
Logisti regression for partial labelsYves GrandvaletHeudiasy, UMR CNRS 6599,Universit�e de Tehnologie de Compi�egne,BP 20.529, 60205 Compi�egne edex, FraneYves.Grandvalet�hds.ut.frAbstratThis paper disusses learning frompartially labeled data in the frame-work of probabilisti supervised las-si�ation. Minimum ommitmentlogisti regression is a onservativesolution to the problem of impre-ise labels, whih should be appro-priate if the faithful estimation ofposterior probabilities is an issue.Semi-supervised learning is amongthe problems onsidered, and a se-ries of experiments shows that ourseond proposal, self-onsistent lo-gisti regression is a serious on-tender to more lassial solutions in-volving generative models.Keywords: partial labels, logistiregression semi-supervised learning.1 IntrodutionIn the lassial supervised learning lassi�-ation framework, a deision rule is to bebuild from a learning set Ln = fxi; yigni=1,where eah example is desribed by a patternxi 2 X and by the response of a supervisoryi 2 
 = f!1; : : : ; !Kg. This response vari-able is a supposedly the orret lass amongthe �nite set of exlusive lasses 
.This paper aims at providing means to on-strut probabilisti lassi�ation models whenthe learning set inludes examples whose lassis not preisely known. Instead of answering

the orret lass, the supervisor is only sup-posed to return a subset of possible lasseswhih should inlude the orret solution.This kind of information is sometimes a morefaithful desription of the true state of knowl-edge when labeling is performed by an expert.For example, in medial diagnosis, a physi-ian is sometimes able to disard some dis-eases, but not to pinpoint the preise illnessof his patient. The problem may also arise be-ause the information required for speifyinga single label is not available, sine di�eren-tiating between two or more lasses requirestests whih are not systematially performedon all examples. Last but not least, some ex-amples may not be labeled at all: in partiu-lar, semi-supervised learning is a speial aseof partially labeled problem, where all exam-ples are either preisely labeled or unlabeled,i.e. with labels belonging to 
.Partial labelling has been investigated inthe frameworks of probability and Dempster-Shafer theories [1℄. Dempster-Shafer theoryenables to reason on beliefs expressed on sub-sets of 
 without distributing them to single-tons. Its desription is out of the sope ofthis paper whih fouses on the probabilistiframework. The reader is referred to [1℄ andreferenes therein. Ambroise et al. [1℄ alsopropose a probabilisti solution based on anextension of the EM algorithm for �tting mix-ture models. The algorithms presented heredi�er in the respet that they do not modelthe joint distribution of data (x; y), but onlythe onditional probability of (yjx).The partiular ase of semi-supervised learn-



ing problem has reently reeived muh atten-tion and several solutions have already beenproposed, e.g. [3, 5, 8℄. Most of them rely onsome expliit or impliit model of the jointdistribution of data [5, 8℄. One exeption isprovided by Bennett and Demiriz [3℄, wheresolutions having many examples near the de-ision boundary are penalized. Another oneis given by Anderson [2℄ who generalized lo-gisti regression to semi-supervised learningfor disrete (or disretized) expliative vari-ables. The algorithms presented here also ap-ply to logisti regression, but they may beused either for disrete or ontinuous explia-tive variables.2 AlgorithmsIn this paper, we fous on logisti regression,whih is a generalized linear model providinglinear disriminant rules. Its simpliity makesit an ideal guinea-pig for testing maximumlikelihood type riteria devoted to learning inthe presene of partial labels. The priniplesdisussed here are however easily generalizedto any disriminant method based on maxi-mum likelihood estimation of posterior prob-abilities, suh as generalized additive mod-els [6℄ or neural networks [4℄.2.1 Logisti regressionLogisti regression �ts the log-ratio of poste-rior probabilities by a linear model. The or-responding estimate of the posterior probabil-ity P (y = !k jx) is given byfk(x) = exp(�Tk x)PKj=1 exp(�Tj x) ; (1)where � = f�kgKk=1 is the set of parameters ofthe model, whih is determined by maximiz-ing the log-likelihoodL(�;Ln) = nXi=1 KXk=1 tik log(fk(xi)) ; (2)where tik are the so-alled dummy variablesoding lass membership: if yi = !k , then ,tik = 1 and tij = 0, for j 6= k. The log-likelihood (2) assumes a multinomial distri-

bution1 for (yjx) whose parameters are on-strained by the linear relationship on log-ratioof posterior probabilities (1). It thus en-ompasses several models of joint distribution(x; y), whih may be haraterized either bydisrete, ontinuous, or partially disrete andontinuous models on (xjy). This ubiquityrenders the estimate less sensitive to the dis-tributional form postulated [2℄.The riterion (2) is a onvex funtion of themodel parameters � (1). Provided preau-tions are taken to avoid redundant parameter-ization, the Newton-Raphson algorithm eÆ-iently determines the global maximizer. Thisalgorithm also applies to maximum a posteri-ori riteria with Gaussian priors on parame-ters �.2.2 Generalizing logisti regression topartial labelsLet zi 2 f0; 1gK denote the dummy variablesrepresenting partial labels, where zik = 1means that !k is a possible label, whereaszik = 0 means that the label is not !k. Inother words, zi is the indiator of the subset
i � 
 orresponding to the partial label. A�rst solution to the problem of learning frompartial labels onsists in maximizing the like-lihood of the observed sample f(xi; zi)gni=1,assuming model (1) (with 2K � 1 modalities)for P (zjx). This solution does not address theright problem: we are not interested in mod-eling the impreise responses of the teaher;our goal is to unover the distribution of theorret label y knowing x.Thus, the logisti model (1) should representthe posterior probability of the orret label,and the generalization to partial labels shouldonly a�et the riterion (2). Three riteria areonsidered in the following setions.1For notational onveniene, we onsider (withoutloss of generality) that only one observation is ob-served at eah pattern xi.



2.3 Maximum entropy logistiregressionLet gk(zi;xi) model P (yi = !k jzi;xi), thelog-likelihood isLg(�;Ln) = nXi=1 KXk=1 gk(zi;xi) log(fk(xi)) :(3)Several models g may be proposed. Our inter-pretation of partial labels (restriting the setof possible labels) only implies the onstraintgk(zi;xi) = zikgk(zi;xi).One of the most notorious priniple of proba-bilisti inferene is to assume the equireparti-tion in the distribution of unknown variables.In the present ontext, this priniple amountsto onsider that, in absene of other piees ofinformation, the distribution of the true labelshould be modelled bygk(zi;xi) = zikPKj=1 zij : (4)One this model is assumed, the log-likelihoodLg (3) an be omputed. It is onave andan be maximized with the algorithm used instandard logisti regression.The resulting riterion� is the log-likelihood on preisely labeledexamples (zik=PKj=1 zij = tik);� sustains equirepartition of estimated pos-terior probabilities within the set of pos-sible labels;� in partiular, unlabeled data favor iden-tial values of fk(xi); k = 1; : : : ; K.This last point tells us that unlabeled exam-ples do not onvey information. On the on-trary, they inrease the entropy of posteriorprobabilities. They are thus onsidered as asoure of unertainty dereasing the informa-tion ontent of the training sample. This islearly a defet of the method. It stems fromthe model of P (yjz;x) (4), where xi is notonsidered as a piee of information regarding

yi. The models of P (yjz;x) and P (yjx) usedin the riterion are thus inonsistent. A suit-able model for P (yjz;x) will be onsidered insetion 2.5.2.4 Minimum ommitment logistiregressionThe events observed in the learning set Ln =fxi; zigni=1 pertain to the membership of yito subsets of 
. If applied diretly tothese events, the maximum likelihood prin-iple does not require to model P (yjx; z),so that no additional assumption is nees-sary. A minimum ommitment2 solution isthus obtained, where, ontrary to the maxi-mum entropy priniple, information support-ing equirepartition of probabilities is di�eren-tiated from the absene of information.Noting that the event \yi belongs to the sub-set 
i indiated by zi" follows a Bernoullidistribution of parameter P (yi 2 
ijxi) =PKk=1 zikP (yi = !kjxi), the log-likelihood isL(�;Ln) = nXi=1 log KXk=1 zikfk(xi)! : (5)This riterion is onave, and the global solu-tion an be obtained by the Newton-Raphsonalgorithm. Interestingly, another algorithmprovides the global optimum of minimumommitment logisti regression. It onsists inan EM algorithm alternating updates of thetwo sets of variables f and g of Lg (3). TheM-step maximizes Lg with respet to f for a�xed value of g; the E-step de�nes g(zi;xi)as the projetion of f(xi) on the set of distri-butions ompatible with zi:gk(zi;xi) = zikfk(xi)PKj=1 zijfj(xi) : (6)The riterion of minimum ommitment logis-ti regression only penalizes evidene given tolasses whih are inonsistent with the partiallabel, without setting any preferenes amongthe ompatible distributions:2This term was oined in the framework ofDempster-Shafer theory of evidene [1℄.



� it is the log-likelihood on preisely la-beled examples (gk(zi;xi) = tik);� it is vauous within possible labels (anydistribution with onstant mass mi =PKk=1 zikfk(xi) ahieves the same valueof the riterion) ;� in partiular, it is vauous for unla-beled examples (for whih the gradient�Lg=�f is orthogonal to the onstraintPKk=1 fk(x) = 1).The last point is in agreement with thepreaution priniple of minimum ommit-ment: in the absene of any assumptions onP (yjz;x), an unlabeled example onveys noinformation. Of ourse, it is neither onsid-ered as a soure of unertainty.This algorithm provides thus a solution topartially labeled data, but it an not be usedto enhane the performanes of a lassi�er ona semi-supervised task. When the learningset omprises only preisely labeled and un-labeled examples, minimum ommitment lo-gisti regression provides the same solution asstandard logisti regression based only on la-beled examples. We derive below another al-gorithm, whih attempts to bene�t from un-labeled examples by assuming that the modelpreditions may be a valuable indiator of thetrue lass among possible ones.2.5 Self-onsistent logisti regressionOur last proposal an be viewed as an exten-sion of minimum ommitment logisti regres-sion. As for the latter, this algorithm onsistsin maximizing Lg (3), where g is de�ned asthe projetion of the model of P (yjx) on theset of distributions ompatible with z. Thedi�erene is that Lg (3) is now maximizedwith respet to both variables f and g. As gis given by (6), the riterion is a funtion off alone:L(�;Ln) = nXi=1 KXk=1 zikfk(xi)KXj=1 zijfj(xi) log(fk(xi)) :(7)

This ost funtion is not onave, but a lo-al maximum an be omputed by quasi-Newton algorithm. Our implementation usesthe BFGS algorithm with the initial solutionprovided by minimum ommitment logistiregression.The maximization of riterion (7) penalizeslass assignments whih are inonsistent withthe partial label, but also the equirepartitionof posterior probabilities:� it maximizes log-likelihood on preiselylabeled examples (gk(zi;xi) = tik);� it penalizes the mass given to inorretlabels while minimizing entropy withinthe subset of possible labels for partiallylabeled examples;� it minimizes entropy for unlabeled exam-ples (gk(zi;xi) = fk(xi)).Thus, the algorithm outputs preise predi-tions ompatible with the possible labels. By\betting" on its ability to unover the poste-rior distribution P (yjx), the algorithm maybene�t from unlabeled examples. The strat-egy is aknowledgedly risky and may turna bad minimum ommitment solution into aworse one.Note that, ompared to the maximum entropysolution, ensuring the highest onsisteny be-tween the two models f and g results in asolution where unlabeled examples are on-sidered to be informative. As in [3℄, solu-tions having many examples near the deisionboundary are penalized. This kind of penal-ization an be motivated by theoretial argu-ments showing that unlabeled examples on-vey information about disrimination whenlasses are separated [7℄.ExperimentsFor lak of spae, we do not report experi-mental results where examples are labeled bysubsets of 
. Instead, we fous on the semi-supervised learning task whih is more fre-quently enountered. The experimental setupis simple in order to avoid artifats stemmingfrom optimization problems. Our goal is to



hek to what extent supervised learning anbe improved by unlabeled examples, and ifour solution an ompete with the one pro-vided by generative models whih are usuallyadvoated in this framework.Self-onsistent logisti regression is thus om-pared to standard logisti regression and theEM algorithm for mixture models. Thebenhmark is a series of two-lasses problems,where eah lass is generated with equal prob-ability from a multivariate normal distribu-tion. Class 1 is multivariate normal withmean (00 : : :0) and ovariane matrix iden-tity. Class 2 is multivariate normal with mean(aa : : :a) and ovariane matrix identity. Thenumber of features is varied from 10 to 50(d = 10; 20; 30; 40; 50) a tunes the Bayes er-ror whih varies from 2.5 % to 40 % (2.5%, 5 %, 10 %, 20 %, 40 %). The learn-ing set sizes range from 200 to 1700 (n =200; 300; 500; 800; 1700) and the rate of miss-ing label from 0 % to 95 % (0 %, 50 %, 75 %,90 %, 95 %). Overall, 750 di�erent setups areevaluated, and for eah of them, 10 di�erenttraining samples are generated, resulting ina total of 7500 experiments. Generalizationperformanes are estimated on a test set ofsize 5000. The mixture models �tted by EMorrespond to the model that truly generateddata: two Gaussian subpopulations, with o-variane matries restrited to be equal. Thelogisti regression model is also ompatiblewith the data distribution sine the log-ratioof posterior probabilities is truly linear, butthis ompatibility is less demanding than theone on the joint distribution. In this respet,the benhmark is highly favorable to the gen-erative modeling approah.As there is no model bias, di�erenes in pre-dition error rates are only due to di�erenesin estimation eÆieny. The average Bayesreognition rate is 84.5 %. The overall reog-nition rates are in favor of self-onsistent lo-gisti regression (81.2 %), followed by theEM algorithm (79.5 %) and logisti regression(77.1 %). Figure 1 provides a more ompletesummary of results. The plots represent thereognition rates for the three methods ver-sus the rate of missing label and the Bayes

error rate. For eah urve, the reported re-sults are averaged over all other setup param-eters. The �rst plot shows that our benh-mark is fair to mixture models: the perfor-manes of the three methods are about iden-tial when no label are missing, and the ad-vantage of self-onsistent logisti disrimina-tion is learly shown to be due to its abilityto handle learning sets with few labeled data.
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Figure 1: Average reognition rate (vs.) miss-ing label and Bayes reognition rates forself-onsistent logisti regression (Æ), mixturemodels (+) and logisti regression (�).An interesting, though rather intuitive on-lusion results from the plot of reognitionrates versus Bayes error. Either for EM orself-onsistent logisti regression, unlabeledexamples are mostly bene �ial when theBayes error is low, i.e. when lusters arewell separated. Experiments meet theory:O'Neill [7℄ shows that the asymptotial in-formation ontent of unlabeled examples de-



reases as lasses overlap. Figure 2 illus-trates how the ratio of sample size to inputdimension n=d a�ets reognition rates. Mix-ture models perform best when n=d is high,but their number of free parameters grow asthe square of the number of features, whileit grows linearly for the two logisti models.Hene self-onsistent logisti regression is byfar the best when the ratio n=d is low. Whenthe Bayes error dereases, the ross-over pointdereases (n=d ' 20 for a 90 % reogni-tion rate, n=d ' 10 for a 97.5 % reognitionrate); the advantage of self-onsistent logis-ti regression before this point is higher andthe one of mixture models past this point islower. Overall, the deision rule provided byself-onsistent logisti regression seems thuspreferable.3 DisussionIn this paper, we proposed two riteria to han-dle partial labels in supervised lassi�ationtehniques. When appliable, the onserva-tive solution provided by minimum ommit-ment should improve lassi�ation and the es-timation of posterior probabilities. The moreradial self-onsistent method promotes las-si�ers with high on�dene. It should be lessreliable regarding posterior probabilities, butthe estimation of deision rule an bene�tfrom unlabeled examples.Our preliminary experiments suggest thatself-onsistent logisti disrimination may bea serious ontender to generative modelsin semi-supervised learning. This resultis enouraging researh devoted to semi-supervised learning or transdution withinthe so-alled diagnosis paradigm. In partiu-lar, the algorithms presented here ould read-ily be generalized to many lassi�ers. For ex-ample, logisti regression has been generalizedto additive models [6℄, and feed-forward neu-ral networks with softmax ativation funtionat the output layer [4℄. The generalized rite-ria leading to minimum ommitment and self-onsistent logisti regression are thus diretlyappliable to these lassi�ers.
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Figure 2: Average reogition rates for twoBayes reognition rates (and 90 % of missinglabel) vs. ratio of sample size to input dimen-sion (log-sale), for self-onsistent logisti re-gression (Æ), mixture models (+) and logistiregression (�).Referenes[1℄ C. Ambroise, T. Den�ux, G. Govaert,and P. Smets. Learning from an impre-ise teaher: probabilisti and evidentialapproahes. In 10 th International Sym-posium on Applied Stohasti Models andData Analysis, volume 1, pages 101{105,June 2001.[2℄ J. A. Anderson. Multivariate logisti om-pounds. Biometrika, 66(1):17{26, 1979.[3℄ K. P. Bennett and A. Demiriz. Semi-supervised support vetor mahines. InM. S. Kearns, S. A. Solla, and D. A.
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