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Abstract

This paper discusses learning from
partially labeled data in the frame-
work of probabilistic supervised clas-
sification.
logistic regression is a conservative
solution to the problem of impre-
cise labels, which should be appro-
priate if the faithful estimation of
posterior probabilities is an issue.
Semi-supervised learning is among
the problems considered, and a se-
ries of experiments shows that our
second proposal, self-consistent lo-
gistic regression is a serious con-
tender to more classical solutions in-
volving generative models.
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1 Introduction

In the classical supervised learning classifi-
cation framework, a decision rule is to be
build from a learning set £, = {@;,yi}7,,
where each example is described by a pattern
x; € X and by the response of a supervisor
y; € Q = {wy,...,wr}. This response vari-
able is a supposedly the correct class among
the finite set of exclusive classes 2.

This paper aims at providing means to con-
struct probabilistic classification models when
the learning set includes examples whose class
is not precisely known. Instead of answering

the correct class, the supervisor is only sup-
posed to return a subset of possible classes
which should include the correct solution.
This kind of information is sometimes a more
faithful description of the true state of knowl-
edge when labeling is performed by an expert.
For example, in medical diagnosis, a physi-
cian is sometimes able to discard some dis-
eases, but not to pinpoint the precise illness
of his patient. The problem may also arise be-
cause the information required for specifying
a single label is not available, since differen-
tiating between two or more classes requires
tests which are not systematically performed
on all examples. Last but not least, some ex-
amples may not be labeled at all: in particu-
lar, semi-supervised learning is a special case
of partially labeled problem, where all exam-
ples are either precisely labeled or unlabeled,
i.e. with labels belonging to 2.

Partial labelling has been investigated in
the frameworks of probability and Dempster-
Shafer theories [1]. Dempster-Shafer theory
enables to reason on beliefs expressed on sub-
sets of 2 without distributing them to single-
tons. Its description is out of the scope of
this paper which focuses on the probabilistic
framework. The reader is referred to [1] and
references therein. Ambroise et al. [1] also
propose a probabilistic solution based on an
extension of the EM algorithm for fitting mix-
ture models. The algorithms presented here
differ in the respect that they do not model
the joint distribution of data (x,y), but only
the conditional probability of (y|z).

The particular case of semi-supervised learn-



ing problem has recently received much atten-
tion and several solutions have already been
proposed, e.g. [3, 5, 8]. Most of them rely on
some explicit or implicit model of the joint
distribution of data [5, 8]. One exception is
provided by Bennett and Demiriz [3], where
solutions having many examples near the de-
cision boundary are penalized. Another one
is given by Anderson [2] who generalized lo-
gistic regression to semi-supervised learning
for discrete (or discretized) explicative vari-
ables. The algorithms presented here also ap-
ply to logistic regression, but they may be
used either for discrete or continuous explica-
tive variables.

2 Algorithms

In this paper, we focus on logistic regression,
which is a generalized linear model providing
linear discriminant rules. Its simplicity makes
it an ideal guinea-pig for testing maximum
likelihood type criteria devoted to learning in
the presence of partial labels. The principles
discussed here are however easily generalized
to any discriminant method based on maxi-
mum likelihood estimation of posterior prob-
abilities, such as generalized additive mod-
els [6] or neural networks [4].

2.1 Logistic regression

Logistic regression fits the log-ratio of poste-
rior probabilities by a linear model. The cor-
responding estimate of the posterior probabil-
ity P(y = wg|z) is given by

exp(B )
2?21 €xp (ﬁJTfB)
where 8= {8} | is the set of parameters of

the model, which is determined by maximiz-

ing the log-likelihood
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where t;; are the so-called dummy variables
coding class membership: if y; = wyg, then |
tiw. = 1 and t;; = 0, for 5 # k. The log-
likelihood (2) assumes a multinomial distri-

bution! for (y|z) whose parameters are con-
strained by the linear relationship on log-ratio
of posterior probabilities (1). It thus en-
compasses several models of joint distribution
(,y), which may be characterized either by
discrete, continuous, or partially discrete and
continuous models on (z|y). This ubiquity
renders the estimate less sensitive to the dis-
tributional form postulated [2].

The criterion (2) is a convex function of the
model parameters B (1). Provided precau-
tions are taken to avoid redundant parameter-
ization, the Newton-Raphson algorithm effi-
ciently determines the global maximizer. This
algorithm also applies to maximum a posteri-
ori criteria with Gaussian priors on parame-
ters 3.

2.2 Generalizing logistic regression to
partial labels

Let z; € {0, 1}"* denote the dummy variables
representing partial labels, where z; = 1
means that wg is a possible label, whereas
z;r = 0 means that the label is not wy. In
other words, z; is the indicator of the subset
Q; C Q corresponding to the partial label. A
first solution to the problem of learning from
partial labels consists in maximizing the like-
lihood of the observed sample {(x;, z;)}",,
assuming model (1) (with 2% — 1 modalities)
for P(z|z). This solution does not address the
right problem: we are not interested in mod-
eling the imprecise responses of the teacher;
our goal is to uncover the distribution of the
correct label y knowing a.

Thus, the logistic model (1) should represent
the posterior probability of the correct label,
and the generalization to partial labels should
only affect the criterion (2). Three criteria are
considered in the following sections.

'For notational convenience, we consider (without
loss of generality) that only one observation is ob-
served at each pattern «;.



2.3 Maximum entropy logistic
regression

Let gx(z;, ;) model P(y; = wg|zi,x;), the
log-likelihood is

n K
Lg(BiLn) = gr(zi, @) log(fi(xi)) -

=1 k=1
(3)

Several models g may be proposed. Our inter-
pretation of partial labels (restricting the set
of possible labels) only implies the constraint

96 (zi, i) = zikgr(zi, ;).

One of the most notorious principle of proba-
bilistic inference is to assume the equireparti-
tion in the distribution of unknown variables.
In the present context, this principle amounts
to consider that, in absence of other pieces of
information, the distribution of the true label

should be modelled by

Zik
gk(‘zi7wi) ==K - (4)
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Once this model is assumed, the log-likelihood
Lg (3) can be computed. It is concave and
can be maximized with the algorithm used in
standard logistic regression.

The resulting criterion

e is the log-likelihood on precisely labeled
examples (z;z/ 2?:1 Zii = tig);

e sustains equirepartition of estimated pos-
terior probabilities within the set of pos-

sible labels;

e in particular, unlabeled data favor iden-
tical values of fi(x;), k=1,... K.

This last point tells us that unlabeled exam-
ples do not convey information. On the con-
trary, they increase the entropy of posterior
probabilities. They are thus considered as a
source of uncertainty decreasing the informa-
tion content of the training sample. This is
clearly a defect of the method. It stems from
the model of P(y|z,2) (4), where @; is not
considered as a piece of information regarding

y;. The models of P(y|z,z) and P(y|x) used
in the criterion are thus inconsistent. A suit-
able model for P(y|z, ) will be considered in
section 2.5.

2.4 Minimum commitment logistic
regression

The events observed in the learning set £, =
{x;, z;}], pertain to the membership of y;
to subsets of Q. If applied directly to
these events, the maximum likelihood prin-
ciple does not require to model P(y|z,z),
so that no additional assumption is neces-
sary. A minimum commitment? solution is
thus obtained, where, contrary to the maxi-
mum entropy principle, information support-
ing equirepartition of probabilities is differen-
tiated from the absence of information.

Noting that the event “y; belongs to the sub-
set €2; indicated by z;” follows a Bernoulli
distribution of parameter P(y; € Q;lz;) =
227:1 zik P(y; = wil|e;), the log-likelihood is

n K
L(B; L) = Zlog (Z Zikfk(wi)) . (5

k=1

This criterion is concave, and the global solu-
tion can be obtained by the Newton-Raphson
algorithm. Interestingly, another algorithm
provides the global optimum of minimum
commitment logistic regression. It consists in
an EM algorithm alternating updates of the
two sets of variables f and g of Lg (3). The
M-step maximizes Lg with respect to f for a
fixed value of g; the E-step defines g(z;, z;)
as the projection of f(x;) on the set of distri-
butions compatible with z;:

ge(zi ) = —I?kfk(ml) : (6)
>t % fi(®0)

The criterion of minimum commitment logis-

tic regression only penalizes evidence given to

classes which are inconsistent with the partial

label, without setting any preferences among

the compatible distributions:

2This term was coined in the framework of
Dempster-Schafer theory of evidence [1].



e it is the log-likelihood on precisely la-
beled examples (gi(zi, 2;) = tik);

e it is vacuous within possible labels (any
distribution with constant mass m; =
227:1 zik fe(x;) achieves the same value
of the criterion) ;

e in particular, it is vacuous for unla-
beled examples (for which the gradient
dLg/0f is orthogonal to the constraint

Yy fe(@) = 1).

The last point is in agreement with the
precaution principle of minimum commit-
ment: in the absence of any assumptions on
P(y|z, ), an unlabeled example conveys no
information. Of course, it is neither consid-
ered as a source of uncertainty.

This algorithm provides thus a solution to
partially labeled data, but it can not be used
to enhance the performances of a classifier on
a semi-supervised task. When the learning
set comprises only precisely labeled and un-
labeled examples, minimum commitment lo-
gistic regression provides the same solution as
standard logistic regression based only on la-
beled examples. We derive below another al-
gorithm, which attempts to benefit from un-
labeled examples by assuming that the model
predictions may be a valuable indicator of the
true class among possible ones.

2.5 Self-consistent logistic regression

Our last proposal can be viewed as an exten-
sion of minimum commitment logistic regres-
sion. As for the latter, this algorithm consists
in maximizing Lg (3), where g is defined as
the projection of the model of P(y|x) on the
set of distributions compatible with z. The
difference is that Lg (3) is now maximized
with respect to both variables f and g. As g
is given by (6), the criterion is a function of
f alone:

n K

15 £ = 323 2 oy e
=1 k=1 Zzijfj(wi)

i=1

(7)

This cost function is not concave, but a lo-
cal maximum can be computed by quasi-
Newton algorithm. Our implementation uses
the BFGS algorithm with the initial solution
provided by minimum commitment logistic
regression.

The maximization of criterion (7) penalizes
class assignments which are inconsistent with
the partial label, but also the equirepartition
of posterior probabilities:

e it maximizes log-likelihood on precisely
labeled examples (gi(zi, ;) = tix);

e it penalizes the mass given to incorrect
labels while minimizing entropy within
the subset of possible labels for partially
labeled examples;

e it minimizes entropy for unlabeled exam-
ples (gx(zi, ;) = fr(i)).

Thus, the algorithm outputs precise predic-
tions compatible with the possible labels. By
“betting” on its ability to uncover the poste-
rior distribution P(y|z), the algorithm may
benefit from unlabeled examples. The strat-
egy is acknowledgedly risky and may turn
a bad minimum commitment solution into a
worse one.

Note that, compared to the maximum entropy
solution, ensuring the highest consistency be-
tween the two models f and g results in a
solution where unlabeled examples are con-
As in [3], solu-
tions having many examples near the decision
boundary are penalized. This kind of penal-
ization can be motivated by theoretical argu-
ments showing that unlabeled examples con-

sidered to be informative.

vey information about discrimination when
classes are separated [7].

Experiments

For lack of space, we do not report experi-
mental results where examples are labeled by
subsets of €. Instead, we focus on the semi-
supervised learning task which is more fre-
quently encountered. The experimental setup
is simple in order to avoid artifacts stemming
from optimization problems. Our goal is to



check to what extent supervised learning can
be improved by unlabeled examples, and if
our solution can compete with the one pro-
vided by generative models which are usually
advocated in this framework.

Self-consistent logistic regression is thus com-
pared to standard logistic regression and the
EM algorithm for mixture models. The
benchmark is a series of two-classes problems,
where each class is generated with equal prob-
ability from a multivariate normal distribu-
tion. Class 1 is multivariate normal with
mean (00...0) and covariance matrix iden-
tity. Class 2 is multivariate normal with mean
(aa...a) and covariance matrix identity. The
number of features is varied from 10 to 50
(d = 10,20,30,40,50) a tunes the Bayes er-
ror which varies from 2.5 % to 40 % (2.5
%, 5 %, 10 %, 20 %, 40 %). The learn-
ing set sizes range from 200 to 1700 (n =
200, 300, 500, 800, 1700) and the rate of miss-
ing label from 0 % to 95 % (0 %, 50 %, 75 %,
90 %, 95 %). Overall, 750 different setups are
evaluated, and for each of them, 10 different
training samples are generated, resulting in
a total of 7500 experiments. Generalization
performances are estimated on a test set of
size 5000. The mixture models fitted by EM
correspond to the model that truly generated
data: two Gaussian subpopulations, with co-
variance matrices restricted to be equal. The
logistic regression model is also compatible
with the data distribution since the log-ratio
of posterior probabilities is truly linear, but
this compatibility is less demanding than the
one on the joint distribution. In this respect,
the benchmark is highly favorable to the gen-
erative modeling approach.

As there is no model bias, differences in pre-
diction error rates are only due to differences
in estimation efficiency. The average Bayes
recognition rate is 84.5 %. The overall recog-
nition rates are in favor of self-consistent lo-
gistic regression (81.2 %), followed by the
EM algorithm (79.5 %) and logistic regression
(77.1 %). Figure 1 provides a more complete
summary of results. The plots represent the
recognition rates for the three methods ver-
sus the rate of missing label and the Bayes

error rate. For each curve, the reported re-
sults are averaged over all other setup param-
eters. The first plot shows that our bench-
mark is fair to mixture models: the perfor-
mances of the three methods are about iden-
tical when no label are missing, and the ad-
vantage of self-consistent logistic discrimina-
tion is clearly shown to be due to its ability
to handle learning sets with few labeled data.

Rate of missing label

85

65 ‘ ‘ ‘ :
0 20 40 60 80 100
Bayes recognition rate

100 ‘ ‘ ‘

60 70 80 90 100

Figure 1: Average recognition rate (vs.) miss-
ing label and Bayes recognition rates for
self-consistent logistic regression (o), mixture
models (+) and logistic regression (X).

An interesting, though rather intuitive con-
clusion results from the plot of recognition
rates versus Bayes error. Either for EM or
self-consistent logistic regression, unlabeled
examples are mostly bene ficial when the
Bayes error is low, i.e. when clusters are
well separated. Experiments meet theory:
O’Neill [7] shows that the asymptotical in-
formation content of unlabeled examples de-



creases as classes overlap. Figure 2 illus-
trates how the ratio of sample size to input
dimension n/d affects recognition rates. Mix-
ture models perform best when n/d is high,
but their number of free parameters grow as
the square of the number of features, while
it grows linearly for the two logistic models.
Hence self-consistent logistic regression is by
far the best when the ratio n/d is low. When
the Bayes error decreases, the cross-over point
decreases (n/d ~ 20 for a 90 % recogni-
tion rate, n/d ~ 10 for a 97.5 % recognition
rate); the advantage of self-consistent logis-
tic regression before this point is higher and
the one of mixture models past this point is
lower. Overall, the decision rule provided by
self-consistent logistic regression seems thus
preferable.

3 Discussion

In this paper, we proposed two criteria to han-
dle partial labels in supervised classification
techniques. When applicable, the conserva-
tive solution provided by minimum commit-
ment should improve classification and the es-
timation of posterior probabilities. The more
radical self-consistent method promotes clas-
sifiers with high confidence. It should be less
reliable regarding posterior probabilities, but
the estimation of decision rule can benefit
from unlabeled examples.

Our preliminary experiments suggest that
self-consistent logistic discrimination may be
a serious contender to generative models
in semi-supervised learning.  This result
is encouraging research devoted to semi-
supervised learning or transduction within
the so-called diagnosis paradigm. In particu-
lar, the algorithms presented here could read-
ily be generalized to many classifiers. For ex-
ample, logistic regression has been generalized
to additive models [6], and feed-forward neu-
ral networks with softmax activation function
at the output layer [4]. The generalized crite-
ria leading to minimum commitment and self-
consistent logistic regression are thus directly
applicable to these classifiers.
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Figure 2: Average recogition rates for two
Bayes recognition rates (and 90 % of missing
label) wvs. ratio of sample size to input dimen-
sion (log-scale), for self-consistent logistic re-
gression (o), mixture models (4+) and logistic
regression (X).
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