothesis may also be
assigned the valug which in short reflects a situation where there is no infdrara
available that helps in choosing between the two.

The Dempster-Shafer theory of evidence also involves tlssipdity of assigning be-
lief values to sets of hypotheses, as well as combiningrtisbhodies of evidence in
order to assign combined belief values to the different liypses.

This chapter presents an overview of some of the conceptseoDempster-Shafer
theory of evidence. There exist several interpretationghisf theory, and we have
based our work on the interpretation called trensferable belief mod€lTBM) that
has been introduced by P. Smets ([12] and [13]). Consequéh# presentation in
this chapter will be based on this model. Since it will be tateasive to give the
reader full knowledge of the Dempster-Shafer theory, ohb/hasic concepts and the
concepts concerning our work will be outlined. For a full cigstion of the Dempster-
Shafer theory of evidence, see [11], [12] and [14].

19
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4.2 Basic concepts

In the transferable belief model there are two levels at Wwhincertain information
is processed, theredal level and thepignistic level'. At the credal level beliefs are
guantified by belief functions, and a possible updating of lmeliefs is done at this
level. The pignistic level succeeds the credal level in tend appears when one is
confronted with decision making based on one’s beliefs. Wank is concerned with
classification, where there is a decision to be made in thesnae have to take into
consideration both levels.

At the credal level, our beliefs are built. In order to builtktn we have to define
what we will have beliefs about. This is what we in the lasttiseccalled the “hy-
potheses”, and they are represented as a set of possildaaii called th&rame of
Discernment

@:{9], 92, ,Gn}

whered;, 6., ..., 6, are mutually exclusive and exhaustive. The power sét,@®,
denotes the set of all subsetstf

A basic belief assignmeid a function that assigns a value betwéeand1 to each
subset in the Frame of Discernment

such that

m(A) is calledA’s basic belief numbernd represents a mass of belief that is assigned
to A. This belief is assigned on the basis of the given body ofeewié concerning the
hypotheses.

According to the statements above, no belief is assign@dsmce at least one of the
subsets in the Frame of Discernment has to represent theitusion, if we adopt
the closed-world assumption [12]. Also, for the same reaguntotal belief in® is 1.
The quantitym(A) is the degree of belief that is assigned exactly to thedseind it
can not be subdivided in order to get the assigned valuebégnassible subsets df

1The wordpignisticcomes from the Latin worgdignus which means a bet.
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The total belief inA4, including the values for the subsetsAfcan be obtained by

Bel(A) = Y m(B).

BCA

The functionBel : 2° — [0, 1] is called abelief functionover©. The belief function
is called thevacuousbelief function whenn(©) = 1 andm(A) = 0 forall A # O,
thenBel(©) = 1 andBel(A) = 0 for all A # ©. This represents a situation where
one has no evidence.

A subsetd of a Frame of Discernmem is called afocal elemenbf a belief function
Bel over® if m(A) > 0. The union of all the subsets that are focal is calledcthre
of ©.

Another function can be defined from the basic probabiligigement, thg@lausibility
function

Pi(A)= Y m(B).

BNA#D

The plausibility function can also be given by

PI(A) =1— Bel(©\ A), VA C ©.

As we see, the plausibility function is another way of preésgnour beliefs. Yet
another way of stating beliefs is the commonality functiefimed by

The functionsm(A), Bel(A), PI(A) andQ(A) are all several ways of representing
the same information and can all be obtained from the others.

Dempster’s rule of combinatioprovides the tool for combining several belief func-
tions over the same Frame of Discernment. In order to usertiés the different
belief functions must be based upon distinct bodies of exdde Using Dempster’s
rule of combination involves computing the orthogonal surthe belief functions to
be combined. Dempster’s rule of combination is defined by

Y anp—c M1 (A)msy(B)

= C .
I — > anB=p ™ (A)WQ(B) # 0
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This states that for two belief assignments andm,, a combined belief assignment,
ms, can be computed. In order to get a better understandingofitle, a geometrical
representation is shown in Figure 4.1. The belief assignmg(C) is computed by
summing up all the combined belief assignments where B; = C, and then nor-

malise the result by the inverse sum of all the combined batisignments where the
intersections are empty.

m(Al) m(A2) e m(Ai)
m1
m(B1)
m(B2)
m(Bj) //\
m2 probability

assignment
assigned to the
intersection of Ai
and Bj with value
ml(Ai)m2(Bj)

Figure 4.1: Dempster’s rule of combination

As stated earlier, when one wants to use belief functionsdakema decision, the at-
tention is transferred to the pignistic level. The idea &sttbne can have beliefs prior
to and independent of decision making, but when a decisisridibe made, one has
to base the decision on a probability distribution in ordarif to be coherent. So a
probability measure has to be made based on the belief thatbeen stated at the

credal level, i.e., we have to make a pignistic transforaratrom belief functions to
probability functions.

Smets [12] proposes a rule to construct a probability distion, Bet P, from a belief
function
m(A)

BetP(0) = 3" T

A30

This rule represents the principle that, in lack of inforfaat m(A) should be dis-
tributed among the elements dfwith an equal amount.

The notions mentioned above may be used to define two typesoafrtainty, non-
specificity and discord, which have been defined in work dorextend the Dempster-
Shafer theory of evidence [15]. Nonspecificity reflects anautainty based on lack
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of information, while discord reflects an uncertainty basedconflict in the given
information.

Nonspecificity is defined as

NS(m) =Y m(A)log,|Al

ACO

where| A| denotes the cardinality of the sétand© signifies the frame of discernment.

The nonspecificity function measures the amount of totabignce of whether a hy-
pothesis is true or not. If there is little information to gupt either one of the possible
hypotheses, some uncertainty is present, and the nonsjigasi a measure of this
uncertainty. The range of the nonspecificity measure is

0 < N(m) < log, |©

where N(m) = 0 represents full certaintyn¢({#}) = 1 for somefl € O), while
N(m) = log,|©| represents total ignorancex(0) = 1).

Discord is defined as

D(m) = — Y m(A)log, BetP(A),

ACO

whereBet P(A) is thepignistic probability distributioras defined above.

The discord function measures the amount of conflict thatdsgnt in the information
given. If there is information that gives reason to put aheone of the hypotheses,
and at the same time there is information present that geason to put belief in
another of the possible hypotheses, this information duogs an uncertainty that is
based on contradictory evidence. The discord is a measuiésdlype of uncertainty.

Klir [15] states that these two measures may both be presenbody of evidence. He
proposes a total uncertainty measure inherent in the bodyidénce as the sum of the
nonspecificity and the discord:

U(m) = NS(m) + D(m).

In decision tree classification, entropy is used as a meastim@purity” in each node.

Instead, we propose to use the measure of uncertainty basedrspecificity and

discord to represent this impurity inherent in the body atlence that is present, i.e.,
the training examples that are associated with each nodee liave many training
examples of each class associated with a node, the discardd Wwe high because of
the contradictory “evidence”. As the number of training exdes decreases during
the building of the tree, they will arouse less conflict and thiscord will decrease.
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However, less training examples will represent less inftian and consequently the
nonspecificity will increase as the tree is built. We thusgmse to use this measure as
a means of computing what is in ordinary decision tree |e@ycalled “entropy”. This
idea will be further explained in the following chapter.

4.3 Anexample

To illustrate the use of belief functions and their relatedaepts, we use the example
introduced in Chapter 3 and shown in Table 2.1.

Now suppose that we do not know for certain if the 11 bottleshaee can be drunk

or should be held in store for some time, i.e., we do not knawcéstain whether the

objects given belong to the claBsink or to the clas$Hold. Suppose we do not have
the last column of the table.

The usual way of using belief functions is to first define thieo§goossible situations,
the “hypotheses”, and then assign to each of the possihiatsihs, i.e., each of the
items in the Frame of Discernment, a mass of belief (a badiefbmumber). This
assignment may for instance be based on certain given eadeunich as observed
facts, or it may be done by experts in the field of interest.

In our example, the set of possible situations, the Frameistddnment, iD =
{Drink, Hold, }. This means that our possible “guesses” about the objeditbevi
either that the object belongs to cld3snk, that it belongs to clasklold or that it
belongs to one of the classes, but we don’t know for certairthvbne of them. All
these possible outcomes must be assigned some basic hetieen Let us say that
we contact a person which is an expert on red wines and préséhis person the
data about our 11 bottles. Assume that the expert gives uahger shown in Table
4.1, with the values fom ({ Drink}), m({ Hold}) andm({©}) given for each bottle.
To simplify the notation, the clad3rink is represented by & and the clas$lold is
represented by aH'.

From these values, one can compute the belief in each of phatlhgses, that the bottle
in question belongs to clagrink, that the bottle belongs to clakkld or that it can
belong to either one of the classes. When there are only @gsek, as in this example,
the computation of belief is simple:

Bel(A) = Y~ m(B)

Bel({Drink}) = m({Drink})
Bel({Hold}) = m({Hold})
Bel({0}) = m({Drink}) + m({Hold}) + m({0}) = 1.
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| Wine dist.| Main gr. var.| Vint. | St. temp.| m({D}) | m({H}) | m({©}) |

z; || Bordeaux| Cab. Sauv. | 1992| 12-15 0.6 0.3 0.1
zo || Rhodne Syrah 1992 | <12 0.1 0.8 0.1
x5 || Chile Cab. Sauv. | 1995| 12-15 1 0 0

r, | Bordeaux | Merlot 1995| >15 1 0 0

x5 || Chile Cab. Sauv. | 1992| 12-15 0.3 0.4 0.3
s | Rhone Merlot 1992 | 12-15 0.1 0.7 0.2
z7 || Bordeaux| Merlot 1995| 12-15 0.6 0.1 0.3
zg || Chile Merlot 1992 | <12 0.4 0.5 0.1
T9 | Bordeaux | Merlot 1992| >15 0.5 0.2 0.2
19 || Rhéne Syrah 1995| <12 0.2 0.6 0.2
211 || Chile Merlot 1992 | 12-15 0.8 0.1 0.1

Table 4.1: Example objects with expert’s opinion

These results can be used for each bottle to show how mu@f bedihave in the bottle
being ready to be drunk, or whether it should be kept in store.

If there are several distinct sets of evidence, for instasmeeral experts to assign
masses to the hypotheses, these assignments can be coimpiDedhpster’s rule of
combination to obtain a composite belief function. In ouample this would corre-
spond to a situation where we have the opinions of severarexpn red wine. We
could then, for each bottle, compute the combined beliefhietiver the bottle is ready
to be drunk or not, based on these distinct statements.

Suppose now that we were to use this data set to train a ctassi§ in Chapter 3.
However, this time we are not able to use the decision treaileg method, because
we do not have crisp labels for the training objects. We areafde to count how
many objects we have from each class. Nevertheless, wedshbeuhble to use the
belief functions given for each object to compute a jointddfdLinction for the training
set. We could then use this belief function to state what @liebwould be of what
class the next bottle of red wine we encounter will belong This belief function
could be used to compute the nonspecificity and discord swdan the training set.
Then we have a way of measuring the inherent uncertaintyefrdining set. This
uncertainty measure would correspond to the entropy measarhave seen in the
decision tree learning method. Using this uncertainty mesgsve will thus be able to
use the decision tree learning for building a classifier. Hodo this will be elaborated
in the next chapter.
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4.4 Summary

Many interpretations of Dempster-Shafer theory of evidemave been presented. The
general opinion is that this theory can be used to model ategjsee of belief. This
belief is connected to certain given hypotheses, and exgsdsow much we believe in
the hypotheses, based on the evidence given.

The Dempster-Shafer theory of evidence can be a good meagpresenting uncer-
tainty, as it allows you to express ignorance. This can in bg used when one wishes
to express several types of uncertainty, as nonspecifinitydéscord.

It is our belief that, combined with the decision tree methtite concepts of the
Dempster-Shafer theory of evidence can be used as basisrmtlzod that makes
the classification task more robust to uncertainty - bothénttaining data and the test
data. Our proposed method will be outlined in the next chrapte



Chapter 5

The method proposed in our work

5.1 Introduction

As stated in Chapter 2, one of the problems in diagnostiegysts finding a way to

handle uncertainty in data. We have in our work been concewith handling data

with uncertain classification labels. This correspondsdming the system on objects
that do not have a crisp classification, i.e., we are not abldte definitely which

of the possible classes they belong to. Instead we may haweatih object a belief

function that tells, for each class, what our belief is ti&t dbject in question belongs
to this class.

We propose in this chapter a method that introduces belredtions into the decision
tree learning method. This will allow us to use as trainingadaoth objects with

crisp labels and objects with uncertain labels. Our methaittlb a belief function

from previously seen cases, i.e., the training data. Aswutpe method will give not
only a classification label, but also a belief function tlediistus how the classification
is supported, i.e., states our belief in the classificatidfe will in this chapter first

describe how we propose to use belief functions in the datisee learning method.
Then we will elaborate this and show how this can be used tidl lslassifiers from

training data with uncertain labels.

In order to test our method, we have implemented the methBtARLAB. A descrip-
tion of our program is given in this chapter.

5.2 Modification of the entropy computation

As stated earlier, in diagnostic systems the problem is tll lauclassifier that is able
to classify an object or an instance as belonging to one @raépossible classes. The

27
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classifier is built by training the system on previously alied objects. We wish to be
able to state, based on what we have seen earlier, what isasidikely class the new
object should belong to.

In such a problem, our knowledge of the domain is not exhagissince the only
representations we have of possible situations to be etemthare the objects we
have already seen. According to Smets [13] and [16] thisaEdu is one where the
probability distribution of the possible outcomes among aljects is only partially
known. We do not know the exact composition of the possibdssds among our
objects. Therefore, we are not able to build a probabilistrddution for our situation,
but we can state some beliefs.

According to the transferable belief model, beliefs arengifi@d by belief functions.
In our diagnostic problem, the objects can be seen as randenmisthat occur accord-
ing to an underlying probability function. This probabylitunction is only partially
known to us, but we have some knowledge of previous casesdhanduce a belief
function. When we build a classifier from our previously seases, we use this belief
function to state our belief in how the future cases will beha

To illustrate this situation, Smets [16] gives as an examapleirn in which there are
100 balls which are either black, white or red. The amountaifsbof each colour
is not exactly known, but we know that there are between 304énklack balls and
between 10 and 50 white balls. We are interested in findingvbat our belief is that a
randomly selected ball will be black. If we select 50 ballssatdom with replacement
and observe their colour, our belief will probably change;duse now we have a wider
experience.

We can regard a classification problem as a situation of tinid. KW\e have observed
some events, our previously observed objects, and from thvenare interested in
building a belief function for the possible classes our otgenay belong to. If we
accept the close world assumption that one and only one qifdbgible classes can be
assigned to each object, i.e., we have a frame of discernimatris mutually exclusive
and exhaustive, we can build a belief function on this frarhdiscernment. If the
underlying probability function of our situation is fullynown to us, our belief function
should be equal to the probability function, according te grinciple Smets refers
to as the Hacking Frequency Principle. However, if this i$ the case, as in our
classification problem, we will need a means of computinghmlief function based
on the knowledge we have.

Smets proposes in [16] a way of computing this belief funcfar the case where there
are only two elements in the frame of discernment, i.e.,eltege only two possible
classes the objects can belong to. Smets calls his two slssseessS, andfailure, F,
and states that if you observeuccesses andfailures onn independent experiments,
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wherer + s < n, the belief function or® = {5, F'} will be

r

Belg(S =
elo(S]r5) r+s+1
Belo(F|r, s) °
El@ r,S) = —mm
© ’ r+s+1
and
(SUF|r,s) = —
e (R

The method we propose is based on this result. However, Simegs has given the re-
sult only for two-class problems, we will only look at clafssation problems with two
classes. Suppose that we have two classes, tlasd clas®, and that we have ob-
served a number of objects from each class. These objedtsonstitute our training
set. We can then compute our belief that the next observetbljl belong to clas$

or class2. In the decision tree learning method, we can use this krdiydeo build a
belief function for each node, based upon the objects that haen observed and are
associated with the node. When the object to be classifieel Ibegn put through the
tree and ended in a leaf node, we use the belief function e¢edavith this node to
state our belief of which class this new object belongs to.

Suppose we denote by, the number of objects observed from cldsand n, the
number of objects observed from classThe belief function at each node regarding
the two classes can be computed with Smets’ results. In ¢odese the belief in our
computations, we will work with the basic belief assignment A), instead of the
belief function,bel(A), since this is just another way of representing béligfle get
the basic belief assignment

n

m({1}) =
m({2)) =
m({1,2}) = ——

wheren is the total number of objects.

1Remember from Chapter 4 that in the case where we have onlglagses, the belief for the two
classesBel({1}) andBel({2}) equals the basic belief numbens({1}) andm({2}).
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The belief function obtained for each node may be used torméte the splits to
use for building the tree. In ordinary decision tree buitfithe entropy is used as a
measure of the impurity of a node. The goal is to split thentray objects such that the
entropy in each leaf node is as small as possible, becausevihbave found the best
way of discerning objects from the different classes. Inglmme way, our goal should
now be to split the training objects in such a way that the ttagdy produced from
the computed belief function is as small as possible.

Thus, we propose to substitute the entropy measure in dacdigie learning with a
measure of uncertainty based on belief functions, i.e.etiteopy measure given in
Chapter 3:

Entropy(S) =Y —p;log, p;

i=1
will be substituted with the uncertainty measure proposedhapter 4
U(m) = NS(m) + D(m)

whereN S is the nonspecificity measure andis the discord measure.

The idea would now be to use the algorithm of the decisionrrethod to build a tree,
but using the uncertainty measure stated above to find thealbebute on which to
split for each node. For all the training objects associ&besi node, we will compute
a belief function, and from this belief function we will conng the measure of uncer-
tainty. We will choose the attribute and the split that resu the smallest possible
uncertainty in the child nodes.

The nonspecificity measure will thus be

NS(m) = 3 m(A)log, 4]

NS(m) = m({1}) logy(1) + m({2}) logy (1) + m({1,2}) log,(2)
m({1,2})
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The discord measure will be

D(m) =— Y m(A)log, BetP(A)

ACO

D(m) = —m({1}) loga(m(?” + m({; 2}>)
(m({12}) N m({; 2}))

- m({2)) log,
-~ m({1.2)) logy(1)
Dm) =~ m({1}) o, (m({1) + "2

~ m({2)) logy m((2}) + 22Dy

The nonspecificity measure will reflect the uncertainty itkaepresented by little in-
formation. If we have observed few objects from each cldss,nonspecificity will
be high because there is little information present to suppa beliefs. The discord
measure will reflect the uncertainty that is representedhieyconflict that may arise
from our information. When we have observed objects fronfed#int classes, they
each provide “evidence” in favour of their class, and theoaild thus be conflicting
evidence present.

We see from this that if we use these measures in the contedeasion trees, the
nonspecificity at the root node will be relatively small, g@nwve have all the training
objects associated with this node, i.e., we have quite af lmiformation present. As

the building of the tree proceeds, the training objects aveled into smaller sets.

This will result in an increase of nonspecificity, since thgeats remaining provide
less information. The discord, however, will be relativiigh at the root node, since
we probably will have many objects from each class at thigest®uring the building

of the tree, the splitting of the training set results in mmere” sets, i.e., sets with less
conflicting information about the class associated withrmeaining training objects.
This will result in the discord decreasing as the tree is grow

The behaviour of the two measures suggests that during tifldidguof the decision
tree, the uncertainty measure we propose will initiallyréese, until a stage where the
nonspecificity increases more than the discord decreaseésha uncertainty will start
to increase. This suggests a criterion to use in order taddewhen to stop building
the decision tree. The tree is grown as long as the uncertdetreases, but when the
uncertainty starts to increase, the growth stops. This waynay avoid the problem
of overfitting, since the nonspecificity will tell us when theare too few objects left
to consider for reliable information, i.e., the informatis too specific.

Another point of our approach is that by using belief funetido build the tree, we
will take into account how reliable our previous informatis. We will not only get
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a classification, but we will also get a belief function tedliwhat the classification is
based on. It is obvious that if we have a large amount of tngimbjects to build our
tree from, the classifier will be more reliable than if we ohbd a few training objects.
The belief functions obtained will reflect this differenck the ordinary method of
decision tree learning, the entropy is based on the condgpbportions, how many
training objects there are from one class relative to howynrteaining objects there
are altogether. That is, the entropy is computed based omatice

U
pi = —.

n
This ratio will be the same for instance in a case where we haMgect from class
out of 10 objects altogether as in a case where we have 10tslijem class out of
100 objects altogether.

In our method these two situations will be distinguishedause the belief functions
will be different. Our method would, for two classes, fortarsce give the results:

Case 1:
m({1}) = 11—1 — 0.09
m({2)) = = =081
m({1,2}) = 11—1 — 0.1
Case 2:
m({1}) = % — 0099
m({2}) = 19701 — 0.891
m({1,2}) = ﬁ — 0.0099

We see from this that the next object observed in both caseddwae classified as
belonging to clasg, but we will have a more reliable result in the second case tha
in the first case. So we see that the belief function can giwktiadal and useful
information.

5.3 Classification with uncertain labels

The method outlined above provides the basis for what we Yeaathieve with our
work, to provide a method for building classifiers from tiaig data with uncertainty
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in their class labels. In other words, we would like to be abldandle situations
where the training data do not have a crisp classificationatmasic belief assignment
associated with them.

In order to understand how this can be done, a more thorouglamation of Smets’
results [16] is needed. As stated above, Smets proposestmdnet computing a
belief function when the underlying probability functiomanly partially known. The
background for his results is outlined here.

Smets’ starting point is that we have a frame of discernntent, { S, F'}, and a set of
probability functions ove®, Py = [0, 1]. He states that from this we can construct a
new frame of discernmenitl’ = Pg x ©, on which we can build a belief structurg;, .

All the focal elements ofn;, consists of a set of mutually exclusive and exhaustive
intervals that are either in the domain &for in the domain ofF". SincelV is not a
finite space, the basic belief masses on it will be regardetkasities, and are called
basic belief densities. Figure 5.1 shows an example of & hadief density ori’’ on

the focal element|a, 1], S) U (0, a), F).

Figure 5.1: An example basic belief density idh

Smets chooses to use the commonality function in order te sta belief oni/’. The
commonality function is chosen, because it has the proplatyit makes the use of
Dempster’s rule of combination easy.

Suppose that we know that the probability of succé¥sy), is somewhere between
andb, and0 < a < b < 1. The belief is obtained by integrating on the basic belief
densities, and is in the form of the commonality functionegioy

Qo) = [* [ mlle o)) dy

The mass function can be obtained from

~9°Q[a,b)

mile,b) = ——5 &

These formulae are generalisations of the correspondingramnality and mass for-
mulae for the finite case given in Chapter 4.



34 5. THE METHOD PROPOSED IN OUR WORK

If we perform independent experiments and observe the nuaflseiccesses and fail-
ures, the commonality function induced by a success, aédubyS U F'is

Q([a.0]]S) = a
Qla,BlF) =11
Q(la,b)|SUF) = 1.

To obtain the commonality function induced bysuccesses and failures, we use
Dempster’'s rule of combination, which in case of the comnhgnéunction corre-
sponds to multiplying all the obtained commonality funogpand we get

Q([a,b]|r,s) =a"(1 —b)*
which after derivation and normalisation yields

L(r+s+1)

mla:bllrss) = —5aSrry

arfl (1 _ b)s—l

wherel is the gamma function.

If we want to compute the belief in the next outcome being assEgiven the previous
observations of successes andfailures, we get

Bel(S|r, s) = //sz S|P(S) € [a, b))m([a, b]|r, s) dbda

1)
:// T+S+ Lr+s+1) i et abda

r+ s+ r+s+1
which was stated in the previous section.

If for experimenti we have a belief function concerning the outcome, i.e., weeha
m;(S), m;(F) andm;(S U F), we will get

Q(la, b]|m;) = m;(S)a + m;(F)(1 —b) + m;(SU F).

For n experiments we get

n

Q([a, b]|my, ma, ..., my) = H[m,(S)a +m;(F)(1 —b) +m;(SUF)]

= Z Q;ja l—b

i+j<n

Whereaij are constants.
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We can then compute the belief that our next experiment esllitt in a success, based
on the previous experiments

bel(S|my, ms, ..., my,) = Z a;;a (l—b)]w

ijli+j<n

For our classification situation, this will give us a way ohgouting a belief function
based on all the previously observed cases’ belief funstidimen we will be able to
build a classifier with the method outlined in the previousties, but we build it based
on training objects which have uncertain labels insteadispdabels.

5.4 Implementation of our method

In order to test our method, we have built a program in MATLABplementing the
above ideas. The source code of the program is shown in Appénd

The program is developed to handle continuous attributeagabnly, since our purpose
is to test our method and not, at this stage, to build a commgetgram. But the
extension of the program to other attribute types would nedvlve much work.

The program includes two learning methods, one that is basddarning from ex-
amples with crisp labels, and one that is based on learnomg gxamples with un-
certain labels. The program is based upon the ID3-algoriglyplained in Chapter

3 and is modified according to what is outlined in the previeastions. The pro-
gram builds a decision tree from given training objects, Hreduncertainty measure
U(m) = NS(m) + D(m) is used to decide which attribute and which split to choose
at each node.

To find the best split for each attribute, two methods are u€ste method finds the
range of the attribute values, and proposes a split at oegigen intervals for this

range. The other method counts the number of objects, arbpes splits so that
the objects are divided in equal groups. Then the unceytasntomputed for each
possible split, and the best one is chosen, i.e., the onehwiedds least uncertainty.
For the method that learns from crisp labels, the best spfitst chosen according to
the amount of objects, and then the split chosen is adjustesérching in the area
around the split by using both splitting methods and chap#iie best one. For the
method that learns from uncertain labels, the computatior ts very large, so the
splitis chosen only using the method that splits accordirthé amount of objects and
not adjusted afterwards.

The program takes as input a text file with one training objepresented on one
line, with the attribute values succeeding each other se¢parby blank space, and
the decision attribute as the last attribute. The user cans#hbetween learning from
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crisp or uncertain labels, as well as choose to build a fe# or to use a stop criterion.
The stop criterion is implemented as building the tree ag las the uncertainty is
decreasing. As we will show in the next chapter, the uncaigaineasure had to be
adjusted with a parameter in order to demonstrate the exgdaxthaviour of initially
decreasing until a point is reached where it starts to irsge®ur uncertainty measure
is therefore implemented as

Ux(m) = NS(m) + AD(m)

The output of the program is a decision tree. At each node itieertainty and either
the number of objects from each class or the belief functienstéored. The attribute
to split on, the split, and the most common class are alsedtat each node. The
program also produces a text file with information from thdding of the tree, such

as the uncertainty computation at each node.

For testing the classification, the program takes as inpextfite with test objects in
the same format as the training objects. The output of thel&ssification is a text file
that lists the test objects with their known classificatiod éhe produced classification
of the decision tree. Both the belief function and the cfasion is shown. The error
rate is also computed.

There are two methods of computing the classification eamrprding to which clas-
sification labels are used for testing. Since we have bereftions as output from the
classifier, the error rate should not be a pure misclassidicadrror rate, but an error
measure stating the difference between the output and thed theat was assigned in
advance.

If objects with crisp labels are used for testing, the err@asure is a kind of misclas-
sification error rate. In advance, a class is chosen for epgtbased on the object’s
belief function. The classifier produces a new belief fumttiand the class with high-

est belief is chosen as the class of the object. The erroruneas thus computed

based on the difference between the class indicated by @wopis mass assignment
and the class indicated by the classifier’'s output. Thisrasrthus the percentage of
wrongly classified objects given by

wrongly classified objects

Error =
total number of objects

For testing objects with uncertain labels, it is not as ugefobompute the error measure
given above, since the belief functions given as outputkshmeicompared to the belief
functions previously assigned to each object. It would ginee information about the
performance of the classifier to compute the disagreemdnige® each object’s two
belief functions. So, to better assess the classificatioimése situations, an error
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measure is computed based on the concept of pignistic pitdipab

1& —_
Error = =Y (1 — BetP;(m;))
=

whereBet P, is the pignistic probability for objectinduced bym;, the belief function
produced for object. The pignistic probability for objectis given by

BetPy(ifi;) = Y mi(A)BetP(A).

ACO

The interpretation of this error measure is that the errenmigll if the produced belief
function does not differ much from the previously assigneligh function, but it does
not consider as an error a classification where the mass les“transferred” from

uncertainty to one of the classes.

5.5 Summary

We have in this chapter outlined our proposed method anchgigebackground and
underlying ideas. We have introduced a method based on ttisiale tree learn-

ing method, combined with the notions of belief functionsur@ethod consists of
modifying the entropy measure in the ordinary decision tesgning method to an
uncertainty measure based on belief functions. Our methsdwo possible ways of
building a classifier, one that concerns learning from disj@gth crisp labels, and one
that concerns learning from objects with uncertain labels.

This method allows to classify objects with crisp labelseaist as well as other meth-
ods, and in addition it offers a way of handling objects witicertain labels. This
means that one is able to make the most of the informationghatthis kind of rep-
resentation. We will in the next chapter show results ola@iftom experiments with
our method.






Chapter 6

Experiments and results

6.1 Introduction

For verification of our method, we have performed a test o di@m a real world

problem. The results from running these data through ouhatetire compared to
a decision tree learning program developed by Quinlan,dbasehe ID3/C4.5 algo-
rithm.

This chapter presents the data and a short description aldhein they are taken
from. It also presents the C4.5 program with which our resulere compared. A
presentation of the results obtained is given in the sedatied Results. The results
will be analysed in the next chapter.

6.2 The example data set

The chosen data set is taken from the domain of monitorirepsdéages. The problem
stated is to detect different waveforms in the sleep elecizephalogram (EEG), and in
particular detecting the transient EEG pattern of the Kqplexwave. For a thorough
presentation of this problem, see [17] and [18].

The activity of the human brain during sleep is classified istages. The problem
of detecting the K-complex is important in the assessmerdledp stages. Itis a
difficult task, because this transient signal has much inmmomwith the patterns of
a waveform that is called the delta waveform. Figure 6.1 shemamples of a K-
complex waveform and a delta waveform.

The data used to test our classification method are EEG signehsured 64 times
during 2-second intervals for one person during sleep. Each 2-second interval

39
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Figure 6.1: Examples of the K-complex and the delta wave

will be regarded as an object with 64 attributes containiafyi@s corresponding to
the 64 measured values. Since the problem is to train a fitasts distinguish K-

complex waveforms from delta waveforms, examples of thegewaveforms have
been extracted. We have in our data set 781 objects repmegegatterns of the K-
complex waveform and 397 objects representing patternseodi¢lta waveform.

Since the K-complex pattern is difficult to detect, five expen the domain have been
asked to look at the 781 objects that represent the K-convpdeeform and state for
each object whether he believes that the pattern is in facesenting a K-complex
signal or not. We have then for each of these objects five égparions of whether it
is a K-complex object, in which case the expert has put thagevdl”, or whether the
object is representing some other waveform, in which casexipert has put the value
“0”.

We will also adopt the closed-world assumption that theee anly two classes of
objects,K-complex(class2) objects andhot K-complexobjects (clasg), in our case

represented by the delta wave objects. The reason for tthaisf an expert says that
the object is not a K-complex pattern, that does not necéssagan that it is a delta
wave pattern, it may mean that he does not know what it is, oray mean that he
has recognised it as something else. However, since theotimly waveform we have
examples of in our data set is the delta waveform, this is thg ather waveform that

the classifier will be trained to recognise.

Figure 6.2 shows how the data are distributed according eoettperts’ classifica-
tion.Two attributes containing the most important infotioa regarding the classes
have been found by feature extraction, which makes us abdotahe data in two

dimensions. The K-complex objects with consent from défgrnumber of experts
are plotted together with the delta objects to see how thiégrdrom them.
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Figure 6.2: The distribution of the objects according toekperts’ classification

We see from the figure that the objects for which all the exypagree that it is a K-
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complex object are quite separate from the delta objectsth@se is consent from
fewer experts, the K-complex examples tend to move in thection of the delta
objects and be more uncertain.

We also observe from Figure 6.2 that the objects that havedassified as K-complex
objects by only one expert are widely distributed in thererdpace. This confirms our
above statement that if the objects are not K-complex ohjéney are not necessarily
delta objects. The figure also confirms that the expertssdiaation is quite a realistic

one.

For our method based on classification of objects with crdgels, we have defined
all the 781 objects representing patterns of the K-complaxefiorm as objects from
class2, and the 397 objects representing patterns of the deltafaswes objects from

classl.

To use our method for classification with uncertain labels,have to build a belief
function for each object. For the 781 K-complex objects HaBef function is based
on the 5 experts’ opinions. There is no common way of assgbétlief in a case like
this, so we have suggested a heuristic that assigns betiefding to the number of
experts who have classified the object as a K-complex objécinly one expert is
certain that the object is a K-complex object, the beliefgrssd to clasd should be
quite small, and the belief assignedita 2 should be quite high. If all the experts
have classified the objects as a K-complex object, the ad&fjned to classshould
be high. So, we have used the belief functions shown in Tallléo® our K-complex
objects.

Number of experts| m({1}) | m({2}) | m({1,2}) |
1 0 0.2 0.8
2 0 0.4 0.6
3 0 0.6 0.4
4 0 0.8 0.2
5 0 1 0

Table 6.1: Belief functions for uncertain K-complex obgect

As shown in Figure 6.2, the objects with assent from a smatilmer of experts can be
anything, they are not necessarily delta objects. Thisfieatd in our assigned belief
functions, since in these cases the mass of belief is notadddassl, but to1 U 2.

For the objects that represent the delta wave pattern, tiss assignment will be
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since we know for sure that these objects are examples okdle \waveform.

6.3 The C4.5 program

To evaluate the behaviour of our method, we will compare esults with the results
obtained from a traditional decision tree learning metha&. have chosen to use the
C4.5 program developed by J. R. Quinlan. His program is fadlgcribed in [9].

Quinlan’s C4.5 program is implemented in C for the UNIX eoviment. It has options
both for building a decision tree and for creating a set ofdpietion rules, which is
another way of representing the same information.

The program uses three files of data to build a tree and totteSthie attributes for
the data set have to be defined in a file with the extensiames This file starts with

a list of all the possible values for the decision attribtiten a list of the conditional
attributes and their type follows which states whether #&ycontinuous or have cer-
tain predefined discrete values. The training data arellista file with the extension
.data with one line in the file representing one object. The tegéab are listed in

a file with the extensiontest All these three files must have the same stem. The

program handles unknown attributes, and these are repegsernthe data files with a
’?1.

The C4.5 program uses the algorithm stated in Chapter 3 td aulecision tree. The
best attribute to split on is chosen by computing the infaromagain based on the
entropy. The best tree is found by building a full tree andhthruning it upwards by
looking at how the error rates will change if a subtree isaept with a leaf node.

The output of the program is a listing which first states wlaadiles and options have
been used, then the produced decision tree is listed fotldwea simplified decision
tree, i.e., the pruned version of the tree, and ends witimgighe classification results
for both trees on the training data and the test data. Theidedree is shown as a set
of rules testing on an attribute value according to a sphictileaf node is followed by
some numbers in parentheses, which indicate the numbeaiofrig objects that are
associated with this leaf node, and the number of miscladsifaining objects for this
node.

The results are listed both for evaluation on the trainintadand for evaluation on
the test data. For each case, both the results obtained frerult tree and from the
pruned tree are shown. The results list the size of the teeetie number of nodes, the
number of misclassified objects and a misclassificatiorr eate given in percentage
of the total number of objects. An estimated error rate is gisen, computed from
the upper limit of the confidence limits obtained from regagdthe misclassification
error rate as a probability distribution of error occurringt the end of the output,
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a confusion matrix is shown, giving the number of objects thave been classified
correctly and wrongly for each class.

We will run our data set through the C4.5 program, and theutuipthis program will
be compared to the results obtained from using our method.Wéwy we will be better
able to assess the performance of our method.

6.4 Results

Experiments have been made both with the method for buildicigssifier from train-
ing objects with crisp decision labels and with the methadfolding a classifier from
training objects with uncertain decision labels. The ekpents and their results are
divided in two parts, according to the two methods.

6.4.1 Crisp labels

The first experiment we did was to see how our method workednoordinary data
set, i.e., a data set with crisp labels for the decisiontatte. We built a data set from
our sleep data described above, with all the 1178 objec®&pBfects representing the
delta wave pattern (clag$ and 781 objects representing the K-complex pattern (class
2).

With this data set, both the C4.5 program and our method pedd poorly, with
a misclassification error rate of around 30 percent. This tealse expected, since
the data set consists of all the data available from the Kpgtexclass, i.e., it contains
objects which the majority of the experts have classifiedoa®eing an example of the
K-complex pattern. Consequently, this set of objects anatancertain information in
which it will be difficult to find a pattern. The data are showrFigure 6.3.

In order to get more distinct results, we removed the mosedam objects from the
data set. We thus built a data set consisting of the 397 abieuh the “delta” class
and the most certain objects from the “K-complex” class. nfrileigure 6.2 we see
that the objects with assent from all the experts obvioualy loe regarded as certain
K-complex objects, since they are quite separated from éfta dbjects. In addition,
the objects with assent from 3 and 4 experts can also be regjasirelatively certain,
because the objects do not yet become totally mingled witllétta objects. However,
as the most certain objects we chose the objects for whiaaat # of the experts had
classified it as an instance of the K-complex waveform, toldbe @ verify our method
with quite certain objects. We thus had 147 certain K-complgects.
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Figure 6.3: All the 1178 data objects. '+’ are the objectsrfrthe K-complex class
and ‘o’ are the objects from the delta class.
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Figure 6.4: All the 1178 data objects. '+ are the most certaljects from the K-
complex class, ’. are the uncertain objects from the K-ctaxglass and 'o’ are the
objects from the delta class.
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In Figure 6.4 the uncertain data are plotted as a separag id®rder to illustrate the

difficulty in classifying these objects. As the figure shoti® most uncertain data are
not easy to distinguish from the certain ones. Figure 6.3vshbe situation without

these uncertain objects. We can see from the figure that ifelexisthe most certain

objects, i.e., all the delta objects and the K-complex dbjéar which 4 or 5 experts

have given their assent, the classification task is easier.
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Figure 6.5: The 544 most certain objects. '+ are the mostagerobjects from the
K-complex class and 'o0’ are the objects from the delta class.

The 544 objects of the data set were randomly mixed, in oaavaid any impact from

the fact that all data were measured during the same slegmperhich means that
they were ordered sequentially by time in our initial datedil Five different random
sets were made, and they were each divided in a training g&%bbjects and a test
set of 119 objects. The result from running these data thrauwg program is shown
in Table 6.2.

Misclassification error rate
Data set 1] Data set 2 Data set 3 Data set 4 Data set 5| Average
Train | 0.0024 0.00 0.0024 0.0024 0.0024 0.0019
Test | 0.2437 0.2101 0.1513 0.1345 0.1513 0.1782

Table 6.2: Error rates for the 5 data sets.
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With these data sets it appeared that even though the stepamiof building the tree
as long as the uncertainty measure was decreasing was usag@peoximately full
tree was built each time. It can be seen from the large diffsgen the results for
classification on the training set and on the test set thabWe€fitting is high. This
suggests that, as presumed, we should modify our uncsrt@easure by inserting a
parametery, in order to be able to obtain the desired behaviour from theettainty
measure. We then modified the uncertainty measure to be

Ux(m) = NS(m) + AD(m)

Inserting this parameter means that we have to run the degtahseugh the program
for different values of\ in order to choose the best tree. This means that we will liave t
adjust the parameter for our data to find whichalue gives the most optimal tree. This
is analogous to the pruning method in the C4.5 program, wierenisclassification
error rate is computed for each size of the tree in order t@sbadhe tree that gives the
lowest error rate.

We tried running the same 5 data sets as above through theaprdgr different values
of A\. The results from this experiment can be seen in Table 6.3.

Misclassification error rate

A Data set 1] Data set 2 Data set 3 Data set 4 Data set5 Average
1 Train | 0.0024 0.00 0.0024 0.0024 0.0024 0.0019
Test | 0.2437 0.2101 0.1513 0.1345 0.1513 0.1782
0.5 | Train | 0.0024 0.00 0.0024 0.0024 0.0024 0.0019
Test | 0.2269 0.1849 0.1596 0.1345 0.1513 0.1714
0.2 | Train| 0.0071 0.0047 0.0094 0.0047 0.0094 0.0071
Test | 0.2269 0.2017 0.1177 0.1261 0.1261 0.1597
0.15 | Train | 0.0071 0.0071 0.0142 0.0118 0.0212 0.0123
Test | 0.2269 0.1933 0.1261 0.1092 0.1345 0.1580
0.1 | Train| 0.0330 0.0566 0.0708 0.0212 0.0566 0.0476
Test | 0.1849 0.1681 0.1765 0.1177 0.1261 0.1546
0.075| Train | 0.0660 0.0802 0.0943 0.0920 0.0778 0.0821
Test | 0.2017 0.1849 0.1429 0.1597 0.1345 0.1647
0.05 | Train | 0.10142 | 0.0991 0.0943 0.1274 0.1321 0.1109
Test | 0.1765 0.2101 0.1429 0.2017 0.1765 0.1815
C4.5 | Train | 1.7/2.1 1.2/1.2 1.9/3.5 1.7/3.3 2.1/2.1 1.72/2.44
Test | 19.3/19.3| 20.2/20.2 | 13.4/14.3| 16.0/19.3| 19.3/19.3 | 17.64/18.48

Table 6.3: Error rates for different values bf

The value\ = 1 obviously corresponds to the case above withouttharameter. The
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table also shows the results obtained by running the sanaeseé#t through the C4.5
program. The C4.5 program gives, as stated earlier, as btlipumisclassification
error rate in percentage of the total number of objects. &lage two numbers given
for each case, the first number is the error rate for the fa# tand the second number
is the error rate for the pruned tree.

We see from these results that for this data set the best tittbenobtained when
A = 0.1. We also see that the misclassification error rate is sidsgtter than before
we introduced the parameter.

Table 6.4 shows the confusion matrices obtained for thesitsof the 5 data sets,
both for our method with\ = 0.1 and for the C4.5 program. The confusion matrices
show how many objects have been correctly classified as ¢elgrio classl, how
many objects have been wrongly classified as belonging ss2land so on. We see
from the results that the two methods perform approximaggjyally, with a small
advantage for our method.

Data set 1 Data set 2 Data set 3
Our | C45 Our || C45 Our || C45
Classified as Classified as Classified as
1 21 1] 2 1 (212 11212
Real 1| 63 | 17| 71| 9 1 66|14 | 67| 13 1 (70|10 71| 9
2| 12 |27 14| 25 2 1128 11| 28 21 8(31] 831
Data set 4 Data set 5
Our || Quin Our [| Quin
Classified as Classified as
112 (1|2 112 1]|2
Real 1|71| 9 | 71| 9 1 (70|10 69| 11
2| 7 |32| 14|25 2 | 831 12| 27

Table 6.4: Confusion matrices for the 5 data sets with 544aibj

6.4.2 Uncertain labels

Experiments were also done to test how our method would warkléssification with
data labeled with belief functions as decision labels exdtef crisp labels. Because
our implementation of the computation of belief functionsem building a tree in this
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case is very time consuming, we had to build smaller data $&¢salso found from
experiments that by using only two attributes found by feagxtraction, we got as
good results as when using all the 64 attributes. This aldoced the computation
time. So we decided to use only two attributes for these éxyaats.

The data sets we used for these experiments were of two t@resdata set contained
delta objects and only the most certain K-complex objectsclwwe chose to be the
objects for which 3,4 or 5 of the experts had classified thebeasg an example of the
K-complex pattern. The other data set contained also tleesid¢cted as examples of
the K-complex pattern, but which at least three of the espdédssified as not being an
example of such. The “certain” data set used for trainingaioed 100 objects, i.e.,50
randomly drawn objects among the most strong cases of K-xmegamples, and 50
randomly drawn objects among the examples of the delta wEtve.“uncertain” data
used for training contained 150 objects, i.e., the same &@8ia objects as above and
in addition 50 randomly drawn objects from the uncertaindaplex examples.

These two data sets were used to train the system, both wsthlabels and with belief
function labels. In order to evaluate the two methods’ behavin comparison with

each other, two validation sets were also built, consistihdifferent objects. These
two sets followed the same structure as the training setsywe made a “certain” val-
idation set containing 100 certain objects and an “una@rtaalidation set containing
in addition 50 uncertain objects. Figure 6.6 shows the twming sets and the two
validation sets.

Normally in a classification problem, we have to deal with em@in objects. We
can then choose to train our classifier on all the objects we baserved, or we can
choose to leave out the uncertain ones and use only thercetipacts. To reflect this
real world situation, the idea was to build trees both by gsinly the uncertain objects
and by including the uncertain objects. The trees obtaihedld then be validated on
the validation set containing uncertain objects, to see hatwvay including uncer-
tain objects in the training set would affect the classifigesformance regarding the
cassification of uncertain objects.

First, we used the certain training set to build trees fohbuethods. For the method
using crisp labels, all the K-complex objects belong tosand all the delta objects
belong to class 1. For the method using uncertain labels sgig@ed a belief function
for each of the objects based on the experts’ opinions, daieead earlier.

For the certain training set, we used crossvalidation ireotd find the value oA that
provided the optimal tree. Crossvalidation consists irdhmg out a certain amount of
objects as test objects chosen randomly from the data g tie remaining objects
to build the tree, and doing this several times with différehjects as test objects
each time. We used a 5-fold crossvalidation, which meartswhachose test objects
randomly 5 times, so that we got 5 different data sets. Eauok tve extracted 25
objects as test data and the remaining 75 objects were usedrasg data.
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Figure 6.6: The different data sets used for classificatibhe data sets on the left
are the certain data sets, and the data sets on the righteabmtlertain data sets. The
topmost data sets are the training sets, and the lower dstargethe validation sets.
'+ are the most certain objects from the K-complex classre the uncertain objects
from the K-complex class and 'o0’ are the objects from thealelass.

Then we ran the data through the method based on crisp latiétsdifferent values
for A. The results of this experiment is shown in Table 6.5. As we fsem these
results, the best tree is obtained with= 0.2. Then a tree was built on all the 100
training objects with\ = 0.2. This tree was validated on the uncertain validation set,
i.e., the set that contains 150, including 50 of the unceKacomplex objects. For this
experiment the misclassification error rate Wa333 The disagreement error measure
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based on the pignistic probability was21

Misclassification error rate

A Data set 1] Data set 2/ Data set 3 Data set 4 Data set 5 Average
1 | Train| 0.0133 0.00 0.00 0.0133 0.0080 0.008
Test | 0.16 0.28 0.28 0.20 0.28 0.24

0.75| Train | 0.0133 0.0133 0.0133 0.0267 0.0267 0.0187
Test | 0.32 0.24 0.32 0.20 0.28 0.272
0.5 | Train | 0.04 0.0267 0.0533 0.0133 0.0267 0.032
Test | 0.32 0.24 0.20 0.24 0.32 0.264

0.2 | Train | 0.12 0.1067 0.12 0.1067 0.08 0.1067
Test | 0.20 0.16 0.12 0.20 0.24 0.184

0.1 | Train | 0.12 0.12 0.1733 0.12 0.08 0.1227
Test | 0.20 0.20 0.28 0.20 0.24 0.224

Table 6.5: Crossvalidation for learning on certain datéhveitisp labels for different
values ofA

Disagreement measure

A Data set 1] Data set 2/ Data set 3 Data set 4 Data set 5 Average
1 | Train| 0.1508 0.1172 0.1312 0.1219 0.1203 0.1283
Test | 0.2713 0.2202 0.2193 0.1637 0.2872 0.2323
0.75| Train | 0.1508 0.1172 0.1648 0.1303 0.1203 0.1367
Test | 0.2713 0.2202 0.2317 0.1902 0.2872 0.2401
0.5 | Train | 0.1644 0.1172 0.1648 0.1303 0.1203 0.1394
Test | 0.2839 0.2202 0.2317 0.1902 0.2872 0.2426
0.2 | Train | 0.1799 0.1372 0.1648 0.215 0.1311 0.1656
Test | 0.2889 0.1774 0.2317 0.2702 0.2911 0.2519

Table 6.6: Crossvalidation for learning on certain datehvbi¢lief functions as labels
for different values ofA

Then the same data were run through the method based onaindaliels. For this
method we got the results shown in Table 6.6. Since we now w&rey uncertain
labels, the disagreement measure based on the pignistealgtity was used as an
error measure for the crossvalidation. The best tree waairdd withA = 1, and
a tree was built from all the 100 training data with= 1. The classifier was tested
on the same uncertain validation set as above, and the s#atation rate for this
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experiment wa®.3267 The disagreement measure in this case Wad08 We see
from these results that the method using uncertain labefenpes slightly better than
the method using crisp labels.

The confusion matrices for the two classifiers are shown liel&.7. The confusion
matrices show that we get a slightly better result regardiegobjects that are not
K-complex when using uncertain labels than when using daisgls.

| Crisp labels|| | Unc. labels]
Classified as Classified as
1 2 1 2
Real 1|37 13 1|38 12
2|37 63 2|37 63

Table 6.7: Confusion matrices for the uncertain validatilaita on trees built from
certain training data with crisp labels and uncertain label

Then we tried to build a classifier from the uncertain datanstt 150 objects. For the
method based on crisp labels, we put in class 2 both the 50 ecedstin K-complex
examples and the 50 uncertain K-complex examples. The 5 ebehmples were put
in class 1. For the method based on uncertain labels, thef fatictions for the new 50
uncertain objects were assigned based on the expertar&ats, as explained earlier.

We did the same as for the certain training set, we used adefolssvalidation with
110 training objects and 40 test objects. The results fdemint values of\ for the
5 data sets using crisp labels are shown in Table 6.8. Thereestvas obtained with
A = 0.1. The results for the method based on belief functions addare shown in
Table 6.9. Here the best tree was obtained with 0.5.

The uncertain validation set with 150 objects was also ruouth both of these clas-
sifiers. The misclassification error rate for the tree budhf data with crisp labels was
0.3467 and the disagreement measure @&625 The misclassification error rate for
the tree built from data with belief functions as labels Wa®4Q and in this case the
disagreement measure Wa2247 The confusion matrices for both trees are shown in
Table 6.10.

We have now built four trees, two trees built on the certaitadaining set, one using
crisp labels and one using belief functions as labels, andres built on the uncertain
training data set, also in this case using both kinds of &ab#l trees have been tested
on the certain validation set of 100 objects. The decisiamidaries obtained by the
four trees are shown for the certain validation set in Figuie
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Misclassification error rate

A Data set 1] Data set 2| Data set 3 Data set 4 Data set 5 Average
1 | Train| 0.00 0.00 0.00 0.00 0.00 0.00
Test | 0.35 0.325 0.425 0.30 0.325 0.345

0.75| Train | 0.0091 0.00 0.00 0.0091 0.00 0.0036
Test | 0.325 0.325 0.425 0.325 0.325 0.345
0.5 | Train | 0.0364 0.1364 0.00 0.0182 0.0091 0.04
Test | 0.35 0.375 0.425 0.30 0.325 0.355

0.2 | Train | 0.2091 0.2182 0.0625 0.1818 0.20 0.1743
Test | 0.40 0.40 0.40 0.25 0.275 0.345

0.1 | Train | 0.2091 0.2455 0.0625 0.2546 0.30 0.2143
Test | 0.40 0.275 0.40 0.25 0.30 0.325

Table 6.8: Crossvalidation for learning on uncertain dath warisp labels for different
values ofA

Disagreement measure

A Data set 1] Data set 2 Data set 3 Data set 4 Data set 5 Average
1 | Train| 0.1061 0.1196 0.1080 0.1250 0.1174 0.1152
Test | 0.2237 0.2729 0.1611 0.2143 0.2147 0.2173
0.5 Train | 0.1435 0.1555 0.1597 0.1583 0.1740 0.1566
Test | 0.2348 0.2314 0.1557 0.2241 0.2117 0.2115
0.2 | Train | 0.1688 0.181 0.1859 0.1858 0.2081 0.1859
Test | 0.2459 0.2433 0.1701 0.2641 0.2209 0.2289

Table 6.9: Crossvalidation for learning on uncertain data felief functions as labels
for different values of\

| Crisp labels|| | Unc. labels]
Classified as Classified as
1 2 1 2
Real 1|35 15 1|37 13
2|37 63 2|38 62

Table 6.10: Confusion matrices for the uncertain validatiata on trees built from
uncertain training data with crisp labels and uncertairlsb
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If we compare these results with the results obtained fraartribes trained on certain
labels, we see that it is slightly more difficult to classifetvalidation objects when
the classifier has been trained on uncertain objects than wieas been trained only
on certain objects. However, it seems in both cases that #ibad that uses belief
functions as labels for the training data performs slighiyter than the method that
uses crisp labels for the training data. The confusion wedrshow the results more
detailed.

(a) Training on certain data with crisp labels (b) Training on certain data with belief func-

tion labels
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Figure 6.7: Decision boundaries for the uncertain valmaset with 150 objects for
the four different trees built. '+’ are the most certain atigefrom the K-complex class,
' are the uncertain objects from the K-complex class ariéte the objects from the
delta class.
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The four classifiers built were also tested on the certainda#ibn set, i.e., the set
that contains only the most certain objects of the K-compbkamples. The decision
boundaries for the certain validation set in each case ane@rsin Figure 6.8.
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Figure 6.8: Decision boundaries for the certain validasetwith 100 objects for the
four different trees built. '+ are the most certain objefitsm the K-complex class
and 'o’ are the objects from the delta class.

When training on certain data using crisp labels, the mssiligation error rate was
0.24 and the disagreement measure Wa2546 For the method using uncertain
labels, the misclassification error rate w24, and the disagreement measure was
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0.2361 When training on uncertain data using crisp labels, thelassification error
rate was0.24, and the disagreement measure W&&40 For the method using un-
certain labels, the misclassification error rate W&}, and the disagreement measure
was0.2712 Again we observe that the method based on uncertain laleelsrms
slightly better than the method based on crisp labels.

6.5 Summary

We have in this chapter presented experiments performedatanftbm a real world
classification problem. Experiments have been done on baris pf our proposed
method, the method using crisp labels as decision labelth#otraining set, and the
method using belief functions as labels for the training(satertain labels). Experi-
ments have been done both with data sets containing only tisegartain objects and
with data sets that contain an amount of uncertainty reptedeby objects for which
the experts did not agree on the classification. The resbttEed will be interpreted
and analysed in the following chapter.



Chapter 7

Discussion

7.1 Introduction

In the previous chapter several experiments were descahddhe results of the ex-
periments were presented. We will in this chapter look al@s¢he results in order to
discuss the performance of the method we have proposedsimtrk. An analysis of

these results will make us able to draw conclusions reggroiim method.

In order to refine and improve the method, some further wodukhbe done. In the
last section of this chapter a suggestion of what can be dotheifuture to extend this
work is given.

7.2 Analysis of the results

We chose to test our method on a real world classificationlpropin order to get
an impression of how our method performed. We chose the @noladf discerning
K-complex patterns from delta wave patterns in EEG’s mesbduring sleep. This
problem represented a good example of a problem that ouradetiould be able to
handle. The different objects which were supposed to be pkamof the K-complex
pattern were presented to some experts, and they were ask@ckttheir opinion on
the objects. The experts did not always agree on the claasifig which introduced
some uncertainty in the labeling of the objects. This is 8yalke situation we wanted
to be able to handle with our method.

As we saw it, the data set contained three types of objects. t@e of objects con-
sisted in the examples of the delta wave pattern, which hagrtain classification.
Then there was the set of objects that was supposed to be saaiphe K-complex
pattern, but we considered that this set of objects cordaméact two different sub-

57
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classes. One subclass was the objects that were most cex@mples of the K-
complex pattern and the other type was the objects for wiietetwas much doubt as
to whether they were examples of the K-complex pattern or @bwiously, the latter
would be the hardest to detect. However, for a classifiergusiisp labels, they would
all belong to the same class and would consequently makeré difficult to classify
the certain objects as well. We got this confirmed when we teebuild a classifier on
the whole data set with crisp labels, which performed quatélya This classifier had a
misclassification error rate of around 0.3. This would irdiécthat a simple classifier
that classified all of the objects as examples of the K-cormglass would perform
equally well, which is certainly not a desired result. It wag belief that a method
that would distinguish between the certain and uncertajead by using uncertain
labels instead of crisp ones would be better able to deteditferent types of objects.

7.2.1 Learning from crisp labels

First we introduced belief functions in the decision tresrteng method, which makes
us able to obtain a belief function instead of a crisp clasatifdn for each object to be
classified. The belief function will contain more informatithan just a crisp classifi-
cation, because it will tell us for which class we should hidneehighest belief concern-
ing our object. This makes us able to make a decision aftelsvabout which class
our object most probably belongs to. Our first concern wasequently to test how
our proposed method of substituting the entropy measutesiniécision tree learning
algorithm with an uncertainty measure based on belief fonstwould perform.

We removed the most uncertain objects from the K-complegsgland tested our
method on the remaining objects. This was done in order taegilts that were
not affected by the difficulty introduced by these object& MMilt a classifier with the
most certain objects labeled by crisp classes, and compledisclassification error
rate from the classification obtained from the belief fuois.

The results shown in Table 6.3 show that our method perfomnte gvell, and appar-

ently slightly better than the C4.5 method regarding thectassification error rate.

However, this difference may not be significant, becausediaissification problem is
not very difficult when the uncertain objects are removedaddition, it is tested on

a relatively small amount of data. Using crossvalidatigodknds to give a slightly
better result, since the average is drawn from differentpositions of the same data.
That way the training and test data will be more similar thiathére was a totally

different test set to validate the results as is the case wigerun the C4.5 program.
However, the results at least show that our method perfoppsaimately as well as

the ordinary method for decision tree learning, which is aoceiraging result.
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7.2.2 Learning from uncertain labels

Once we had assured that our method performed well, we codish@ our experi-
ments to the more interesting part of our method, the paraofiling uncertain labels
in the training data. In order to see how this method perfaimes wanted to compare
it to the method we had already introduced, i.e., the methatuses crisp labels. To
do this, we had to test the two methods using the same datalbetslata sets we used
for these experiments were quite small because of the dailable and because of the
computation time required for this method, so the resultaldmot be as significant
as desired, but they would still be able to give us an indicatif how the method
performed.

A summary of the results described in Chapter 6 is shown inelT@ll. This table
shows the results obtained with the four different classifioeiilt, both for the uncertain
validation set and for the certain validation set. The naissification error rate and
the disagreement measure based on the pignistic prolyaisilijiven in each case.
Validation with uncertain objects (the topmost part of thbl¢) is the most realistic
situation. In a real world classification problem, the dathé classified would contain
uncertain objects to some extent. This is therefore theasdn that gives the most
interesting results. Validation on certain data is incllidie@ obtain more information
about the method.

Uncertain validation set

Certain training Uncertain training

Crisp labels| Unc. labels| Crisp labels| Unc. labels
Miscl. error 0.333 0.3267 0.3467 0.340
Disagr. measure  0.21 0.2008 0.2625 0.2247

Certain validation set

Certain training Uncertain training
Crisp labels| Unc. labels| Crisp labels| Unc. labels
Miscl. error 0.24 0.24 0.24 0.24
Disagr. measure 0.2546 0.2361 0.344 0.2712

Table 7.1: Summary of results for the uncertain validatietresid the certain validation
set, for both methods of presenting the error measure.

From the results shown in Table 7.1, we see that when vatigath uncertain objects,
the method using uncertain labels performs slightly bektan the method using crisp
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labels. This is especially the case when uncertain objexsts bheen used for training.
This indicates that using uncertain labels for classiftzaimproves the classifier when
it is trained on uncertain objects. The method using untettbels attaches less
importance to the uncertain objects than to the certainctdje@nd consequently the
classifier is less affected by the uncertainty than the iflasbuilt from crisp labels.

This is confirmed by the results obtained from validating ertain objects. The dis-
agreement measure shows that the method using uncertais [arforms better than
the method using crisp labels. Using uncertain labels isi@mealistic way of labeling
uncertain data, and our method takes advantage of this.

Regarding the difference between using uncertain objectsdining and using only
certain objects, we see that the error is slightly increaslkdn uncertain objects are
introduced. This was in a way to be expected, because inttimuof the uncertain
objects will to a certain extent “confuse” the classifier amake the classification task
more difficult. However, the increase is not a great one, @apg in the situation
where we have validated the method on uncertain objectseS$iis is the most realis-
tic situation, we can conclude that the results in fact shmat by including uncertain
objects in the training set, it would be possible to obtaassifiers that perform about
as well as when only certain objects are used. In a way thidbisdiscouraging, be-
cause it would be desirable to find that since the uncertgectdcontain additional
information, the classifier would take advantage of thisinfation and improve the
result. However, using uncertain objects does not worsesithation to a great extent,
which means that we will be able to build classifiers with la# information we have
and still get agreeable results. This agrees quite well whht we hoped to find, that
our method makes us able to use all the objects we have psaiyiolbiserved to train a
classifier.

Figure 6.7 shows the decision boundaries for the four diassithat were built based

on the certain training set and the uncertain training set.s@é that the method using
crisp labels creates quite simple classifiers, while thehogkusing uncertain labels
build more complex ones. This suggests that the method usiogrtain labels is able

to differentiate the objects a bit more than the method usiisp labels. However, this

does not seem to improve the classification to any great exten

We are able to conclude that the classification error is nosermed to any great extent
by using uncertain K-complex objects in the training setisTasult suggests that our
method gives less importance to the uncertain objects thdretcertain objects. With

our method we will be able to use the information containeth@uncertain objects

without attaching too great importance to them.

These results confirmed our belief that the method usingitrgiobjects with uncertain
labels results in better classifiers than the ones obtaired fnethods using crisp
labels. Again it must be stated that the results are notfsigni because of the small
amount of objects tested. There is only a small differendeclwmay be the result of
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some coincidence. However, the results encourage furtbee.w

7.3 Comparison to other methods

It is not easy to compare our method to other methods, sincet&nowledge there
are not many other methods available to handle uncertassiéization labels.

T. Denoeux’s method combining the k-Nearest-Neighbouraggh with the Dempster-
Shafer theory of evidence ([5]) have been tested on our elkadigpa set in an informal
way, which gave approximately the same results as we olatawit our method.

What we are able to state is that our method performs at lsastell as other deci-
sion tree learning methods, exemplified by Quinlan’s C4dgmm. In addition, our
method provides a way of handling uncertain labeled trgimhjects, which the or-
dinary decision tree learning method can not do. We have fihwsd a method that
meets a problem many other methods do not handle. It progidesy of using uncer-
tain information as profitably as possible.

7.4 Further work

The work we have done shows some interesting results cangetime use of belief
functions in decision tree learning. However, in order tcalde to obtain more con-
clusive results, further and more extensive experimerasistbe performed. It is also
possible to envisage certain modifications and extensotietmethod outlined in this
work. Some of the possible further work is presented below.

e The data on which we have tested our method seem to represainiyzeasy
classification problem. This is suggested by the fact tratlifierence between
classifiers trained on only certain objects and classifi@igéd on objects that
contain uncertainty is not very conspicuous. It would beresting to test the
method on a more difficult classification problem that wouddngbnstrate more
influence by the uncertain objects on the classificationlteshis could show to
what extent our method can avoid the difficulties the unaettawill introduce,
and at the same time use the information contained in thesertamn objects
in the best possible way. Other experiments would thus dstrate to what
extent the uncertain objects have an impact on the resatwvéether or not our
method is able to handle this impact in a satisfactory wayolild also be of use
to test the classifiers with validation sets that containmgeleamount of objects,
in order to get more reliable results.



62 7. DISCUSSION

¢ It would be interesting to perform experiments on other radththat meet the
problem of training systems on objects for which there isantanty about their
classification. Rough set theory provides such a methoditamould be inter-
esting to perform experiments with this method to compaeerésults with the
results obtained with our method.

e For the part of our method that uses uncertain labels fosifleation we have
implemented a function that computes a belief function feoset of given belief
functions that has been assigned to the training objects flihction uses an
algorithm that is computationally of complexity, which means that for a large
amount of objects, it would be very time consuming. An imgment of the
complexity of this algorithm would make it easier to perfoaxperiments on
larger sets of data, which would make our method more flextiolecerning
what data sets are used for training.

e An interesting extension of the method would be to make & ébinvolve clas-
sification problems with more than two classes. One way afigithis may be
to divide the problem into several two-class problems. hstance, suppose
there are 3 classes, b andc. This problem could be divided into three two-
class problems, one that classifies whether the objectadpétoclass: or not,
one that classifies whether the objects belong to dlagsnot and so on. The
inconvenience of this method is that we would not get onlydassifier, but we
would get as many classifiers as there are classes. We worgddeun our ob-
jects through all of these classifiers and combine the eguthe end. Another
way of including more than two classes would be to modify Srejuations on
how to compute a belief function based on a partial knowlexfdglee probability
distribution to the case of more than two outcomes. This aasiply be done
by approximation.

e It would not be too time consuming to extend the method to coet only
continuous attributes as it does now, but to make it able talleabinary and
discrete attribute values as well. This would also make cethwd more flexible
regarding what data sets it is feasible to use.

7.5 Summary

We have in this chapter given an analysis of the results obtawith our method.
Even though our example data set may not represent a vemuttifiassification task,
the results we obtained using this data set are promisingy $how that our method
performs equally well as the ordinary decision tree leagmrethod.

In addition, our method provides a means of using uncergdialed objects as training
data. It is our belief that this will make the classifier aldesktract more information
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from the training data and produce more differentiatednmiation about the objects
to be classified.

The method should be tested further and refined in order to & solid. Some
suggestions of further testing and modifications to our metare outlined in this
chapter. The results obtained in our work are suggestiveeacdurage this kind of
further work.
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Appendix A

Source code

The MATLAB implementation of our method is shown in this Apgix. The Ap-
pendix is divided in three parts. The first part shows the maictions of the program,
i.e., the main file to run when building a tree, the main funetihat builds a tree and
the main function that classifies test objects. The secorigpaws the functions used
to compute the uncertainty measure (the entropy) and thef i@hction computation.
The third part shows the auxiliary functions.

The tree data structure has been used to build the deciges. tMATLAB functions
for this data structure were distributed free for use by a MAB programmer and are
not included in this Appendix.

A.1 Main functions

A.1.1 buildtree.m

%%%
%%% Main file to run when building a decision tree
%%%

% Ask user for text file to use to build decision tree
[fnrame,pname] = uigetfile("*.dat’,/Load Training Data’)

% Ask for number of attributes in text file

prompt = {{Enter number of conditional attributes:’};
title = 'Attributes’;
answer = inputdlg(prompt,title);

% Load text file and store objects in matrix a
numatts = str2num(answer{1});

num = [];

for i = 1:numatts
num = [num '%g’];

end
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file = strcat(pname,fname);

% Ask if the data are labelled with crisp or uncertain labels

button = questdlg('Which labels?’, 'Labels’, 'Crisp’, 'Un certain’, 'Uncertain’);
if stremp(button,’'Crisp’)
label = 0;
elseif strcmp(button,’Uncertain’)
label = 1;
end
fid = fopen(file);
if label == 0
a = fscanf(fid, num, [(numatts+1) inf]);
elseif label == 1
a = fscanf(fid, num, [(numatts+3) inf]);
end
a = a);
fclose(fid);
% Ask if the user wants to build a full tree or not
stop = 0;
button = questdig(How to build tree?’, 'Building tree’, 'U se stop criterion’, 'Build full tree’,

'Use stop criterion’);
if strcmp(button,’'Use stop criterion’)

stop = 1,
elseif strcmp(button,’Build full tree’)
stop = 0;

end

% Ask for parameter to use in entropy computation

prompt = {'Enter parameter to use for uncertainty measure:’ h
titte = 'Entropy Parameter’;
answer = inputdlg(prompt.title);

lambda = str2num(answer{1});

% Open file for writing results
fid = fopen(results.txt’, 'w’);
fprintf(fid, 'Entropy parameter: %4.3f\n\n’, lambda);

% Initialize entropy value
[m,n] = size(a);
fprintf(fid, 'Root node! \n\nNumber of objects: %5u\n’, m) ;

if label == 0
% Check number of values for the decision attribute
attval = attvallist(a, n, m);
[y,x] = size(attval);

% Count number of objects from each class
% (nl=class 1, n2=class 2)

nl = 0;
n2 = 0;
if x == 2
for i = 1:m
if a(i,n) ==
nl =nl + 1;
elseif a(i,n) == 1
n2 = n2 + 1;
end
end
elseif x ==
if a(l,n) == 0
nl =m;
elseif a(1,n) == 1
n2 = m;

end
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end

fprintf(fid, 'Number of objects from class 1: %5u\n’, nl);
fprintf(fid, 'Number of objects from class 2: %5u\n\n’, n2)
ml = nl/(n1+n2+1);

m2 = n2/(n1l+n2+1);

mOm = 1/(n1+n2+1);

BetP1 = m1+mOm/2;

BetP2 = m2+mOm/2;

NS = mOm*log2(2);

D = -(ml*log2(BetP1))-(m2*log2(BetP2));

E = NS+(lambda*D);

elseif label ==
bfmat = a(:,n-2:n);
[mlist,A] = labelcomb(bfmat);
ml = mlist(1);
m2 = mlist(2);
mOm = mlist(3);
BetP1 = m1+mOm/2;
BetP2 = m2+mOm/2;

NS = mOm*log2(2);

D = -(ml*log2(BetP1))-(m2*log2(BetP2));
E = NS+(lambda*D);

end

fprintf(fid, 'Entropy: %9.4f\n\n’, E);

% Build tree

if label == 0

[tree, root] = DT(a, E, n1, n2, stop, fid, lambda, label);
elseif label == 1

[tree, root] = DT(a, E, m1l, m2, stop, fid, lambda, label);
end

% Prune leafnodes which have the same target value
tree = prunetree(tree, root);

% Draw decision tree on screen
DrawTree(tree, 'num2str(data(5))’, 'num2str(data(6))’ );
save tree tree;

if label ==
% Find number of objects from each class at each node,
% and the entropy
NValues = ncont(tree, 1, [], 1);

% Write results to file
OutNValues = NValues’;

fprintf(fid, \nNumber of objects at each node \n--------- el \n\n’);

fprintf(fid, 'Level: N1:\t N2:\t Entropy:\n’);
fprintf(fid, '%2u\t%5u\t%5u\t%9.4\n’, OutNValues);
end

% Ask if user wants to classify any objects

button = questdlg('Classify test objects?’, 'Classify’, ’ Yes', 'No’, 'No’);
if strcmp(button,’No’)
classify = 0;
elseif strcmp(button,’Yes’)
classify = 1,
end
if (classify == 1)
classifytest(tree, label);
end

% Ask if user wants to classify again
if (classify == 1)
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button = questdig('Classify again?’, 'Classify’, 'Yes’, ’ No’, 'No’);
while strcmp(button,’Yes’)
classifytest(tree, label);
button = questdig('Classify again?’, 'Classify’, 'Yes’, ’ No’, 'No’);
end
end
fclose(fid);

%%%
%%% END
%%%

A.1l.2 DT.m

function [newtree, newroot] = f(Examples, E, ml, m2, stop, f id, lambda, label)
%

% Function DT is the main function that builds a decision tree

%

% Examples is a two-dimensional matrix where each row

% contains an example with its attribute values and a

% decision value

%

% E is the value of the Entropy for this new node

%

% ml, m2 is either the number of objects from each class

% for this new node (if crisp labels are used) or the mass

% assignment for the two classes (if uncertain labels are use d).
%

% stop is a parameter which tells whether or not to use

% the stop criterion. stop = 0 builds a full tree,

% stop = 1 stops when there is no more decrease in Entropy

%

% fid is the file identifier of the file to which the

% results are written

%

% lambda is a parameter to use when the entropy is computed

%

% label says what labels are used for building the tree

% (0 = crisp labels, 1 = uncertain labels)

%

% The data field of the nodes in the tree are built

% in this way:

% [ [decision value] [entropy] [n1/m1] [n2/m2] [split attri bute] [split value] ]

% Build a root node for a tree
[newtree, newroot] = NewTree(2,6);
leafnode = 0;

% Display on screen that a new node has been made
disp('New node...")
fprintf(fid, 'New node!\n--------- \n\n’);

% Check size of Examples-matrix
[m,n] = size(Examples);
fprintf(fid, 'Number of objects: %5u\n’, m);

% Build list of attributes to be checked
atts = [J;
if label ==
decatt = 1;
elseif label == 1
decatt = 3;
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end

for i = 1:(n-decatt)
atts = [atts i];

end

if label == 0
% Check number of values for the decision attribute
attval = attvallist(Examples, n, m);

[y,x] = size(attval);

dec = findmostcommon(Examples, attval, m, n);

% If all examples are of the same class, return node
% with value as decision value for this class
if x ==
data = [attval(l) E m1l m2 attval(1)];
newtree = TreeNodeData(newtree, newroot, data);
fprintf(fid, A leaf node with decision: %lu\n\n’, attval(
fprintf(fid, 'Data written to node: %21u\t%5.4\t%4u\t%4u
leafnode = 1;
end
elseif label == 1
equal = 1,
i =1,
exbf = Examples(:,n-2:n-1);
while (i<m)&(equal==1)
if “(exbf(i,) == exbf(i+1,:))
equal = 0;
end
i = i+l
end
countl = O;
count2 = 0;
for i = Iim
if (exbf(i,1)>exbf(i,2))|(exbf(i,1)==exbf(i,2))
countl = countl + 1;
elseif exbf(i,1)<exbf(i,2)
count2 = count2 + 1;
end
end
if (countl>count2)|(countl==count2)
dec = 0;
elseif countl<count2
dec = 1;
end
if (m < 5)|(equal == 1)
data = [dec E m1 m2 dec];
newtree = TreeNodeData(newtree, newroot, data);
fprintf(fid, 'A leaf node with decision: %1u\n\n’, dec);
fprintf(fid, 'Data written to node:\n Dec: %lu\t E:%6.4f\t
Dec:%1u\n\n’, data);
leafnode = 1;

end

end

if leafnode == 0
% |Initialize main storage matrix for entropy
Entropy = [I;

% Count number of attributes (b = number of attributes)
[a, b] = size(atts);

%%%% ENTROPY COMPUTATION

% Do for every conditional attribute left
for j = 1:b

1));
\t%1u\n\n’, data);

m1:%4.3f\t m2:%4.3f\t
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% Display on screen which attribute is checked
out = strcat("Attribute ’,num2str(j));

disp(out)

fprintf(fid, 'Attribute checked: %1u\n\n’, j);

% Find range for the attribute’s values
[min, max] = findrange(Examples, m, atts(j));

% Compute interval for splits to test (10% of the range)
int = (max-min)/10;

if “(min == max)
% (If min = max, all the objects have the same
% attribute value, and no splits can be made)

% Entropy-computation with 10% of objects as step

% for choosing splits

Ent = compute_entropy_obj(Examples, m, n, atts(j),
lambda, label);

OutEnt = [Ent(;,1) Ent(:,2)]’;

fprintf(fid, 'Computed entropy for suggested splits:\n’)

fprintf(fid, 'Split:\t Entropy:\n’);

fprintf(fid, '%9.41\t%9.4f\n’, OutEnt);

% Find the split with the smallest entropy for this attribute
Entval = Ent(:,2);
[Echeck,l] = min(EntVal);

split = Ent(l,1);

milmin = Ent(l,4);
m2min = Ent(l,5);
mlmax = Ent(l,6);
m2max = Ent(1,7);

Emin = Ent(l,8);

Emax = Ent(1,9);

fprintf(fid, '\nSmallest entropy: %9.4\n\n’, Echeck);
fprintf(fid, 'Corresponding split: %9.4f\n\n’, split);

if label ==
[u,v] = size(Ent);
if (u>1)
% Adjust the split in the interval around the split 10% of obje cts
Entropylist = bestsplit(Examples, atts(j), split, Ent, I, fid, lambda);

split = Entropylist(1);
Echeck = Entropylist(2);

mlmin = Entropylist(3);

m2min = Entropylist(4);

milmax = Entropylist(5);

m2max = Entropylist(6);

Emin = Entropylist(7);

Emax = Entropylist(8);

fprintf(fid, \nAdjusted split and entropy: %9.41\t%9.4f \n\n’, split, Echeck);

end

end

% Store the attribute with the split and the entropy value

Entropy = [Entropy; atts(j) split Echeck mimin m2min mlmax m 2max Emin Emax];
else
fprintf(fid, 'Not enough different attribute values to con sider splits on this
attribute\n\n’);
end

end % for i = jb (ENTROPY COMPUTATION)

OutEntropy = Entropy’;
fprintf(fid, 'Computed entropy for all attributes:\n’);
if label == 0
fprintf(fid, 'Att:\t Split:\t Entropy:\t nlmin:\t n2min: \t nlmax:\t n2max:\t
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Emin:\t Emax:\n’);
elseif label == 1
fprintf(fid, 'Att:\t Split:\t Entropy:\t mlmin:\t m2min:
Emin:\t Emax:\n’);
end

\t mimax:\t m2max:\t

fprintf(fid, %1u\t%9.41\t%9.4\t%3u\t%3u\t%3u\t%3u\ 1%9.41\t%9.4f\n’, OutEntropy);

if “(isempty(Entropy))
% Find the attribute with the smallest entropy
EntropyVal = Entropy(:,3);
[Echosen,l] = min(EntropyVal);
j = Entropy(l,1);
k = Entropy(l,2);
mlmin = Entropy(l,4);
m2min = Entropy(l,5);
mlmax = Entropy(l,6);
m2max = Entropy(l,7);
Emin = Entropy(l,8);
Emax = Entropy(l,9);
fprintf(fid, \nSmallest entropy: %9.4f\n\n’, Echosen);
fprintf(fid, 'Corresponding attribute: %21u\n\n’, j);
fprintf(fid, 'Corresponding split: %9.47\n\n’, k);

% Build subtrees for this attribute

% Initialise matrix for examples to build subtree
newExamplesmin = [J;
newExamplesmax = [];

% Fill matrix with examples that have this att-value
for i = 1Iim
if (Examples(i,j) < k) | (Examples(i,j) == k)
newExamplesmin = [newExamplesmin; Examples(i,:)];
elseif (Examples(i,j) > k)
newExamplesmax = [newExamplesmax; Examples(i,:)];
end
end

% Check size of the two new Examples matrices
[mchild1,nchild1l] = size(newExamplesmin);
[mchild2,nchild2] = size(newExamplesmax);
if ((stop == 1) & “(Echosen < E)) % Use stop criterion
% Return a leaf node with the most common decision value
data = [dec E m1 m2 dec];
newtree = TreeNodeData(newtree, newroot, data);
fprintf(fid, 'STOP! A leaf node with decision: %2lu\n\n’, de
fprintf(fid, 'Data written to node: %1u\t%4.3f\t%4u\t%4u
else
% Add the first child (left branch) to the existing tree for
% this attribute
[newtree, child] = AddChild(newtree, newroot, 1, []);
fprintf(fid, 'Adding first child node\n\n’);
fprintf(fid, 'Number of objects: %5u\n’, mchildl);
if label ==
fprintf(fid, 'Number of objects from class 1: %5u\n’, mimin
fprintf(fid, 'Number of objects from class 2: %5u\n’, m2min
end
fprintf(fid, 'Entropy: %9.4f\n\n’, Emin);

% Merge the existing tree with a computed subtree at the child

newtree = GraftTrees(newtree, child, DT(newExamplesmin,
lambda, label));

% Add splitting information to parent node of new child node

c);
\t%21u\n\n’, data);

node
Emin, mlmin, m2min, stop, fid,



74

A. SOURCE CODE

parent = GetParent(newtree, child);

data = [dec E m1 m2 j k];

newtree = TreeNodeData(newtree, parent, data);

fprintf(fid, 'Data written to parent node: %1u\t%4.3f\t%4
%5.2f\n\n’, data);

% Add the second child (right branch) to the existing tree for

[newtree, child] = AddChild(newtree, newroot, 2, []);
fprintf(fid, 'Adding second child node\n\n’);
fprintf(fid, '"Number of objects: %5u\n’, mchild2);

if label ==

fprintf(fid, 'Number of objects from class 1: %5u\n’, mlmax
fprintf(fid, 'Number of objects from class 2: %5u\n’, m2max

end
fprintf(fid, 'Entropy: %9.4f\n\n’, Emax);

% Merge the existing tree with a computed subtree at the child
newtree = GraftTrees(newtree, child, DT(newExamplesmax,

lambda, label));
end

else % (Entropy = [], no more attributes or possible splits to

% Return leaf node with most common value
data = [dec E m1l m2 dec];
newtree = TreeNodeData(newtree, newroot, data);
fprintf(fid, 'A leaf node with decision: %1u\n\n’, dec);
fprintf(fid, 'Data written to node: %1u\t%4.3f\t%4u\t%4u
end
end
return

A.1.3 classifytest.m

function f(tree, treelabel)

%

% Function classifytest takes a tree and classifies objects

% with this tree.

%

% tree is the decision tree to be used

%

% treelabel says what labels have been used for building the t
% (0 = crisp labels, 1 = uncertain labels)

% Open file for writing results
fidl = fopen('classify.txt’, 'w’);

if isempty(tree)
% Get file with decision tree
[fname,pname] = uigetfile("*.mat’,'’Load Tree’);
file = strcat(pname,fname);
load (file);

% Ask if the tree were built with crisp or uncertain labels
button = questdig('Tree built from which labels?’, 'Labels
'Uncertain’);

if strcmp(button,’Crisp’)
treelabel = 0O;
elseif strcmp(button,’Uncertain’)
treelabel = 1;
end
end

% Get text file with test data

u\t%4u\t%2ult

this attribute

node
Emax, mlmax, m2max, stop, fid,

check)

\t%21u\n\n’, data);

ree

', 'Crisp’, 'Uncertain’,
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[fname,pname] = uigetfile("*.dat’,’Load Test Data’);

% Ask for number of attributes in text file

prompt = {Enter number of attributes:’};

titte = Attributes’;

answer = inputdlg(prompt.title);

% Ask if the test data are labelled with crisp or uncertain lab els

button = questdlg('Which labels on test data?’, 'Labels’, ’ Crisp’, 'Uncertain’, 'Uncertain’);

if strcmp(button,’'Crisp’)
classlabel = 0;

elseif strcmp(button,’Uncertain’)
classlabel = 1;

end

% Load file with objects, and store the objects in matrix a
numatts = str2num(answer{1});

num = [J;

for i = 1l:numatts
num = [num ’'%g’7;

end

file = strcat(pname,fname);
fid = fopen(file);
if classlabel ==
a = fscanf(fid, num, [(numatts+1) inf]);
elseif classlabel ==
a = fscanf(fid, num, [(numatts+3) inf]);
end
a = aj
fclose(fid);
[x,y] = size(a);

% Add empty columns at the end of the matrix, new matrix is obje cts
objects = [a zeros(x,1) zeros(x,1) zeros(x,1) zeros(x,1)] ;

% Do for each object to be classified

for i = 1:x
% Extract object and empty last column for this object
object = objects(i,:);

% Classify object
[cl, m1l, m2] = classify_rek(tree, object, 1, treelabel);
mOm = 1 - (m1+m2);

% Store the classification value in the last column for this o bject
object(y+1) = cl;

object(y+2) = ml;

object(y+3) = m2;

object(y+4) = mOm;

objects(i,:) = object;

end

% Build format for output to file

format = [];
for i = l:numatts
format = [format '%5.4f\t7];
end
if classlabel ==

format = [format '%1u\t %1ult %5.3f\t %5.3f\t %5.3\n’;
elseif classlabel ==

format = [format '%5.3f\t %5.3f\t %5.3f\t %1lu\t %5.3f\t %5. 3f\t %5.3\n’];
end

% Print result to file
fprintf(fidl, '\nClassification of file %s:\n---------- \n’,fname);
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for i = 1:x
fprintf(fidl, format, objects(i,:));
end

if classlabel ==
% Compute error rate and values for confusion matrix
right0 = 0O;
rightl = 0;
wrongl = O;
wrong0 = O;
for i = 1ix
if objects(i,y) ==
if objects(i,y+1) == 1
rightl = rightl + 1;
elseif objects(i,y+1) == 0
wrongl = wrongl + 1,
end
elseif objects(i,y) == 0
if objects(i,y+1) ==
right0 = right0 + 1;
elseif objects(i,y+1) == 1
wrong0 = wrong0 + 1;
end
end
end

fprintf(fidl, "\nConfusion matrix:\n-------- \n’);
fprintf(fidl, '(O)t(1)\tt<- classified as\n
fprintf(fidl, '%3u\t%3u\t\t(0)\n’, right0,wrong0);
fprintf(fidl, '%3u\t%3u\t\t(1)\n’, wrongl,rightl);

right = right0 + rightd;

wrong = wrong0 + wrongl;

Err = wrong/(right+wrong);

fprintf(fidl, '\nError rate = %6.4\n\n’, Err);

% Print error rate to screen
e = num2str(Err);
error = strcat('Error rate for file ’,fname);
error = strcat(error,” = °);
error = strcat(error, e);
errordlig(error, 'Error rate’);
elseif classlabel==1
Error = [];
for i = 1ix
ml = objects(i,y-2);
m2 = objects(i,y-1);
mOm = objects(i,y);
mlhat = objects(i,y+2);
m2hat = objects(i,y+3);
mOmhat = objects(i,y+4);
BetPm = (m1*(mlhat+mOmhat/2)) + (m2*(m2hat+mOmhat/2)) + m Oom;
Error = [Error; 1-BetPm];
end
err = sum(Error)/x;
fprintf(fidl, \nError rate = %6.4\n\n’, err);

% Print error rate to screen
e = numa2str(err);
error = strcat(’Error rate for file ’,fname);
error = strcat(error,” = °);
error = strcat(error, e);
errordlg(error, 'Error rate’);
end
fclose(fid1);
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return

A.2 Functions for computing the uncertainty

A.2.1 entropybel.m

function [Emin, Emax] = f(nlmin, n2min, nlmax, n2max, lambd a)

%

% Function entropybel computes the entropy (belief functio ns method)
% for some given values of nl and n2

%

% nlmin/n2min are the number of objects from class 1 and class 2
% that have an attribute value smaller than a certain split

%

% nlmax/n2max are the number of objects from class 1 and class 2
% that have an attribute value greater than a certain split

%

% lambda is a parameter to use when computing the entropy

nmin = nlmin + n2min;
nmax = nlmax + n2max;
n = nmin + nmax;

% Entropy for attribute values smaller than split
ml_min = nlmin/(nmin + 1);

m2_min = n2min/(nmin + 1);

mOm_min = 1/(nmin + 1);

BetP1_min
BetP2_min

= ml_min + mOm_min/2;

= m2_min + mOm_min/2;

NS_min = mOm_min*log2(2);

D_min = -(m1_min*log2(BetP1_min)) - (m2_min*log2(BetP2_ min));

% Entropy for attribute values greater than split
ml_max = nlmax/(hmax + 1);

m2_max = n2max/(nmax + 1);

mOm_max = 1/(nmax + 1);

BetP1_max
BetP2_max

= ml_max + mOm_max/2;

= m2_max + mOm_max/2;

NS_max = mOm_max*log2(2);

D_max = -(ml_max*log2(BetP1l_max)) - (m2_max*log2(BetP2_ max));
% Total entropy

Emin = NS_min + lambda*D_min;

Emax = NS_max + lambda*D_max;

return

A.2.2 entropybelbf.m

function [Emin,Emax] = f(m1min, m2min, mOmmin, mlmax, m2ma X, mOmmax, lambda)
%
% Function entropybelbf computes the uncertainty/entropy
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% (belief functions method) for some given values of m1l and m2

%

% mimin/m2min/mOmmin is a belief function for the objects th at
% have an attribute value smaller than a certain split

%

% mlmax/m2max/mOmmax is a belief function for the objects th at
% have an attribute value greater than a certain split

%

% lambda is a parameter to use when computing the entropy

% Entropy for attribute values smaller than split

BetP1min
BetP2min

mlmin + mOmmin/2;
m2min + mOmmin/2;

NSmin = mOmmin*log2(2);
Dmin = -(m1min*log2(BetP1min)) - (m2min*log2(BetP2min)) ;

% Entropy for attribute values greater than split

BetP1max
BetP2max

= mlmax + mOmmax/2;

= m2max + mOmmax/2;

NSmax = mOmmax*log2(2);

Dmax = -(mlmax*log2(BetP1lmax)) - (m2max*log2(BetP2max)) ;

% Total entropy
Emin = NSmin + lambda*Dmin;
Emax = NSmax + lambda*Dmax;

return

A.2.3 labelcomb.m

function [mX,A] = labelcomb(m)

%

% Function labelcomb computes a belief function from a
% set of belief functions given in matrix m.

n=size(m,1);
mX=zeros(1,3);
A=zeros(n+1,n+1);

A(1,1)=m(1,3);
A(1,2)=m(1,2);
A(2,1)=m(1,1);
for k=2:n,
B=zeros(n+1,n+1);
for i=0:k,
for j=0:k-i,
i1=i+1;j1=j+1;
B(i1,j1)=A(i1,j1)*m(k,3);
if i>=1,B(i1,j1)=B(i1,j1)+A(i1-1,j1)*m(k,1);end;
if j>=1,B(i1,j1)=B(i1,j1)+A(i1,j1-1)*m(k,2);end;

for r=0:n,
for s=0:n-r,
mX=mX+A(r+1,s+1)*[r s 1)/(r+s+1);
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end,;
end;

A.2.4 computeentropy_obj.m

function Ent = f(Examples, m, n, j, lambda, label)
0,

0;2 Function compute_entropy_obj computes the entropy for a g
% by using steps containing 10% of the objects to find possibl
0,

0;2 Examples is a matrix that contains all the training objects

0,

0;2 m is the number of training objects

0,

0;2 n is the number of attributes, including the decision attri

0,

‘;2 j is the attribute for which the entropy is computed

0

‘;Z label says what labels are used for building the tree

X

6 Initialize temporary entropy storage matrix
Ent = [];

Sorted = sortrows(Examples, j);
step = m/10;

i=1;
while (i<m)
count = O;
while (count<step) & (i<m)
count = count + 1;
i = i+l
end
if “(i>m)
k = (Sorted(i-1,j) + Sorted(i,j))/2;
if “(ismember(k, Ent))
if label == 0
[m1min, m2min] = countmin(Examples, j, m, k, n);

[mlmax, m2max] = countmax(Examples, j, m, k, n);

nmin = mlmin + m2min;
nmax = mlmax + m2max;
ntot = nmin + nmax;

iven attribute
e splits

bute

[Emin, Emax] = entropybel(mlmin, m2min, milmax, m2max, lamb

newentropy = (nmin/ntot)*Emin + (nmax/ntot)*Emax;
elseif label ==
[u,v] = size(Examples);
Examplesmin = [];
Examplesmax = [];
for y = 1w
if (Examples(y,j) < k) | (Examples(y,j) == k)

Examplesmin = [Examplesmin; Examples(y,:)];

elseif (Examples(y,j) > k)

Examplesmax = [Examplesmax; Examples(y,:)];

end

end

[min,st] = size(Examplesmin);

[max,st] = size(Examplesmax);

if (min>0)&(max>0)
bfmatmin = Examplesmin(:,v-2:v);
bfmatmax = Examplesmax(:,v-2:v);
[mlistmin,A] = labelcomb(bfmatmin);
[mlistmax,A] = labelcomb(bfmatmax);

da);
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mlmin = mlistmin(1);
m2min = mlistmin(2);
mOmmin = mlistmin(3);

mlmax = mlistmax(1);
m2max = mlistmax(2);
mOmmax = mlistmax(3);
[Emin,Emax] = entropybelbf(mlmin, m2min, mOmmin,
mlmax, m2max, mOmmax, lambda);
newentropy = (min/u)*Emin + (max/u)*Emax;
end
end
Ent = [Ent; kK newentropy i mlmin m2min mlmax m2max Emin Emax];
end
end
end
return

A.3 Auxiliary functions

A.3.1 attvallist.m

function attval = f(Examples, dec_att, nobj)

%

% Function attvallist takes a set of training examples

% and returns a list of the possible decision values

% for the examples in the given training set.

%

% Examples is the matrix containing the training examples
%

% dec_att is the column number of the decision attribute
%

% nobj is the number of objects in Examples

% Add the first decision value to a storage matrix
attval = [Examples(1,dec_att)];

%Do for every remaining example in Examples

for i = 2:nobj
% Check if decision value is already represented in attval
exist = ismember(Examples(i,dec_att), attval);

if exist == % (If new decision value)
% Add new value to storage matrix attval
attval = [attval Examples(i,dec_att)];
end
end
return

A.3.2 Dbestsplit.m

function Entropylist = f(Examples, att, split, Ent, ind, fi d, lambda)
%

% Function bestsplit takes a set of training examples, an att ribute
% and a split, and adjusts the split for this attribute

% by computing the entropy for splits in an interval area arou nd

% the given split
%
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%
%
%
%
%
%
%
%
%
%
%
%
%
%

%

Examples is the matrix with the training examples
att is the attribute in question

split is the chosen split

Ent is the Entropy-matrix already computed for this attrib ute

ind is an index that tells where in Ent the smallest Entropyv alue
is

fid is the file handle for the file to which the output is writ ten

lambda is a parameter used to compute the entropy

Check the size of the matrix Examples

[m,n] = size(Examples);

%

Sort the Examples matrix according to the given attribute

Sorted = sortrows(Examples, att);

%

Initialize the storage matrix or the entropy

Entro = [];

%

Set values to use for adjusting the split

[uyv] = size(Ent);
if ind == 1 %(if split is the first value in the list)

kmin = Sorted(1,att);
kmax = Ent(ind+1,1);
imin = 1;

imax = Ent(ind+1,3);

elseif ind == u %(if split is the last value in the list)

kmin = Ent(ind-1,1);

kmax = Sorted(m,att);
imin = Ent(ind-1,3);
imax = m;

else

kmin = Ent(ind-1,1);
kmax = Ent(ind+1,1);
imin = Ent(ind-1,3);

imax = Ent(ind+1,3);

end

step = (imax - imin)/10;

imin;

% Compute entropy for splits around given split
while (i<imax)

count = O;
while (count<step) & (i<imax)
count = count + 1;
i = i+l
end
if “(i>imax)
k = (Sorted(i-1, att) + Sorted(i,att))/2;
[nImin, n2min] = countmin(Examples, att, m, k, n);
[n1max, n2max] = countmax(Examples, att, m, k, n);
nmin = nlmin + n2min;
nmax = nlmax + n2max;
ntot = nmin + nmax;
[Emin,Emax] = entropybel(nlmin, n2min, nlmax, n2max, lamb da);
entropy = (nmin/ntot)*Emin + (nmax/ntot)*Emax;
Entro = [Entro; k entropy nlmin n2min nlmax n2max Emin Emax];
end

end
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% Print results to file

OutEntro = [Entro(;,1) Entro(:,2)];

fprintf(fid, \tComputed adjusted entropy, related to num
fprintf(fid, "\tSplit:\t Entropy:\n’);

fprintf(fid, '\t%9.41\t%9.4\n’, OutEntro);

% Find split with smallest entropy
Entval = Entro(;,2);

[Entrl,l]] = min(EntVal);

splitl = Entro(l,1);

nlminl = Entro(l,3);

n2minl = Entro(l,4);
nlmaxl = Entro(l,5);
n2maxl = Entro(l,6);
Eminl = Entro(l,7);

Emax1l = Entro(l,8);

% Check if method with intervals gives a different result
int = kmax - kmin;

Entropylist2 = bestsplit_int(Examples, att, split, int, f
Entr2 = Entropylist2(2);

% Choose the best result
Entr = min(Entrl,Entr2);
if Entr == Entrl

split = splitl;
nilmin = nlmini;
n2min = n2mini;
nlmax = nlmaxl,;
n2max = n2maxl,;
Emin = Eminl;
Emax = Emaxil;

elseif Entr == Entr2
split = Entropylist2(1);
nlmin = Entropylist2(3);
n2min = Entropylist2(4);
nlmax = Entropylist2(5);

n2max = Entropylist2(6);

Emin = Entropylist2(7);

Emax = Entropylist2(8);
end

Entropylist = [split Entr n1lmin n2min nlmax n2max Emin Emax]

return

A.3.3 Dbestsplitint.m

function Entropylist = f(Examples, att, s, int, fid, lambda
%

% Function bestsplit_int takes a set of training examples, a
% a split and an interval, and adjusts the split for this attri
% by computing the entropy for splits in the interval area aro

% the given split

%

% Examples is the matrix with the training examples
%

% att is the attribute in question

%

% s is the chosen split

%

ber of objects:\n’);

id, lambda);

n attribute,
bute
und



A.3. AUXILIARY FUNCTIONS

% int is the interval that has been used to find the split

%

% fid is the file handle for the file to which the output is writ ten
%

% lambda is a parameter used to compute the entropy

% Check the size of the matrix Examples, m=number of objects,
% n=number of attributes
[m,n] = size(Examples);

% Initialize the storage matrix of the entropy
Entro = [];
newint = int/5;

%Compute entropy for splits around the given split
for k = (s-int):newint:(s+int)
[n1min, n2min] = countmin(Examples, att, m, k, n);
[n1max, n2max] = countmax(Examples, att, m, k, n);
nmin = nlmin + n2min;
nmax = nlmax + n2max;
ntot = nmin + nmax;
[Emin, Emax] = entropybel(nlmin, n2min, nlmax, n2max, lamb da);
entropy = (nmin/ntot)*Emin + (nmax/ntot)*Emax;
Entro = [Entro; k entropy nlmin n2min nlmax n2max Emin Emax];
end

% Print results to file

OutEntro = [Entro(;,1) Entro(:,2)];

fprintf(fid, \tComputed adjusted entropy, related to giv en intervals:\n’);
fprintf(fid, "\tSplit:\t Entropy:\n’);

fprintf(fid, '\t%9.4\t%9.4\n’, OutEntro);

% Find split with smallest entropy
Entval = Entro(;,2);

[Ent,1] min(EntVal);

split = Entro(l,1);

nlmin = Entro(l,3);

n2min = Entro(l,4);
nlmax = Entro(l,5);
n2max = Entro(l,6);
Emin = Entro(l,7);

Emax = Entro(l,8);

Entropylist = [split Ent n1lmin n2min nlmax n2max Emin Emax];

return

A.3.4 classifyrek.m

function [cl, m1, m2] = f(tree, obj, root, label)

%

% Function classify_rek is a recursive function that goes th rough a
% binary decision tree in order to classify a given object

%

% tree is the decision tree in which to search

%

% obj is the object to be classified

%

% root is the node in the tree from which to start the search
%

% label says what labels have been used for building the tree
% (0 = crisp labels, 1 = uncertain labels)



%
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Get the data stored at root

data = TreeNodeData(tree, root);

if IsLeaf(tree, root)

if label == 0
cl = data(l);
nl = data(3);
n2 = data(4);
ml = nl/(n1+n2+1);
m2 = n2/(nl+n2+1);
elseif label == 1
ml = data(3);
m2 = data(4);
if (m1 > m2) | (Ml == m2)
cl = 0;
elseif m2 > m1
cl = 1;
end
end

else

% Find the attribute to check
att = data(5);

% Find the split to use
split = data(6);

% Find the children of root
children = GetChildren(tree, root);

% If the object’'s value for the given attribute is smaller tha
% or equal to the split, go down left branch of root
if (obj(att) < split) | (obj(att) == split)

root = children(1);

% If the object’'s value for the given attribute is greater tha
% the split, go down right branch of root
elseif (obj(att) > split)
root = children(2);
end
[cl, ml, m2] = classify_rek(tree, obj, root, label);

end
return

A.3.5 countmax.m

function [n1max, n2max] = f(Examples, att, nobj, split, dec

%
%
%
%
%
%
%
%
%
%
%
%
%
%

Function countmax counts the number of objects from each
decision class that has attribute value over a given split
for a given attribute

Examples is the example matrix

att is the attribute in question

nobj is number of objects in Examples

split is the split for attribute att

dec_att is the target attribute

_att)
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% Initiallize values
nlmax = O;
n2max = 0;

% Do for each object in the examples matrix
for i = 1:nobj
if (Examples(i,att) > split)
if Examples(i,dec_att) == 0
nlmax = nlmax + 1;
elseif Examples(i,dec_att) ==
n2max = nZmax + 1;
end
end
end
return

A.3.6 countmin.m

function [nlmin, n2min] = f(Examples, att, nobj, split, dec

%

% Function countmin counts the number of objects from each
% decision class that has attribute value under a given split
% for a given attribute

%

% Examples is the example matrix

%

% att is the attribute in question

%

% nobj is number of objects in Examples

%

% split is the split for attribute att

%

% dec_att is the target attribute

% Initialize the values
nilmin = O;
n2min = 0;

% Do for each object in the examples matrix
for i = 1:nobj
if (Examples(i,att) < split) | (Examples(i,att) == split)
if Examples(i,dec_att) == 0
nimin = nlmin + 1,
elseif Examples(i,dec_att) ==
n2min = n2min + 1,
end
end
end
return

A.3.7 findmostcommon.m

function commonclass = f(Examples, attval, nobj, dec_att)

%

% Function findmostcommon finds the most common decision va
% among the objects in an examples matrix

%

_att)

lue
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% Examples is the example matrix

% attval is a vector containing all the values for the
% decision attribute

% nobj is number of objects in Examples
% dec_att is the decision attribute (last in Examples)

% Find number of values for decision attribute, ntarg=numbe
[n,ntarg] = size(attval);

% Initialize temporary count matrix

C=1@
% Do for each value of decision attribute
for j = 1:ntarg
% Initialize counter
count = O;
% Do for each object in the examples matrix
for i = 1:nobj

if Examples(i,dec_att) == attval(j)
count = count + 1;
end
end
% Store number for decision value in count matrix
C = [C count];
end

% Find largest number in count matrix
countmax = max(C);

% Find decision class corresponding to this number

index = find(C == max(C));

commonclass = attval(index);

[x,y] = size(commonclass);

if y>1 % If there are an equal number of objects from several cl
commonclass = commonclass(1);

end

return

A.3.8 findrange.m

function [min, max] = f(Examples, nobj, att)

%

% Function findrange finds the range of values for a given att
%

% Examples is the example matrix

% nobj is number of objects in Examples
% att is the attribute in question

% Initialize min and max values
min = 1000;
max = -1000;

% Do for each object in the examples matrix
for i = 1:nobj
if Examples(i,att) < min
min = Examples(i,att);
end

r of values

asses

ribute
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if Examples(i,att) > max
max = Examples(i,att);
end
end
return

A.3.9 ncont.m

function NValues = f(tree, root, N, level)

%

% Function ncont finds the number of objects and the entropy
% value stored at each node in a binary decision tree
%

b tree is the decision tree in which to search

%

% root is the root of the tree

%

% N is the matrix in which the found values are stored
%

% level says which level in the tree is reached

X

% Get data from root
data = TreeNodeData(tree, root);

Entropy = data(2);

nl = data(3);

n2 = data(4);

NValues = [N; level n1 n2 Entropy];

if “(IsLeaf(tree, root)) % If root is not leaf node
% Get the child nodes and their values
children = GetChildren(tree, root);
level = level + 1,
NValues = ncont(tree, children(1), NValues, level);
NValues = ncont(tree, children(2), NValues, level);
end
return

A.3.10 prunetree.m

function [tree, root] = f(tree, root)
%

% Function prunetree prunes the leaf nodes in a binary
% decision tree if two descending leaf nodes from a node
% have the same decision value

%

% tree is the decision tree in which to search

%

% root is the root of the tree

% Get the children of root
children = GetChildren(tree, root);

% If not both of the children are leaf nodes
if “(IsLeaf(tree, children(1)) & IsLeaf(tree, children(2
% If child 1 is a leaf node
if IsLeaf(tree, children(1))
% Prune the subtree with child 2 as a root
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% |

[tree, root] = prunetree(tree, children(2));

% Find the parent of the new pruned subtree, and
% its new children for further pruning

root = GetParent(tree, root);

children = GetChildren(tree, root);

f child 2 is a leaf node

elseif IsLeaf(tree, children(2))

% |

% Prune the subtree with child 1 as root
[tree, root] = prunetree(tree, children(1));

% Find the parent of the new pruned subtree, and
% its new children for further pruning

root = GetParent(tree, root);

children = GetChildren(tree, root);

f none of the children are leaf nodes, prune both subtrees

else

end
end

[tree, root]
[tree, root]

prunetree(tree, children(1));
prunetree(tree, children(2));

% If both of the children are leaf nodes
if IsLeaf(tree, children(1)) & IsLeaf(tree, children(2))
% Get data from both of the leaf nodes

datal
data2

TreeNodeData(tree, children(l));
TreeNodeData(tree, children(2));

% If the two leaf nodes have the same decision value
if datal(l) == data2(1)

end
end
return

% Remove child 1 and child 2
[tree, root] = Prune(tree, children(1));

[tree, root] = Prune(tree, children(2));

% Add decision value to parent node of the
% two pruned leaf nodes

tree = TreeNodeData(tree, root, data2(1));



