
Heterogeneous Uncertainty Sampling for Supervised Learning

David D. Lewis and Jason Catlett
AT&T Bell Laboratories
Murray Hill, NJ 07974

lewis@research.att.com, catlett@research.att.com
Appeared (with same pagination) in William W. Cohen and Haym Hirsh, eds.,

Machine Learning: Proceedings of the Eleventh International Conference,
Morgan Kaufmann Publishers, San Francisco, CA, pp. 148–156.

Abstract

Uncertainty sampling methods iteratively request
class labels for training instances whose classes
are uncertain despite the previous labeled in-
stances. These methods can greatly reduce the
number of instances that an expert need label.
One problem with this approach is that the clas-
sifier best suited for an application may be too
expensive to train or use during the selection of
instances. We test the use of one classifier (a
highly efficient probabilistic one) to select exam-
ples for training another (the C4.5 rule induction
program). Despite being chosen by this heteroge-
neous approach, the uncertainty samples yielded
classifiers with lower error rates than random
samples ten times larger.

1 Introduction

Machine learning algorithms have been used to build clas-
sification rules from data sets consisting of hundreds of
thousands of instances [4]. In some applications unlabeled
training instances are abundant but the cost of labeling an
instance with its class is high. In the information retrieval
application described here the class labels are assigned by
a human, but they could also be assigned by a computer
simulation [2] or a combination of both [30]. The terms
oracle and teacher have been used for the source of labels;
we will usually call it the expert.

Where one of the constraints on the induction process is a
limit on the number of instances presented to the oracle, the
choice of instances becomes important. Random sampling
[5] may be ineffective if one class is very rare: all of the
training instances presented may have the majority class.
To make more effective use of the expert’s time, methods
that we collectively call uncertainty sampling label data sets
incrementally, alternating between two phases: presenting
the expert a few instances to label, and selecting (from
a finite or infinite source) instances whose labels are still
uncertain despite the indications contained in previously
labeled data.

The type of classifier used in uncertainty sampling must
be cheap to build and to use. At each iteration a new
classifier is built (fortunately from a small sample) and then
applied (unfortunately to a large sample). Our uncertainty
sampling method also requires an estimate of the certainty
of classifications (a class-probability value) [28]; not all
induction systems provide this.

This paper examines a heterogeneous approach in which a
classifier of one type selects instances for training a classi-
fier of another type. It is motivated by applications requir-
ing a type of classifier that would be too computationally
expensive to use to select instances. Section 2 reviews re-
search on uncertainty sampling. Section 3 points out that
the class frequencies in uncertainty samples are severely
distorted; the training algorithm should accept some pa-
rameter to correct for this. The experiments described in
Section 6, on a large text categorization data set, showed our
method for this correction to be effective and robust with
respect to the particular parameter value used. Uncertainty
samples chosen by a probabilistic classifier were found to
be significantly better than random samples ten times larger
when used by a modification of Quinlan’s C4.5 algorithm.
Section 9 lists several opportunites for future work.

2 Background

Theoretical analysis and practical experience have shown
that a classifier can often be built from fewer instances if the
learning algorithm is allowed to create artificial instances
or membership queries that are given to an expert to label
[1, 25]. Unfortunately such queries may create nonsensical
examples: is a pregnant non-smoking male at high risk for
heart disease? In applications where instances are images
or natural language texts, arbitrary membership queries are
also implausible.

Several algorithms have been proposed that base querying
on filtering a stream of unlabeled instances rather than on
creating artificial instances [6, 10, 20, 31]. The expert is
asked to label only those instances whose class membership
is sufficiently uncertain. Several definitions of uncertainty
and sufficiency have been used, but all are based on esti-

1. Obtain an initial classifier

2. While expert is willing to label instances

(a) Apply the current classifier to each unlabeled in-
stance

(b) Find the
�

instances for which the classifier is
least certain of class membership

(c) Have the expert label the subsample of
�

instances
(d) Train a new classifier on all labeled instances

Figure 1: An algorithm for uncertainty sampling from a
finite training set using a single classifier.

mating how likely a classifier consistent with the previously
labeled data would be to produce the correct class label for a
given unlabeled instance. These approaches can be viewed
as a combination of stratified and sequential approaches to
sampling [5, 32], so we refer to them as uncertainty sam-
pling.

A simple form of uncertainty sampling is possible for clas-
sifiers that operate by testing a numeric score against a
threshold. A single classifier is trained, and those instances
whose scores are closest to that classifier’s threshold are
good candidates to present to the expert. Where the set of
instances is finite, the single instance with a score closest to
the threshold can be found; where the stream of instances is
effectively infinite, one can choose instances whose scores
are within some distance of the threshold. The cycle is
described in Figure 1 for the finite case.

Single classifier approaches to uncertainty sampling have
been criticized [6, 20] on the grounds that one classifier is
not representative of the set of all classifiers consistent with
the labeled data: the version space [24]. The degree to
which this is a problem in practice has not been established.

Single classifier approaches have successfully been used
in generating arbitrary queries [16] and in sampling from
labeled data [8, 25]. Uncertainty sampling with a single
classifier can also be viewed as a variation on the heuris-
tic of training on misclassified instances [15, 33, 35]. A
familiar example of this is windowing, which appeared in
Quinlan’s first paper on ID3 [26], was questioned in [36]
and re-examined in Chapter 6 of the C4.5 book [27]. As
with uncertainty sampling, windowing builds a sequence of
classifiers, selecting instances to add to the training set at
each iteration. The key difference is its assumption that the
class labels of all training instances are known: it examines
them in order to choose misclassified examples to add.

A large scale test of uncertainty sampling with a single
classifier approach [18] showed that uncertainty sampling
could reduce by a factor of up to 500 the amount of data
that had to be labeled to achieve a given level of accuracy.

3 Heterogeneous Uncertainty Sampling

Uncertainty sampling requires the construction of large
numbers (perhaps thousands) of classifiers which are ap-
plied to very large numbers of examples. This suggests that
the kind of classifier “in the loop” during sampling should
be very cheap both to build and run.

Unfortunately, an uncertainty sample has strong connec-
tions to the classifier form used to select it: despite con-
taining a disproportionately large number of instances from
low frequency classes, it still yields an accurate classifier.
Some of the characteristics of a sample that cause this to
happen for one form of classifier are likely to have the same
effect on others, such as overrepresentation of instances
where different attribute values suggest different classes.
However, this effect is unlikely to be perfect for classifiers
of any form but the one used in selection. A new classifier
trained on the uncertainty sample will then be unduly biased
toward predicting low frequency classes.

Some mechanism to counterbalance this effect is needed.
A feature of the CART [3] software for decision trees for
specifying priors on classes could be used, but our appli-
cation required decision rules. We used a version of C4.5
modified by Catlett to accept a parameter specifying the
relative cost of two types of error: false positives and false
negatives [9, Chapter 1]. We call this number the loss ratio
(���). A loss ratio of 1 indicates that the two errors have
equal costs (the original assumption of C4.5). A loss ratio
greater than 1 indicates that false positive errors (which a
classifier built from a training set enriched with positive
instances is more likely to make) are more costly than false
negative errors (where a positive instance is classified nega-
tive). Setting the loss ratio above 1 will counterbalance the
overrepresentation of positive instances, but exactly what
figure should be used? This question motivates a sensitivity
analysis of the effect of this parameter on the accuracy of
classifiers produced.

The modifications to C4.5 left the selection criterion un-
changed (in contrast to CART’s treatment). When building
trees the original C4.5 checks after each split that this de-
creases the error rate; otherwise it replaces the split with
a leaf (build.c, line 347); if not disabled this preempts
the construction of rules for classes with few examples.
The class values at the leaves are determined not by major-
ity vote but by comparison with a probability threshold of
�������	����
 1 � (or its reciprocal as appropriate). Pruning
minimizes expected loss instead of estimated errors (sim-
ply multipling by ��� , with the usual correction). A similar
change is made to the minimum error rate required to drop
a rule. The choice of default class is also based on ex-
pected loss, but the estimates of the number of examples
left uncovered by any rule appeared too low, so an arbitrary
factor was introduced to counterbalance this. The most
problematic question is how to adapt the sifting of the rules
for each class, which in C4.5 is guided by MDL principle.
The current implementation simply multiplies the coding
cost of either the false positives or the false negatives by

149

��� or 1 � ��� (as appropriate) to increase the coding cost of
rulesets that make the more expensive error. Although this
step lacks a theoretical justification, performance appeared
satisfactory.

4 Task and Data Set

The applications motivating this research fall under the
heading of text categorization: the classification of in-
stances composed partly or fully of natural language text
into pre-specified categories [7, 19]. We have found several
business applications where categorizing text would aid its
use, routing, or analysis.

These texts often reside in large databases supporting
boolean queries [29, pages 231–236], a restricted version
of propositional logic. Because decision rules [27, 34] can
be converted into this form (unlike probabilistic models re-
quiring arithmetic), they make a good choice for the final
classifier. Another important advantage is that they can
more comprehensible to humans than decision trees [4].
Our databases contain hundreds of thousands of unlabeled
instances, so uncertainty sampling is a natural approach.
However, as discussed in Section 5, our current decision
rule induction software cannot practicably be used for un-
certainty sampling from large text databases. We therefore
decided to test a heterogeneous approach to uncertainty
sampling.

Given that a key aim of the research is to reduce the time
spent by human experts categorizing texts, we could hardly
ask them to label a hundred thousand instances for the sake
of our experiments. Instead we used a data set with similar
properties to those in our applications: the titles of stories
categorized by a news agency. We collected in electronic
form the titles of 371,454 articles that appeared on the AP
newswire between 1988 and early 1993. We divided these
randomly into a training set of 319,463 titles and a test set
of 51,991 titles.1

Titles were converted to lower case and punctuation was
removed. Each distinct word was treated as a binary at-
tribute, resulting in 67,331 attributes. The data matrix was
therefore extremely sparse, with each instance having an
average of 8.9 nonzero attribute values.

The AP data is labeled with several types of subject cate-
gories. We defined ten binary categories of AP titles based
on the “keyword slug line” from the article [13, page 317].
Frequency information on these categories is given in Ta-
ble 1. The categories were chosen to resemble the applica-
tions of interest to us: approximately one in five hundred
instances are positive; the classes are somewhat noisy, and
cannnot be perfectly determined from the text.

1Stories were randomly allocated to the test set with probability
0.14. Our goal was a test set with at least 40 to 50 positive instances
of each category.

Training Test
Category Number Percent Number Percent
tickertalk 208 0.07 40 0.08
boxoffice 314 0.10 42 0.08
bonds 470 0.15 60 0.12
nielsens 511 0.16 87 0.17
burma 510 0.16 93 0.18
dukakis 642 0.20 107 0.21
ireland 780 0.24 117 0.23
quayle 786 0.25 133 0.26
budget 1176 0.37 197 0.38
hostages 1560 0.49 228 0.44

Table 1: The ten categories used in our experiments, with
the number and percentage of positive occurrences on train-
ing and test sets.

5 Training C4.5 with Text Data

Although we used a modification of Quinlan’s C4.5 soft-
ware [27] to produce decision rules from the training data,
using it to select examples is impractical for large text
databases because it requires that training and test instances
be presented as tuples specifying the values of all attributes.
With 319,463 training instances and 67,331 attributes this
would have required over 40 gigabytes. The extravagance
of expanding such spase data was stressed in [22]. The
C4.5 algorithm could be implemented in a manner suited
to sparse data, but almost no machine learning software has
this feature. Even eliminating attributes that take on the
value True less than five times in the training data would
still have left 24,052 attributes, at the cost of eliminating
some useful attributes. Feature selection methods requir-
ing class labels are not a solution because most labels are
unknown.

5.1 Uncertainty Sampling with a Probabilistic
Classifier

Methods for efficient training of probabilistic classifiers
from large, sparse data sets are widely used in information
retrieval [14]. We used this type of classifier to select
instances in uncertainty sampling. The model is described
in detail elsewhere [18], but in brief it gives the following
estimate for the probability that an instance belongs to class
C:

� ����� � ��� exp ����
 �
	����
1 log ��������� ������������ ¯��� �

1
 exp ���
 � 	����
1 log ��������� �������� � � ¯��� ��� � 1 �

C indicates class membership, and � is the � th of � attribute
values in the vector w for an instance. The instance is
assigned to class C if

� � ��� � � exceeds 0 � 5.

The intuition behind the model is that
150

��
��

1

� � � � � �� � � � ¯� � � 2 �

is a plausible approximation (exact if certain independence
assumptions and class priors hold) to the likelihood ratio

� ��� � � �� ��� � ¯��� � 3 �

and so is a good predictor of class membership. However, it
must be scaled to provide an explicit estimate of

� ����� � � .
One approach to this scaling is logistic regression [23].

Training proceeds as follows. The values
� ��� � � � and� � � � ¯� � , as well as

� � � � are estimated for every word
� . This estimation uses a sparse representation of the
data and requires only a few seconds for several hundred
thousand training instances. Those � ’s with large values of� � � ��� log

� ��� � � � � � ��� � ¯��� were selected as features,
a strategy found useful in other text classification problems
[11]. The value � � �

1 ������� � �������� � � ¯� � is then computed for each
training instance, and the training data is used again to set
� and

�
by a logistic regression.2

A classifier of this sort was trained on each iteration of
uncertainty sampling, and was then applied to all unlabeled
training instances. The two instances with the estimated� � ��� � � ’s closest to, but above, 0.5 were selected, as well
as the two instances with

� ����� � � ’s closest to, but below
0.5. Using a subsample size of four rather than one was a
compromise for efficiency. Selecting examples both above
and below 0.5 was a simple way to halve the potential
number of duplicate examples, and may also have benefits
for training [16].

5.2 Initial Classifier

Without an initial classifier our sampling algorithm would
commence with a long period of nearly random sampling
before finding any examples of a low frequency class. Ob-
taining a plausible initial classifier is usually easy—it would
be surprising if an expert were able to classify instances
but could not suggest either some positive and negative in-
stances, or some attribute values correlated with the class.
For our experiments we instead generated initial classifiers
from three positive instances of the category, selected ran-
domly to avoid experimenter bias.

5.3 Feature Selection

The cost of specifying the values of all 67,331 attributes for
even a small training set is so large that some feature se-
lection was needed before presenting any data to C4.5. We
used the union of the following sets of words as attributes:

2Alternatively, one could view this as a one-node neural net
with the input weights set via a probabilistic model rather than by
error propagation.

1. all words occurring in at least 0.2% of the instances,

2. all words occurring in two or more positive instances,
and

3. all words occuring in one or more of the three initial
positive instances.

6 Experiment Design

Our experiment tested whether heterogeneous uncertainty
sampling would produce decision rules with significantly
lower error rates than those trained on random samples of
the same or even larger size. We also wanted to determine
the sensitivity of the rules’ accuracy to the loss ratio used
with C4.5. Sources of variability included the categories,
quality of starting classifiers, and the vagaries of random
sampling.

We repeated the uncertainty sampling process 100 times, 10
trials on each of 10 binary categories, each with a different
random set of three initial positive instances. On each run,
the three initial instances were used to build an initial classi-
fier, after which uncertainty sampling with a subsample size
of four was run for 249 iterations. This yielded 100 groups
of 250 uncertainty samples of various sizes. We trained
C4.5 rules on two uncertainty samples from each run, one
with 299 instances and the final one (999 instances). Values
of 1 to 20 for the loss ratio (that is, the ratio of loss incurred
for false positives to loss incurred for false negatives) were
tested.

As a comparison, C4.5 was applied to samples of size 1,000
and 10,000 produced by adding random instances to the
same sets of three starting positive instances used to initial-
ize uncertainty sampling. (The starting positive instances
are retained to make the comparison more fair to random
sampling.) The samples of size 10,000 were produced by
adding additional random examples to the samples of size
1,000. We refer to all these samples as “random”, though
they are not completely random. Most of the analyses below
use the samples of size 10,000.

We were also interested in the difference in accuracy com-
pared to using C4.5 in the instance selection loop. Al-
though it was not practicable to test this directly, we did
train probabilistic classifiers on both the uncertainty and
random samples to provide some comparison.

7 Results

Figure 2 shows average error rates for C4.5 rules trained
with uncertainty samples of size 299 and 999 and various
loss ratios, for each of nine categories. (The tenth category,
tickertalk, resulted in degenerate classifiers—all instances
classified as category nonmembers—under almost all con-
ditions.) In all cases, error rates for uncertainty samples
of size 999 are close to or better than those for a random
sample of 10,000 instances, provided a loss ratio of three
or more is used.

151

boxoffice (0.10%)

loss ratio

1 5 10

0.
05

0.
10

0.
50

25

50

200

400

 e
rr

or
 r

at
e

(p
er

 c
en

t)

 n
um

be
r

of
 e

rr
or

s

2 3 20

ooo

oooooooo

oo
o

o

o

bonds (0.15%)

loss ratio

1 5 10

0.
05

0.
10

0.
50

25

50

200

400

 e
rr

or
 r

at
e

(p
er

 c
en

t)

 n
um

be
r

of
 e

rr
or

s

2 3 20

oo

oooooooo

ooooo
o

nielsens (0.16%)

loss ratio

1 5 10

0.
05

0.
10

0.
50

25

50

200

400

 e
rr

or
 r

at
e

(p
er

 c
en

t)

 n
um

be
r

of
 e

rr
or

s

2 3 20

oooo

o

ooooo

o

oooo
o

burma (0.16%)

loss ratio

1 5 10

0.
05

0.
10

0.
50

25

50

200

400

 e
rr

or
 r

at
e

(p
er

 c
en

t)

 n
um

be
r

of
 e

rr
or

s

2 3 20

ooo

o
o

ooooooooooo

dukakis (0.20%)

loss ratio

1 5 10

0.
05

0.
10

0.
50

25

50

200

400

 e
rr

or
 r

at
e

(p
er

 c
en

t)

 n
um

be
r

of
 e

rr
or

s

2 3 20

ooooooooooooooo
o

ireland (0.24%)

loss ratio

1 5 10

0.
05

0.
10

0.
50

25

50

200

400

 e
rr

or
 r

at
e

(p
er

 c
en

t)

 n
um

be
r

of
 e

rr
or

s

2 3 20

oooo
oo

ooooooooo
o

quayle (0.25%)

loss ratio

1 5 10

0.
05

0.
10

0.
50

25

50

200

400

 e
rr

or
 r

at
e

(p
er

 c
en

t)

 n
um

be
r

of
 e

rr
or

s

2 3 20

oo

o
ooooooooooooo

budget (0.37%)

loss ratio

1 5 10

0.
05

0.
10

0.
50

25

50

200

400

 e
rr

or
 r

at
e

(p
er

 c
en

t)

 n
um

be
r

of
 e

rr
or

s

2 3 20

ooooooooooooooo
o

hostages (0.49%)

loss ratio

1 5 10

0.
05

0.
10

0.
50

25

50

200

400

 e
rr

or
 r

at
e

(p
er

 c
en

t)

 n
um

be
r

of
 e

rr
or

s

2 3 20

oooooooooooo
ooo

o

Figure 2: Average error rate for C4.5 rules trained on uncertainty samples of size 299 (black dots) and 999 (white dots), at
various loss ratio values. The average error rates for C4.5 rules trained with random samples of size 1,000 (large dashes)
and 10,000 (small dashes) are shown as dashed lines. The percentage of positive instances on the training set follows the
category name; triangles indicate the percentage on the test set.

152

3 + 996 uncertainty 3 + 9997 random
Reject C4.5 (��� =5) prob. (��� =1) C4.5 (��� =1) prob. (��� =1)

Category All Average SD Average SD Average SD Average SD
tickertalk 0.077 0.077 (0.000) 0.078 (0.001) 0.078 (0.003) 0.109 (0.044)
boxoffice 0.081 0.047 (0.002) 0.048 (0.008) 0.061 (0.018) 0.077 (0.021)
bonds 0.115 0.064 (0.002) 0.069 (0.006) 0.076 (0.020) 0.145 (0.069)
nielsens 0.167 0.094 (0.011) 0.062 (0.005) 0.107 (0.006) 0.100 (0.026)
burma 0.179 0.090 (0.008) 0.098 (0.006) 0.115 (0.040) 0.193 (0.046)
dukakis 0.206 0.197 (0.014) 0.208 (0.020) 0.210 (0.039) 0.235 (0.036)
ireland 0.225 0.188 (0.005) 0.189 (0.011) 0.220 (0.024) 0.228 (0.016)
quayle 0.256 0.161 (0.009) 0.222 (0.012) 0.143 (0.010) 0.263 (0.035)
budget 0.379 0.336 (0.010) 0.361 (0.009) 0.350 (0.014) 0.392 (0.016)
hostages 0.439 0.415 (0.024) 0.360 (0.016) 0.466 (0.039) 0.431 (0.018)

Table 2: Average and standard deviation of percentage error of various classifiers. Reject all is a classifier that deems all
instances non-members of the category. Two types of training set were used: an uncertainty sample of size 999 and a
random sample of size 10,000. Two types of classifier are built from each training set: a decision rule classifier trained
using C4.5, and the probabilistic classifier described in the text. When C4.5 was used on the uncertainty sample, a loss
ratio of 5 was used; for the random sample a loss ratio of 1 was used (original C4.5). Figures are averages over 20 runs for
classifiers built from random samples using the probabilistic method, and over 10 runs for the other three combinations.

3 + 996 uncertainty 3 + 9997 random
Reject All C4.5 (��� =5) prob. (��� =1) C4.5 (��� =1) prob. (��� =1)

Category FP FN FP FN FP FN FP FN FP FN
tickertalk 0.0 40.0 0.0 40.0 1.3 39.3 0.8 39.7 18.3 38.5
boxoffice 0.0 42.0 5.5 19.0 12.6 12.6 5.0 26.8 10.8 29.3
bonds 0.0 60.0 3.6 29.8 7.9 28.3 4.7 34.9 33.6 41.9
nielsens 0.0 87.0 6.0 42.8 9.9 22.2 11.5 44.0 10.6 41.4
burma 0.0 93.0 3.0 43.9 6.0 44.8 5.0 54.6 14.1 86.6
dukakis 0.0 107.0 14.4 88.0 9.5 98.5 68.8 40.1 21.0 101.1
ireland 0.0 117.0 4.8 93.1 16.2 81.9 12.4 101.8 13.8 104.7
quayle 0.0 133.0 23.3 60.2 19.0 96.6 42.3 32.1 17.2 119.4
budget 0.0 197.0 10.6 164.2 29.0 158.5 57.1 124.7 25.7 177.9
hostages 0.0 228.0 30.1 185.6 44.7 142.6 78.3 164.3 25.3 199.0

Table 3: Average number of false positives (FP) and false negatives (FN) for each of 10 categories and 5 conditions.
Experiment conditions are the same as for Table 2.

153

Table 2 lists error rates for both C4.5 and the probabilitistic
classifier used during uncertainty sampling. C4.5 figures
are for a loss ratio of 5 for uncertainty samples and 1 (the
unmodified C4.5) for random samples. The probabilistic
classifier uses a loss ratio of 1.0 in both cases. Table 3
shows how the errors divide into false positives and false
negatives.

8 Discussion

As Figure 2 shows, an uncertainty sample of 999 instances
was in most situations as good for training C4.5 rules on
a random sample of 1,000 or even 10,000 instances. At a
loss ratio of 5, it was even significantly better (p=.03) than
a random sample of 10,000 instances.3 In some cases, an
uncertainty sample of 299 instances is also as good, though
this was less reliable. As expected, it is often necessary to
use a loss ratio greater than 1 in training rules. Fortunately,
there is some leeway in choosing the loss ratio—good er-
ror rates are produced for values from 3 to 20 (the highest
value we tried) for our data. These results show that het-
erogeneous uncertainty sampling can indeed be effective.
Table 2 presents the data for the larger uncertainty samples
and random samples in tabular form.

To point out the extremely low category frequencies, Fig-
ure 2 and Table 2 also indicate the error rate of a strategy
that classifies all instances as nonmembers. While such
a strategy has a low error rate, it is not useful. In most
cases the classifiers did manage to beat this error rate, and
an evaluation measure that penalized false negatives would
show an even greater advantage for the trained classifiers.

Table 2 also shows error rates for the probabilistic classifier,
both on the samples it selected and on random samples
of size 10,000. C4.5 is significantly better (p=.01) than
the probabilistic classifier on the random sample, but only
insignificantly better (p=.30) on the uncertainty sample.
This suggests that C4.5 is actually more suitable for this
text categorization task than the probabilistic classifier, and
that there is some penalty in accuracy for heterogeneity in
uncertainty sampling.

Table 3 is similar to Table 2 but shows false positives and
false negatives separately. This shows that while the total
numbers of errors produced by our classifiers were some-
times not substantially smaller than the total number for
a strategy that rejects all instances, the errors were more
balanced between false positives and false negatives.

9 Future Work

In this section we discuss a few unexplored directions in
what we believe is a rich area for study.

3Significance by t-score. The null hypothesis was that differ-
ences in average error rate across the 10 runs for each category
were normally distributed with mean zero and a category-specific
variance.

We believe uncertainty sampling and other sequential, ac-
tive, or exploratory approaches to learning [12, 25] enable
both learning research and learning applications on large,
complex, real-world data sets where fixed training sets are
impracticable. Natural language processing, where there
is great interest in inducing knowledge to support tagging,
parsing, semantic interpretation, and other forms of analy-
sis, is a particularly fruitful application area.

Heterogeneous approaches are likely to become common,
in response to both resource limitations and the desire to
train new algorithms on previously generated uncertainty
samples. A better understanding of how to minimize the
problems caused by a heterogeneous approach would be
desirable.

Note that we treated our large but finite set of instances
as if it were infinite. By adapting results from sequential
sampling [32] it may be possible both to improve uncer-
tainty sampling and to tell when additional iterations are no
longer providing any benefit—when all the juice has been
squeezed out of a data set.

Finally, in contrast to the assumptions made in most the-
oretical work on querying, our categories are stochastic
rather than deterministic. A classifier may indicate that the
probability of category membership is 0.5 not because the
classifier is incompletely trained, but because the expert
may really classify such instances as category members
50% of the time. Indeed, we have seen some evidence of
such instances being selected in the later iterations of an
uncertainty sampling run.

These murky instances are not the best ones for training
[17, 20]. This suggests a goal of producing a classifier that
estimates

� � ��� � � accurately rather than simply classifying
accurately. The variance of this estimate becomes impor-
tant, and it may be more appropriate to treat the problem
as one of regression or interpolation [21, 25] rather than
classification.

10 Summary

Using partially formed classifiers to select training data
incrementally can reduce the number of instances the expert
must label to achieve a given error rate. Our experiments
show that some reduction is possible even if this uncertainty
sampling is heterogeneous: the classifiers used to select
instances were of a very different type from the one built
from the final sample. The decision rules C4.5 produced
from uncertainty samples of roughly1,000 instances chosen
by a probabilistic classifier were significantlymore accurate
than those from random samples ten times larger. The
ability to use cheap classifiers to select data for training
expensive classifiers makes uncertainty sampling even more
attractive for a variety of applications where large amounts
of unlabeled data are available.

154

Acknowledgements

We thank William Cohen, Eileen Fitzpatrick, Yoav Fre-
und, William Gale, Trevor Hastie, Doug McIlroy, Robert
Schapire, and Sebastian Seung for advice and useful com-
ments on this work, and Ken Church for help with his text
processing tools.

References

[1] Dana Angluin. Queries and concept learning. Machine
Learning, 2:319–342, 1988.

[2] I. Bratko, I. Mozetic, and N. Lavrac. KARDIO: a study
in deep and qualitative knowledge for expert systems.
MIT Press, Cambridge, Massachusetts, 1989.

[3] Leo Breiman, Jerome H. Friedman, Richard A. Ol-
shen, and Charles J. Stone. Classification and Regres-
sion Trees. Wadsworth, Belmont, CA, 1984.

[4] J. Catlett. Megainduction: a test flight. In Ma-
chine Learning: Proceedings of the Eigth Interna-
tional Workshop, pages 596–599, San Mateo, CA,
1991. Morgan Kaufmann.

[5] William G. Cochran. Sampling Techniques. John
Wiley & Sons, New York, 3rd edition, 1977.

[6] David Cohn, Les Atlas, and Richard Ladner. Improv-
ing generalization with self-directed learning, 1992.
To appear in Machine Learning.

[7] Stuart L. Crawford, Robert M. Fung, Lee A. Appel-
baum, and Richard M. Tong. Classification trees for
information retrieval. In Eighth International Work-
shop on Machine Learning, pages 245–249, 1991.

[8] Daniel T. Davis and Jenq-Neng Hwang. Attentional
focus training by boundary region data selection. In
International Joint Conference on Neural Networks,
pages I–676 to I–681, Baltimore, MD, June 7–11
1992.

[9] James P. Egan. Signal Detection Theory and ROC
Analysis. Academic Press, New York, 1975.

[10] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby.
Information, prediction, and query by committee. In
Advances in Neural Information Processing Systems
5, San Mateo, CA, 1992. Morgan Kaufmann.

[11] William A. Gale, Kenneth W. Church, and David
Yarowsky. A method for disambiguating word senses
in a large corpus. Computers and the Humanities,
26:415–439, 1993.

[12] B. K. Ghosh. A brief history of sequential analysis.
In B. K. Ghosh and P. K. Sen, editors, Handbook of
Sequential Analysis, chapter 1, pages 1–19. Marcel
Dekker, New York, 1991.

[13] Norm Goldstein, editor. The Associated Press Style-
book and Libel Manual. Addison-Wesley, Reading,
MA, 1992.

[14] Donna Harman. Ranking algorithms. In William B.
Frakes and Ricardo Baeza-Yates, editors, Informa-
tion Retrieval: Data Structures and Algorithms, pages
363–392. Prentice Hall, Englewood Cliffs, NJ, 1992.

[15] Peter E. Hart. The condensed nearest neighbor
rule. IEEE Transactions on Information Theory, IT-
14:515–516, May 1968. Reprinted in Agrawala, Ma-
chine Recognition of Patterns, IEEE Press, New York,
1977.

155

[16] Jenq-Neng Hwang, Jai J. Choi, Seho Oh, and Robert J.
Marks II. Query-based learning applied to partially
trained multilayer perceptrons. IEEE Transactions on
Neural Networks, 2(1):131–136, January 1991.

[17] Igor Kononerko, Ivan Bratko, and Esidija Roskar. Ex-
periments in automatic learning of medical diagnostic
rules. Technical report, Jozef Stefan Institute, Ljubl-
jana, Slovenia, 1984.

[18] David D. Lewis and William A. Gale. Training text
classifiers by uncertainty sampling. In Seventeenth
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
1994. To appear.

[19] David D. Lewis and Philip J. Hayes. Editorial. ACM
Transactions on Information Systems. Special Issue
on Text Categorization, 1994. To appear.

[20] David J. C. MacKay. The evidence framework ap-
plied to classification networks. Neural Computation,
4:720–736, 1992.

[21] David J. C. MacKay. Information-based objective
functions for active data selection. Neural Compu-
tation, 4(4):589–603, 1992.

[22] Michel Manago. Knowledge intensive induction. In
Machine Learning: Proceedings of the Sixth Interna-
tional Workshop, pages 151–155, 1989.

[23] P. McCullagh and J. A. Nelder. Generalized Linear
Models. Chapman & Hall, London, 2nd edition, 1989.

[24] Tom M. Mitchell. Generalization as search. Artificial
Intelligence, 18:203–226, 1982.

[25] Mark Plutowski and Halbert White. Selecting concise
training sets from clean data. IEEE Transactions on
Neural Networks, 4(2):305–318, March 1993.

[26] J. R. Quinlan. Discovering rules by induction from
large collections of examples. In Expert systems in
the micro-electronic age, Edinburgh, UK, 1979. Ed-
inburgh University Press.

[27] J. Ross Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Mateo, CA, 1993.

[28] J.R. Quinlan. Decision trees as probabilistic clas-
sifiers. In Proceedings of the Fourth International
Workshop on Machine Learning, pages 31–37, Irvine,
California, 1987.

[29] Gerard Salton. AutomaticText Processing: The Trans-
formation, Analysis, and Retrieval of Information by
Computer. Addison-Wesley, Reading, MA, 1989.

[30] Claude Sammut, Scott Hurst, Dana Kedzier, and
Donald Michie. Learning to fly. In Ninth Interna-
tional Workshop on Machine Learning, pages 385–
393, 1992.

[31] H. S. Seung, M. Opper, and H. Sompolinsky. Query
by committee. In Proceedings of the Fifth Annual
ACM Workshop on Computational Learning Theory,
pages 287–294, 1992.

[32] Bikas Kumar Sinha. Sequential methods for finite
populations. In B. K. Ghosh and P. K. Sen, editors,
Handbook of Sequential Analysis, chapter 1, pages
1–19. Marcel Dekker, New York, 1991.

[33] Paul E. Utgoff. Improved training via incremental
learning. In Sixth InternationalWorkshop on Machine
Learning, pages 362–365, 1989.

[34] Sholom M. Weiss, Robert S. Galen, and Prasad V.
Tadepalli. Maximizing the predictive value of pro-
duction rules. Artificial Intelligence, 45(1–2):47–71,
September 1990.

[35] P. H. Winston. Learning structural descriptions from
examples. In P. H. Winston, editor, The Psychology of
Computer Vision, pages 157–209. McGraw-Hill, New
York, 1975.

[36] J. Wirth and J. Catlett. Costs and benefits of window-
ing in ID3. In Proceedings of the Fifth International
Conference on Machine Learning, Ann Arbor, Michi-
gan, 1988. Morgan Kaufmann.

156

