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.frAbstra
tThis paper dis
usses learning frompartially labeled data in the frame-work of probabilisti
 supervised 
las-si�
ation. Minimum 
ommitmentlogisti
 regression is a 
onservativesolution to the problem of impre-
ise labels, whi
h should be appro-priate if the faithful estimation ofposterior probabilities is an issue.Semi-supervised learning is amongthe problems 
onsidered, and a se-ries of experiments shows that ourse
ond proposal, self-
onsistent lo-gisti
 regression is a serious 
on-tender to more 
lassi
al solutions in-volving generative models.Keywords: partial labels, logisti
regression semi-supervised learning.1 Introdu
tionIn the 
lassi
al supervised learning 
lassi�-
ation framework, a de
ision rule is to bebuild from a learning set Ln = fxi; yigni=1,where ea
h example is des
ribed by a patternxi 2 X and by the response of a supervisoryi 2 
 = f!1; : : : ; !Kg. This response vari-able is a supposedly the 
orre
t 
lass amongthe �nite set of ex
lusive 
lasses 
.This paper aims at providing means to 
on-stru
t probabilisti
 
lassi�
ation models whenthe learning set in
ludes examples whose 
lassis not pre
isely known. Instead of answering

the 
orre
t 
lass, the supervisor is only sup-posed to return a subset of possible 
lasseswhi
h should in
lude the 
orre
t solution.This kind of information is sometimes a morefaithful des
ription of the true state of knowl-edge when labeling is performed by an expert.For example, in medi
al diagnosis, a physi-
ian is sometimes able to dis
ard some dis-eases, but not to pinpoint the pre
ise illnessof his patient. The problem may also arise be-
ause the information required for spe
ifyinga single label is not available, sin
e di�eren-tiating between two or more 
lasses requirestests whi
h are not systemati
ally performedon all examples. Last but not least, some ex-amples may not be labeled at all: in parti
u-lar, semi-supervised learning is a spe
ial 
aseof partially labeled problem, where all exam-ples are either pre
isely labeled or unlabeled,i.e. with labels belonging to 
.Partial labelling has been investigated inthe frameworks of probability and Dempster-Shafer theories [1℄. Dempster-Shafer theoryenables to reason on beliefs expressed on sub-sets of 
 without distributing them to single-tons. Its des
ription is out of the s
ope ofthis paper whi
h fo
uses on the probabilisti
framework. The reader is referred to [1℄ andreferen
es therein. Ambroise et al. [1℄ alsopropose a probabilisti
 solution based on anextension of the EM algorithm for �tting mix-ture models. The algorithms presented heredi�er in the respe
t that they do not modelthe joint distribution of data (x; y), but onlythe 
onditional probability of (yjx).The parti
ular 
ase of semi-supervised learn-



ing problem has re
ently re
eived mu
h atten-tion and several solutions have already beenproposed, e.g. [3, 5, 8℄. Most of them rely onsome expli
it or impli
it model of the jointdistribution of data [5, 8℄. One ex
eption isprovided by Bennett and Demiriz [3℄, wheresolutions having many examples near the de-
ision boundary are penalized. Another oneis given by Anderson [2℄ who generalized lo-gisti
 regression to semi-supervised learningfor dis
rete (or dis
retized) expli
ative vari-ables. The algorithms presented here also ap-ply to logisti
 regression, but they may beused either for dis
rete or 
ontinuous expli
a-tive variables.2 AlgorithmsIn this paper, we fo
us on logisti
 regression,whi
h is a generalized linear model providinglinear dis
riminant rules. Its simpli
ity makesit an ideal guinea-pig for testing maximumlikelihood type 
riteria devoted to learning inthe presen
e of partial labels. The prin
iplesdis
ussed here are however easily generalizedto any dis
riminant method based on maxi-mum likelihood estimation of posterior prob-abilities, su
h as generalized additive mod-els [6℄ or neural networks [4℄.2.1 Logisti
 regressionLogisti
 regression �ts the log-ratio of poste-rior probabilities by a linear model. The 
or-responding estimate of the posterior probabil-ity P (y = !k jx) is given byfk(x) = exp(�Tk x)PKj=1 exp(�Tj x) ; (1)where � = f�kgKk=1 is the set of parameters ofthe model, whi
h is determined by maximiz-ing the log-likelihoodL(�;Ln) = nXi=1 KXk=1 tik log(fk(xi)) ; (2)where tik are the so-
alled dummy variables
oding 
lass membership: if yi = !k , then ,tik = 1 and tij = 0, for j 6= k. The log-likelihood (2) assumes a multinomial distri-

bution1 for (yjx) whose parameters are 
on-strained by the linear relationship on log-ratioof posterior probabilities (1). It thus en-
ompasses several models of joint distribution(x; y), whi
h may be 
hara
terized either bydis
rete, 
ontinuous, or partially dis
rete and
ontinuous models on (xjy). This ubiquityrenders the estimate less sensitive to the dis-tributional form postulated [2℄.The 
riterion (2) is a 
onvex fun
tion of themodel parameters � (1). Provided pre
au-tions are taken to avoid redundant parameter-ization, the Newton-Raphson algorithm eÆ-
iently determines the global maximizer. Thisalgorithm also applies to maximum a posteri-ori 
riteria with Gaussian priors on parame-ters �.2.2 Generalizing logisti
 regression topartial labelsLet zi 2 f0; 1gK denote the dummy variablesrepresenting partial labels, where zik = 1means that !k is a possible label, whereaszik = 0 means that the label is not !k. Inother words, zi is the indi
ator of the subset
i � 
 
orresponding to the partial label. A�rst solution to the problem of learning frompartial labels 
onsists in maximizing the like-lihood of the observed sample f(xi; zi)gni=1,assuming model (1) (with 2K � 1 modalities)for P (zjx). This solution does not address theright problem: we are not interested in mod-eling the impre
ise responses of the tea
her;our goal is to un
over the distribution of the
orre
t label y knowing x.Thus, the logisti
 model (1) should representthe posterior probability of the 
orre
t label,and the generalization to partial labels shouldonly a�e
t the 
riterion (2). Three 
riteria are
onsidered in the following se
tions.1For notational 
onvenien
e, we 
onsider (withoutloss of generality) that only one observation is ob-served at ea
h pattern xi.



2.3 Maximum entropy logisti
regressionLet gk(zi;xi) model P (yi = !k jzi;xi), thelog-likelihood isLg(�;Ln) = nXi=1 KXk=1 gk(zi;xi) log(fk(xi)) :(3)Several models g may be proposed. Our inter-pretation of partial labels (restri
ting the setof possible labels) only implies the 
onstraintgk(zi;xi) = zikgk(zi;xi).One of the most notorious prin
iple of proba-bilisti
 inferen
e is to assume the equireparti-tion in the distribution of unknown variables.In the present 
ontext, this prin
iple amountsto 
onsider that, in absen
e of other pie
es ofinformation, the distribution of the true labelshould be modelled bygk(zi;xi) = zikPKj=1 zij : (4)On
e this model is assumed, the log-likelihoodLg (3) 
an be 
omputed. It is 
on
ave and
an be maximized with the algorithm used instandard logisti
 regression.The resulting 
riterion� is the log-likelihood on pre
isely labeledexamples (zik=PKj=1 zij = tik);� sustains equirepartition of estimated pos-terior probabilities within the set of pos-sible labels;� in parti
ular, unlabeled data favor iden-ti
al values of fk(xi); k = 1; : : : ; K.This last point tells us that unlabeled exam-ples do not 
onvey information. On the 
on-trary, they in
rease the entropy of posteriorprobabilities. They are thus 
onsidered as asour
e of un
ertainty de
reasing the informa-tion 
ontent of the training sample. This is
learly a defe
t of the method. It stems fromthe model of P (yjz;x) (4), where xi is not
onsidered as a pie
e of information regarding

yi. The models of P (yjz;x) and P (yjx) usedin the 
riterion are thus in
onsistent. A suit-able model for P (yjz;x) will be 
onsidered inse
tion 2.5.2.4 Minimum 
ommitment logisti
regressionThe events observed in the learning set Ln =fxi; zigni=1 pertain to the membership of yito subsets of 
. If applied dire
tly tothese events, the maximum likelihood prin-
iple does not require to model P (yjx; z),so that no additional assumption is ne
es-sary. A minimum 
ommitment2 solution isthus obtained, where, 
ontrary to the maxi-mum entropy prin
iple, information support-ing equirepartition of probabilities is di�eren-tiated from the absen
e of information.Noting that the event \yi belongs to the sub-set 
i indi
ated by zi" follows a Bernoullidistribution of parameter P (yi 2 
ijxi) =PKk=1 zikP (yi = !kjxi), the log-likelihood isL(�;Ln) = nXi=1 log KXk=1 zikfk(xi)! : (5)This 
riterion is 
on
ave, and the global solu-tion 
an be obtained by the Newton-Raphsonalgorithm. Interestingly, another algorithmprovides the global optimum of minimum
ommitment logisti
 regression. It 
onsists inan EM algorithm alternating updates of thetwo sets of variables f and g of Lg (3). TheM-step maximizes Lg with respe
t to f for a�xed value of g; the E-step de�nes g(zi;xi)as the proje
tion of f(xi) on the set of distri-butions 
ompatible with zi:gk(zi;xi) = zikfk(xi)PKj=1 zijfj(xi) : (6)The 
riterion of minimum 
ommitment logis-ti
 regression only penalizes eviden
e given to
lasses whi
h are in
onsistent with the partiallabel, without setting any preferen
es amongthe 
ompatible distributions:2This term was 
oined in the framework ofDempster-S
hafer theory of eviden
e [1℄.



� it is the log-likelihood on pre
isely la-beled examples (gk(zi;xi) = tik);� it is va
uous within possible labels (anydistribution with 
onstant mass mi =PKk=1 zikfk(xi) a
hieves the same valueof the 
riterion) ;� in parti
ular, it is va
uous for unla-beled examples (for whi
h the gradient�Lg=�f is orthogonal to the 
onstraintPKk=1 fk(x) = 1).The last point is in agreement with thepre
aution prin
iple of minimum 
ommit-ment: in the absen
e of any assumptions onP (yjz;x), an unlabeled example 
onveys noinformation. Of 
ourse, it is neither 
onsid-ered as a sour
e of un
ertainty.This algorithm provides thus a solution topartially labeled data, but it 
an not be usedto enhan
e the performan
es of a 
lassi�er ona semi-supervised task. When the learningset 
omprises only pre
isely labeled and un-labeled examples, minimum 
ommitment lo-gisti
 regression provides the same solution asstandard logisti
 regression based only on la-beled examples. We derive below another al-gorithm, whi
h attempts to bene�t from un-labeled examples by assuming that the modelpredi
tions may be a valuable indi
ator of thetrue 
lass among possible ones.2.5 Self-
onsistent logisti
 regressionOur last proposal 
an be viewed as an exten-sion of minimum 
ommitment logisti
 regres-sion. As for the latter, this algorithm 
onsistsin maximizing Lg (3), where g is de�ned asthe proje
tion of the model of P (yjx) on theset of distributions 
ompatible with z. Thedi�eren
e is that Lg (3) is now maximizedwith respe
t to both variables f and g. As gis given by (6), the 
riterion is a fun
tion off alone:L(�;Ln) = nXi=1 KXk=1 zikfk(xi)KXj=1 zijfj(xi) log(fk(xi)) :(7)

This 
ost fun
tion is not 
on
ave, but a lo-
al maximum 
an be 
omputed by quasi-Newton algorithm. Our implementation usesthe BFGS algorithm with the initial solutionprovided by minimum 
ommitment logisti
regression.The maximization of 
riterion (7) penalizes
lass assignments whi
h are in
onsistent withthe partial label, but also the equirepartitionof posterior probabilities:� it maximizes log-likelihood on pre
iselylabeled examples (gk(zi;xi) = tik);� it penalizes the mass given to in
orre
tlabels while minimizing entropy withinthe subset of possible labels for partiallylabeled examples;� it minimizes entropy for unlabeled exam-ples (gk(zi;xi) = fk(xi)).Thus, the algorithm outputs pre
ise predi
-tions 
ompatible with the possible labels. By\betting" on its ability to un
over the poste-rior distribution P (yjx), the algorithm maybene�t from unlabeled examples. The strat-egy is a
knowledgedly risky and may turna bad minimum 
ommitment solution into aworse one.Note that, 
ompared to the maximum entropysolution, ensuring the highest 
onsisten
y be-tween the two models f and g results in asolution where unlabeled examples are 
on-sidered to be informative. As in [3℄, solu-tions having many examples near the de
isionboundary are penalized. This kind of penal-ization 
an be motivated by theoreti
al argu-ments showing that unlabeled examples 
on-vey information about dis
rimination when
lasses are separated [7℄.ExperimentsFor la
k of spa
e, we do not report experi-mental results where examples are labeled bysubsets of 
. Instead, we fo
us on the semi-supervised learning task whi
h is more fre-quently en
ountered. The experimental setupis simple in order to avoid artifa
ts stemmingfrom optimization problems. Our goal is to




he
k to what extent supervised learning 
anbe improved by unlabeled examples, and ifour solution 
an 
ompete with the one pro-vided by generative models whi
h are usuallyadvo
ated in this framework.Self-
onsistent logisti
 regression is thus 
om-pared to standard logisti
 regression and theEM algorithm for mixture models. Theben
hmark is a series of two-
lasses problems,where ea
h 
lass is generated with equal prob-ability from a multivariate normal distribu-tion. Class 1 is multivariate normal withmean (00 : : :0) and 
ovarian
e matrix iden-tity. Class 2 is multivariate normal with mean(aa : : :a) and 
ovarian
e matrix identity. Thenumber of features is varied from 10 to 50(d = 10; 20; 30; 40; 50) a tunes the Bayes er-ror whi
h varies from 2.5 % to 40 % (2.5%, 5 %, 10 %, 20 %, 40 %). The learn-ing set sizes range from 200 to 1700 (n =200; 300; 500; 800; 1700) and the rate of miss-ing label from 0 % to 95 % (0 %, 50 %, 75 %,90 %, 95 %). Overall, 750 di�erent setups areevaluated, and for ea
h of them, 10 di�erenttraining samples are generated, resulting ina total of 7500 experiments. Generalizationperforman
es are estimated on a test set ofsize 5000. The mixture models �tted by EM
orrespond to the model that truly generateddata: two Gaussian subpopulations, with 
o-varian
e matri
es restri
ted to be equal. Thelogisti
 regression model is also 
ompatiblewith the data distribution sin
e the log-ratioof posterior probabilities is truly linear, butthis 
ompatibility is less demanding than theone on the joint distribution. In this respe
t,the ben
hmark is highly favorable to the gen-erative modeling approa
h.As there is no model bias, di�eren
es in pre-di
tion error rates are only due to di�eren
esin estimation eÆ
ien
y. The average Bayesre
ognition rate is 84.5 %. The overall re
og-nition rates are in favor of self-
onsistent lo-gisti
 regression (81.2 %), followed by theEM algorithm (79.5 %) and logisti
 regression(77.1 %). Figure 1 provides a more 
ompletesummary of results. The plots represent there
ognition rates for the three methods ver-sus the rate of missing label and the Bayes

error rate. For ea
h 
urve, the reported re-sults are averaged over all other setup param-eters. The �rst plot shows that our ben
h-mark is fair to mixture models: the perfor-man
es of the three methods are about iden-ti
al when no label are missing, and the ad-vantage of self-
onsistent logisti
 dis
rimina-tion is 
learly shown to be due to its abilityto handle learning sets with few labeled data.
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Figure 1: Average re
ognition rate (vs.) miss-ing label and Bayes re
ognition rates forself-
onsistent logisti
 regression (Æ), mixturemodels (+) and logisti
 regression (�).An interesting, though rather intuitive 
on-
lusion results from the plot of re
ognitionrates versus Bayes error. Either for EM orself-
onsistent logisti
 regression, unlabeledexamples are mostly bene �
ial when theBayes error is low, i.e. when 
lusters arewell separated. Experiments meet theory:O'Neill [7℄ shows that the asymptoti
al in-formation 
ontent of unlabeled examples de-




reases as 
lasses overlap. Figure 2 illus-trates how the ratio of sample size to inputdimension n=d a�e
ts re
ognition rates. Mix-ture models perform best when n=d is high,but their number of free parameters grow asthe square of the number of features, whileit grows linearly for the two logisti
 models.Hen
e self-
onsistent logisti
 regression is byfar the best when the ratio n=d is low. Whenthe Bayes error de
reases, the 
ross-over pointde
reases (n=d ' 20 for a 90 % re
ogni-tion rate, n=d ' 10 for a 97.5 % re
ognitionrate); the advantage of self-
onsistent logis-ti
 regression before this point is higher andthe one of mixture models past this point islower. Overall, the de
ision rule provided byself-
onsistent logisti
 regression seems thuspreferable.3 Dis
ussionIn this paper, we proposed two 
riteria to han-dle partial labels in supervised 
lassi�
ationte
hniques. When appli
able, the 
onserva-tive solution provided by minimum 
ommit-ment should improve 
lassi�
ation and the es-timation of posterior probabilities. The moreradi
al self-
onsistent method promotes 
las-si�ers with high 
on�den
e. It should be lessreliable regarding posterior probabilities, butthe estimation of de
ision rule 
an bene�tfrom unlabeled examples.Our preliminary experiments suggest thatself-
onsistent logisti
 dis
rimination may bea serious 
ontender to generative modelsin semi-supervised learning. This resultis en
ouraging resear
h devoted to semi-supervised learning or transdu
tion withinthe so-
alled diagnosis paradigm. In parti
u-lar, the algorithms presented here 
ould read-ily be generalized to many 
lassi�ers. For ex-ample, logisti
 regression has been generalizedto additive models [6℄, and feed-forward neu-ral networks with softmax a
tivation fun
tionat the output layer [4℄. The generalized 
rite-ria leading to minimum 
ommitment and self-
onsistent logisti
 regression are thus dire
tlyappli
able to these 
lassi�ers.
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Figure 2: Average re
ogition rates for twoBayes re
ognition rates (and 90 % of missinglabel) vs. ratio of sample size to input dimen-sion (log-s
ale), for self-
onsistent logisti
 re-gression (Æ), mixture models (+) and logisti
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