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Abstract

We examine the learning-curve sampling method, an approach for applying machine-
learning algorithms to large data sets. The approach is based on the observation that
the computational cost of learning a model increases as a function of the sample size of the
training data, whereas the accuracy of a model has diminishing improvements as a function
of sample size. Thus, the learning-curve sampling method monitors the increasing costs
and performance as larger and larger amounts of data are used for training, and termi-
nates learning when future costs outweigh future benefits. In this paper, we formalize the
learning-curve sampling method and its associated cost-benefit tradeoff in terms of decision
theory. In addition, we describe the application of the learning-curve sampling method to
the task of model-based clustering via the expectation-maximization (EM) algorithm. In
experiments on three real data sets, we show that the learning-curve sampling method
produces models that are nearly as accurate as those trained on complete data sets, but
with dramatically reduced learning times. Finally, we describe an extension of the basic
learning-curve approach for model-based clustering that results in an additional speedup.
This extension is based on the observation that the shape of the learning curve for a given
model and data set is roughly independent of the number of EM iterations used during
training. Thus, we run EM for only a few iterations to decide how many cases to use for
training, and then run EM to full convergence once the number of cases is selected.
Keywords: Learning-curve sampling method, clustering, scalability, decision theory,
sampling

1. Introduction

In situations where one has access to massive amounts of data, the cost of building a
statistical model can be significant if not insurmountable. A common practice is to build
the model using a (usually random) sample of the examples or cases in the data. In so
doing, however, the choice of the number of cases to use is far from clear. In this paper,
we examine the learning-curve sampling method, an algorithmic approach to choosing an
appropriate sample size for training.

Learning-curve sampling methods rely on two basic observations: (1) the computational
cost of learning a model increases as a function of the size of the training data, and (2) the
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performance/accuracy of a model has diminishing improvements as a function of the size of
the training data. The curve describing the performance as a function of the sample size of
the training data is often called the learning curve. The typical shape of a learning curve
is concave (down) with performance approaching some limiting behavior. Thus, a learning-
curve sampling method monitors the increasing costs and performance as larger and larger
amounts of data are used for training, and terminates learning when the increasing costs
outweigh the benefit of increasing performance.

In this paper, we formalize the learning-curve approach to sampling in terms of decision
theory. In particular, we describe the use of utility as an overall measure of the quality
of a learning method, and derive algorithms for selecting sample size from the principle of
maximum expected utility.

In addition, we describe several high-utility learning-curve sampling methods for the
particular task of model-based clustering. We investigate a simple but widely used class of
models for clustering—namely, finite mixture models—with a fixed, pre-specified number
of components and use the Expectation–Maximization (EM) algorithm to learn the model
parameters. In experiments on three real data sets, we show that the learning-curve sam-
pling method produces models of high utility—ones that are nearly as accurate as those
trained on complete data sets, but with dramatically reduced run times.

Also in this paper, we describe an extension of the basic learning-curve approach for
model-based clustering that results in higher utilities by further reducing run time without
loss in accuracy. Our approach is based on the observation that the shape of the learning
curve for a given model and data set is roughly independent of the number of EM iterations
used during training. Thus, we run EM for only a few iterations to decide how many cases
to use for training, and then run EM to full convergence once the number of cases is selected.

The paper is organized as follows. In Section 2, we present our decision-theoretic for-
mulation of the learning-curve sampling method. In Section 3, we describe a model-based
approach to clustering that uses the EM algorithm. In Section 4, we apply the learning-curve
sampling method to the task of model-based clustering and, in Section 5, provide extensions
for improving the method. In Section 6, we present an empirical study that demonstrates
that our learning-curve sampling methods provide order-of-magnitude speedups on real data
and have higher utilities than alternative methods. Finally, in Section 7 we describe related
work and, in Section 8, we provide a summary and directions for future work.

2. A Decision-Theoretic Formulation of the Learning-Curve Sampling
Method

As we have discussed, the basic idea of a learning-curve sampling method is to iteratively
apply a training algorithm to larger and larger subsets of the data, until the future expected
costs outweigh the future expected benefits associated with the training. In this section, we
present a decision-theoretic formulation of this general approach. Given a data set D, let
D1, D2, . . . , Dn = D denote the sequence of data sets that are examined in the process of
finding the appropriate sample size, denoted Nlc. We shall assume that the data sets are
nested—that is, Di ⊂ Di+1—so that |Di| < |Di+1|, where |Di| is the number of cases in
data set Di. We shall also assume that, apart from this nesting, the cases in each Di are
randomly selected from D.
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When we examine data set Di, we apply some training method to it, gather information
about that application—for example, the accuracy of the resulting model and the time it
took to learn that model—and then determine whether to examine additional data sets.
Expressed in decision-theoretic terms, our determination of when to stop is a sequential
decision problem. At stage i in this decision problem, we have just run the training method
on data subset Di. At this point, we have two alternatives: (1) stop—that is, output the
learned model, or (2) continue. The choice to continue brings us to stage i+1 of the decision
problem. Decision theory (e.g., Howard, 1966) tells us that we should choose the alternative
with the maximum expected utility (MEU), where expectation is taken with respect to our
uncertainty (encoded in terms of probability) of the possible outcomes that follow from the
alternatives. Thus, once we have identified the possible sequences of data sets, the utilities
associated with the possible outcomes, and the uncertainties of those outcomes, our decision
is determined. Let us consider each of these ingredients.

The first ingredient, the sequence of data sets, may be fixed—that is, chosen in advance—
or chosen adaptively as data sets are examined. Two types of fixed sequences have been
considered. John & Langley (1996) consider incrementally adding a constant number of
cases. Provost, Jensen & Oates (1999) consider incrementally adding a geometrically in-
creasing number of cases. As argued by Provost et al., when one does not have an accurate
guess as to the “correct” number of cases to achieve the proper cost/benefit tradeoff, the
method of incrementally adding a fixed number of cases can require an unreasonable number
of iterations when a large number of cases is needed. In contrast, when using a geometric
schedule, one can quickly reach an appropriate sample size. For instance, if the cost of train-
ing is roughly linear in the number of cases, then using a geometric schedule to train on data
sets of size k ·20, k ·21, . . . , k ·2i, until we reach some data set of size k ·2i (N ≤ k ·2i < 2N),
will require only a constant factor more computation than simply applying the training
method to the data set of N cases.

In situations where the sequence is adaptively selected, we can use points along the
learning curve for the smallest data sets D1, . . . , Di, in conjunction with a model for the
shape of the learning curve (e.g., Kadie, 1995), to estimate future points along the curve.
We can then use these estimates to expand the number of alternatives in our sequential
decision problem to include a choice about the number of cases in Di+1. In this paper, we
use the fixed geometric sequence and do not elaborate further on adaptive strategies.

The second ingredient is the utility or “goodness” of stopping with data set Di. We
decompose this utility into a benefit and cost. Let mi denote the model learned with this
data set. A natural measure of cost is proportional to the total time it takes to produce
model mi. A natural measure of benefit is proportional to the accuracy of mi on the task
to which that model will be applied. Of course, the measure of accuracy will depend on the
task at hand. In the remainder of the paper, we shall consider a measure of accuracy that
is used commonly in practice: the log-likelihood of the model on holdout data Dho, denoted
l(Dho|mi). Note that the learning-curve sampling method is applied in situations where the
full data set D is extremely large. Consequently, there will be ample data to hold out.

To combine these measures to produce an overall measure of utility, we need to scale
benefit and cost appropriately. One possibility is to determine both scales on a problem-
by-problem basis. In this paper, we consider an approach that can be applied across a wide
range of problems. In particular, we measure the benefit of stopping with model mi in
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terms of the accuracy of that model relative to a model trained with all the data (mD) and
a baseline model mbase:

benefit(mi) =
l(Dho|mi)− l(Dho|mbase)
l(Dho|mD)− l(Dho|mbase)

(1)

One simple choice for the baseline model is one in which all of the features are mutually
independent and trained with a relatively small fraction of the data. We use this baseline
model in our empirical study. The choice of this baseline model yields a measure of benefit
that lies between 0 and 1 for a wide range of problems. (When the data set that produces
mi is extremely small, this measure may be negative. Such occurrences, however, are rare.)
Note that this approach is appropriate for density-estimation models and can be extended
to classification/regression models in a straightforward fashion. To scale cost, we simply
write

cost(mi) = α · runtimei (2)

where runtimei is total time required to produce model mi, and α is the relative importance
of benefit to run time. This quantity, which depends on the preferences of the decision
maker—the person who is controlling the execution of the algorithm—should be assessed
on a problem-by-problem basis. We discuss this assessment later in this section. Combining
these two measures, we set

utility(mi) = benefit(mi)− cost(mi) (3)

The third ingredient for our decision problem are the uncertainties associated with the
possible outcomes. These uncertainties are mostly problem specific, but commonly share an
important observation. Namely, imagine we are at stage i of the decision, and want to decide
whether to continue with larger data sets. As we look forward in time, the uncertainties
associated with the benefits and costs of examining data set Dk, k > i, increase with k.
In particular, it will be extremely difficult to estimate these uncertainties for large k. This
observation suggests that we may want to replace strict adherence to the MEU principle,
which requires uncertainty estimates for all k, with an approximate procedure that uses
only uncertainty estimates at the next stage.

Let us consider a procedure with this property. At stage i of this procedure, we incor-
rectly assume that there are only two alternatives: (1) stop now, and (2) learn model mi+1

and stop. We then choose the alternative among these two that maximizes our expected
utility. If we choose alternative 1, we indeed stop, returning model mi and its accuracy
score. If we choose alternative 2, we evaluate another decision problem, now at stage i+1.
This strategy is often referred to as a “myopic” strategy, because it only looks one step into
the future.

According to this myopic strategy, we stop at stage i if and only if the expected utility
of stopping at stage i + 1 is less than or equal to the expected utility of stopping at stage
i—or, equivalently, if the expected increase in utility of moving from stage i to i+ 1 is less
than zero. In particular, according to Equations 1 through 3, we stop if and only if

Ei(benefit(mi+1)− benefit(mi))
Ei(runtimei+1 − runtimei) ≤ α (4)
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Figure 1: A hypothetical plot of expected benefit versus expected run time.

where Ei(·) denotes expectation with respect to our uncertainties at stage i. The left-
hand side of Equation 4 is the ratio of the expected incremental benefit to the expected
incremental cost of moving from stage i to stage i + 1. Thus, α can be viewed as the
value of this incremental-benefit-to-cost ratio (having units benefit per time), below which
additional subsets of data should not be considered. We refer to α as our stopping threshold
and Equation 4 as our stopping criterion. Note that, with this understanding of α, its
assessment is straightforward. For example, a decision maker can be asked the question
“How long would you be willing to wait to increase the relative accuracy of the learned
model by one percent?” If the answer is (e.g.) one hour, then α = 0.01 benefit per hour.

Although this strategy is myopic, it will be optimal in many situations. Assuming
incremental benefits decrease and incremental costs increase as we progress through the
stages of our decision problem, it makes sense to stop when the ratio of these two quantities
falls below α, the relative importance of benefit to cost. To understand this observation
more precisely, consider Figure 1, which shows a hypothetical plot of the expected benefit
Ei(benefit(mi+1)) versus the expected run time Ei(runtimei+1) as a function of stage i.
For purposes of argument, the curve is shown to be continuous under the (temporary)
assumption that the sample sizes of successive stages are closely spaced. The more important
aspect of the curve is that it is concave down and non-decreasing so as to represent the
progressive decrease in incremental-benefit-to-incremental-cost ratio. In general, the curve
will have this shape when (1) the “expected learning curve”—the plot of expected benefit
versus sample size—is concave down and non-decreasing, and (2) the rate of change of
expected run time with respect to sample size is non-decreasing in sample size. Both
conditions are satisfied often in practice, and are satisfied (roughly) for the specific problems
we consider in the remainder of the paper.

Now, consider the difference between the height of the curve and the height of a line with
slope α through the origin (also shown in the figure) as a function of expected run time.
This difference represents expected utility as a function of expected run time. Because the
expected-benefit-versus-expected-run-time curve is concave down and non-decreasing, this
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difference will be a maximum when the tangent to the curve has slope α. Thus, according
to the MEU principle, we should stop at a stage corresponding to point B in the figure. Just
beyond this point, the ratio of expected incremental benefit to expected incremental run
time falls below α—precisely the inequality in Equation 4. (Arguments similar to this one
are common in the discipline of cost-benefit analysis—for example, Pearce, 1983.) When
we relax our assumption that the sample sizes are closely spaced, we find that the criterion
expressed by Equation 4 may be non-optimal. For example, suppose points A and C in
the figure correspond to stages Di and Di+1. In this case, although our criterion yields a
stopping point at stage i+ 1, the expected utility of stopping at stage i is slightly greater.
In general, we may stop one step late, but never early—that is, our stopping criterion is
conservative.

We consider this approximate stopping criterion throughout the remainder of the paper.
As we shall see, it can be computed efficiently and is amenable to improvement.

3. Model-Based Clustering

In this section, we describe the model-based approach to clustering using finite mixture
models and how one can use the expectation maximization (EM) algorithm to learn such
models. We focus on details important for the application of our learning-curve sampling
method to model-based clustering described in Sections 4 and 5.

3.1 Mixture Models

Let X = {X1, . . . , XL} be a multivariate random variable taking on values corresponding
to observations of individual objects or cases. The goal of clustering is to form groups of
objects that share similar values forX. In a model-based approach to clustering , we assume
that our data is generated in the following fashion:

1. An object is assigned to one of K (hidden) clusters with some probability, and

2. Given that an object is in a cluster, its value for X is generated from some statistical
model specific to that cluster.

More formally, let C be a discrete-valued variable taking on values c1, . . . , cK . The value of
C corresponds to the unknown cluster assignment for an object. Then, we have

p(x|θ) =
K∑

k=1

p(ck|θ) pk(X = x|ck, θk)

=
K∑

k=1

πk pk(X = x|ck, θk)

where πk = p(ck|θ) is the marginal probability of the kth cluster (
∑

k πk = 1), pk(x|ck, θk) is
the statistical model describing the distribution over the variables for an object in the kth

cluster, and θ = {π1, . . . , πk, θ1, . . . , θK} are the parameters of the model. The statistical
model p(x|θ) is called a finite mixture model. For additional information on finite mixture
models see (e.g.) Titterington, Smith & Makov (1985) and McLachlan & Basford (1988).
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In model-based clustering, one specifies the form of the cluster-specific parametric mod-
els pk(X = x|ck, θk), and then uses a data set to learn the specific cluster probabilities
and the cluster-specific model parameters. The approach is called model-based clustering
because a separate statistical model is used for each cluster.

In our experiments, we concentrate on a simple but widely used class of finite mixture
models where each component is described by a product of multinomials model:

pk(x|ck, θk) =
L∏

i=1

p(xi|θi
k),

where p(xi|θi
k) is a multinomial distribution over the values for variable Xi and θi

k is the
set of parameters. Here, we assume that, in each component, the variables X1, . . . , XL are
mutually independent—that is, we assume that the statistical model for each component
is a log-linear model with only main effects. This mixture model can alternatively be
viewed as naive-Bayes models with a hidden class variable, also known as AutoClass models
(Cheeseman & Stutz, 1995). We further restrict our attention to mixture models with a
fixed, pre-specified number of components.

Given the parameters of a mixture model, we can assign an object (or case) to a cluster
as follows. For an object with X = x, we use Bayes’ rule to compute the probability
distribution over the hidden variable C:

p(ck|x, θ) =
πk pk(x|ck, θk)∑K
j=1 πj pj(x|cj , θj)

(5)

The probabilities p(ck|x, θ) are sometimes called membership probabilities and correspond to
the object’s (fractional) cluster assignment. Once we have computed these probabilities, we
can either assign the object to the cluster with highest probability—a hard assignment—or
assign the object fractionally to the set of clusters according to this distribution—a soft
assignment.

3.2 Learning Mixture Models from Data

Now we describe how to learn the parameters of a finite mixture model with known number
of components K, given training data D = (x1, . . . , xN ). One possible criterion for doing
so is to identify those parameter values for θ that maximize the likelihood of the training
data:

θML = argmaxθ p(D|θ) = argmaxθ

N∏

i=1

p(xi|θ)

This value is often referred to as the maximum likelihood (ML) estimate and p(D|θ) is the
likelihood of the training data. Alternatively, one may have prior knowledge about the
domain and can encode this information in the form of a prior probability distribution over
the parameters, denoted p(θ). In this situation, a criterion for learning the parameters is
to identify the parameter value of θ that maximize the posterior probability of θ given our
training data:

θMAP = argmaxθ p(θ|D) = argmaxθ p(D|θ) p(θ)/p(D)
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where p(θ|D) is the posterior on the parameters and the second identity follows by Bayes’
rule. This value is often referred to as the maximum a posteriori (MAP) estimate. When
used in conjunction with vague or non-informative priors, MAP estimates are smoothed
(i.e., less extreme) versions of ML estimates. In the work described in this paper we learn
MAP estimates for the parameters θ using the diffuse Dirichlet prior described in Cooper
& Herskovits (1992).

In situations in which the a statistical model has an unobserved variable—as is the
case with finite mixture models—one can use the well-known expectation maximization
(EM) algorithm to obtain ML and MAP estimates (Dempster, Laird & Rubin 1977). The
EM algorithm is given starting values for the parameters, and then iterates between an
Expectation or E step and a Maximization or M step until successive parameter values
are stable. In the E step of the algorithm, given a current value of the parameters θ, we
fractionally assign an object with X = x to cluster ck using the membership probabilities
given by Equation 5. In the M step of the algorithm, we pretend that these fractional
assignments correspond to real data, and reassign θ to be the MAP estimate given this
fictitious data. By iteratively applying the E step and M step, we monotonically improve the
estimates of the model parameters θ, ensuring convergence (under fairly general conditions)
to a local maximum of the posterior distribution (or a maximum likelihood estimate) for θ.

In our experiments, we initialize the parameters of the EM algorithm as follows. We
choose the parameters π1, . . . , πK to be equal, and we set the parameters of our component
models θk by estimating the parameters for a single-component cluster model and then
randomly perturbing the parameter values by a small amount to obtain K sets of param-
eters. This approach is described in detail in Thiesson, Meek, Chickering & Heckerman,
1999. The convergence criterion that we use to terminate the EM algorithm is one that
is commonly used. Namely, we converge when the relative improvement in log-posterior
(or log-likelihood) of the training data between successive EM iterations relative to the
total improvement in log-posterior (or log-likelihood) over the initial model is less than a
convergence threshold γ.

4. A Learning-Curve Sampling Method for Clustering

In this section, we describe how to apply the learning curve sampling method described
in Section 2 to the problem of model-based clustering. We call this method the standard
learning-curve sampling method

In applying the learning curve approach to model-based clustering, we make several
approximations. To help illustrate the approximate validity of the assumptions, we consider
three real-world data sets. We shall also use these data sets in our experiments. We note
that the only criterion we used to select these data sets was large sample size, and that our
method was developed prior to the examination of any of these data sets.

The three data sets that we consider are the MSNBC, MS.COM, and USCensus1990 data
sets. The MSNBC data set is derived from web logs for one day in 1998 for the msnbc.com
website. It records which of the 303 most popular stories on that day were read by each of
the visitors. The MS.COM data set is derived from the web logs for one day in 2000 for
the microsoft.com web site. It records which of the 775 most popular areas or “vroots” of
the site were visited by each person. In each of these data sets, cases correspond to people,
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and variables correspond to possibly viewed items. Both of these data sets are sparse in
the sense that—on average—a person only views a few items. The USCensus1990 data set,
available from the UC Irvine KDD Archive, is derived from the one percent sample of the
Public Use Microdata Samples (PUMS) person records from the full 1990 census sample
(all fifty states and the District of Columbia but not including“PUMA Cross State Lines
One Percent Persons Record”). Each case corresponds to a person and has 68 categorical
variables. The MSNBC, MS.COM, and USCensus1990 data sets contain 597,971, 1,938,877,
and 2,458,284 cases, respectively.

Now let us examine the expectations in our stopping criterion for stage i, Equation 4.
An examination of the EM algorithm shows that Ei(runtimei+1) is given by

Ei(runtimei+1) ∼= runtimei + c1 · Ei(Ii+1) · |Di+1|+ c2 · Ei(Ii+1) + c3

where c1, c2, and c3 are constants, and Ei(Ii+1) is the expected number of times the EM
algorithm iterates (when applied to Di+1) before reaching convergence. The first term in
the sum is simply the known time to reach stage i. The second and third terms correspond
to the time spent by the EM algorithm in the E and M steps, respectively. The fourth
term corresponds to the time spent evaluating the accuracy of the model on the holdout
set. (The time to load the clustering algorithm and initialize data structures in memory is
insignificant.) The constants c1, c2, and c3 are known once the first data set in the sequence
has been evaluated. Furthermore, in our experience, we have found that the number of
EM iterations is roughly constant for a fixed convergence threshold γ. Figure 2 shows
the number of iterations versus sample size for the MSNBC, MS.COM and USCensus1990
domains. Consequently, we use the approximation

Ei(Ii+1) ∼= 1
i

i∑

j=1

Ij ≡ Īi (6)

Note that, at stage i, the quantities I1, . . . , Ii are known with certainty.
The remaining quantity that we need at stage i is the expected incremental benefit

Ei(benefit(mi+1)− benefit(mi)). Using Equation 1 and an approximation in which we take
expectations of the numerator and denominator separately, we obtain

Ei(benefit(mi+1)− benefit(mi)) ∼= Ei(l(Dho|mi+1)− l(Dho|mi))
Ei(l(Dho|mD))− l(Dho|mbase)

. (7)

In addition, we can approximate both the numerator and denominator in this expression.
To illustrate the approximation for the numerator, consider the learning curves for the
MSNBC, MS.COM, and USCensus1990 data sets shown in Figure 3. This figure provides
two plots of the learning curves for each of the data sets; one where the x-axis is linear in
the sample size and the other logarithmic. In particular, the learning curves are linear or
slightly concave down when sample size is plotted on the logarithmic scale. Consequently,
because we are using a sequence of data sets in which data set size increases geometrically,
it follows that

Ei(l(Dho|mi+1)− l(Dho|mi))
<∼ l(Dho|mi)− l(Dho|mi−1) (8)
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Figure 2: Number of iterations to convergence as a function of convergence threshold γ and
sample size.
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In this work, we shall use the right-hand side of Equation 8 as an approximation for the
left-hand side. The approximation is conservative in that it will tend to over-estimate the
expected change in benefit, and thus bias the stopping decision toward late stopping. Also,
because we are computing differences, this approximation requires that we stop no sooner
than stage i = 2.

For the denominator of Equation 7, we use the simple approximation

Ei(l(Dho|mD)) ∼= l(Dho|mi) (9)

If the learning curve is noisy, a better approximation is the maximum over l(Dho|m1), . . .,
l(Dho|mi)). In our experiments, however, the better approximation is not needed. In either
case, the approximation is conservative.

Given the approximations associated with Equations 4 through 9, we can re-write the
stopping criterion for stage i, given in Equation 4, as

l(Dho|mi)− l(Dho|mi−1)
l(Dho|mi)− l(Dho|mbase)

/ (c1 · Īi · |Di+1|+ c2 · Īi + c3) ≤ α (10)

We determine l(Dho|mbase) before considering any data sets in the sequence. Consequently,
at stage i, all the quantities in this expression are known.

Finally, recall the conditions from Section 2 needed for the myopic stopping criterion
Equation 4 to be near optimal: (1) the “expected learning curve”—the plot of expected
benefit versus sample size—should be concave down and non-decreasing, and (2) the rate of
change of expected run time with respect to sample size should be non-decreasing in sample
size. We note that, in our approach using EM for model-based clustering, both conditions
are roughly satisfied. In particular, with a few exceptions due to small amounts of noise, the
plots on the left-hand-size of Figure 3 are concave down and non-decreasing Furthermore,
assuming Ei(Ii+1) does not decrease substantially with i, expected run time (Equation 4)
satisfies the second condition.

5. Speeding up the Learning-Curve Sampling Method for Clustering

In this section, we consider an extension that obtains higher utilities than the standard
learning-curve sampling method applied to model-based clustering. The extension substan-
tially reduces training time without significantly affecting model accuracy.

To understand this extension, consider again the learning curves in Figure 3. Here, we
see that learning curves for different EM convergence levels (γ) are roughly parallel for each
of the data sets. We have found that this is a common property for data sets. This property
suggests the following extension. When determining the expected benefit for a given data set
Di, use an abbreviated training method—EM run to a high convergence threshold or run for
only a relatively few iterations—to obtain an approximate value. Then, make the decision
to stop or continue based on this approximation. Finally, once the decision has been made
to stop, learn a model on the selected data set by running EM to full convergence. In the
following section, we show that this extension can increase the utilities of the methods—that
is, increase computational efficiency without sacrificing much accuracy. In the remainder of
this section, we examine the details of the approach.
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Figure 3: Learning curves for clustering. The x-axes are linear and logarithmic in the left
and right graphs, respectively. The different curves in each graph correspond to
different EM convergence thresholds γ.
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Due to the use of an abbreviated training method, we need to alter our estimates for both
the benefit and cost components of our stopping criterion (Equation 10). First, consider the
determination of benefit at stage i—in particular, the estimation of the likelihood l(Dho|mi).
Given that the learning curves for the full and an abbreviated training method are roughly
parallel, a natural approximation for the likelihoods obtained by the full (non-abbreviated)
method using the likelihoods of the abbreviated method is

l(Di|mi) ∼= l(Di|ma
i ) + δ (11)

where δ is an offset and ma
i is the model learned by an abbreviated training method applied

to data set Di. A straightforward and fairly efficient way to approximate the offset δ is to
apply both the full and abbreviated training methods to D1, the first (and smallest) data
set in the sequence. We shall use this approach in our experiments described in the next
section. Note that, when Equation 11 is substituted into Equation 10, the offset cancels in
the numerator and thus only affects the estimation of l(Di|mi) in the denominator.

With regards to the determination of the cost to move from stage i to stage i + 1,
there are now three components: (1) the time to run EM to full convergence on Di, (2)
the time to run the abbreviated training method on Di+1, and (3) the time to run EM
to full convergence on Di+1. The first component is associated with the decision to stop
at stage i, whereas the second and third components are associated with the decision to
continue to stage i + 1. All three components can be estimated using Equation 4 with
the following caveats. One, if the abbreviated training method uses a fixed number of EM
iterations, there is no need to estimate Ii+1—this value is independent of i and known in
advance. Two, if the abbreviated training method uses a convergence threshold, Ii+1 can
be estimated using Equation 6. Three, the time required to run EM to full convergence is
approximated using

Ii+1
∼= I1 (12)

The use of this approximation requires that we run EM to full convergence on only the first
data set D1—the same run used to determine the offset δ. We thus avoid computationally
expensive runs on larger data sets.

In closing this discussion, we note that our stopping criterion is potentially sensitive to
local variations in the learning curve due to—for example—convergence to different local
maxima during successive runs of EM. In our experience, we have found that learning curves
for model-based clustering methods are usually smooth. In situations where the learning
curves are less smooth, techniques that use additional samples to assess the shape of the
learning curve (e.g., Provost, et al., 1999) may be useful and the use of an abbreviated
training method can reduce the cost of doing so.

6. Empirical Study

In this section, we describe an evaluation of our learning-curve sampling method and ex-
tensions that used the MSNBC, MS.COM and USCensus1990 data. Our goals are to verify
that (1) our standard learning-curve sampling method outperforms standard EM, and (2)
that the abbreviated methods outperforms the standard learning-curve sampling method.

The primary measure of algorithm performance that we used was the algorithm’s actual
(as opposed to expected) utility as given by Equations 1 through 3. The holdout data set
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used to measure utility was the same as that used during the evaluation of the stopping
criterion. In our experiments, we used a holdout data set of 10,000 randomly chosen cases.
(Larger data sets produced similar results.) For each experimental condition, in addition to
utility, we measured the components of utility (relative benefit and run time), the selected
sample size (Nlc), the speedup factor—the total run time of the EM-full algorithm divided
by the run time of the evaluated algorithm—and the overhead ratio—the total run time of
the evaluated algorithm divided by the run time for EM to run to full convergence on the
selected sample size Nlc.

In our study, we compared the standard learning-curve sampling method described in
Section 4 using an EM convergence threshold of 10−5 with the standard EM algorithm run
on the full data set using a threshold of 10−5. We call these methods Standard LCS and
EM-full, respectively. In addition, we evaluated abbreviated training methods that used 1,
3, 5, and 10 EM steps as well as EM convergence thresholds of 10−1, 10−2, 10−3, and 10−4.
In all conditions, we used a final EM run with a convergence threshold of 10−5. These
methods are denoted fixed-1, thresh-0.1, and so on. Also, we considered a wide range of
stopping thresholds: α = 1 benefit per hour, α = 0.2 benefit per hour, and α = 0.04 benefit
per hour (1 benefit per day).

In every run, we used the geometrically increasing sequence D1 = 40, 000, D2 = 80, 000,
and so on. We selected D1 = 40, 000 because the use of extremely small initial data sets
produced poor estimates of Ii, and the application of EM to data sets of size 40,000 were
fast enough to be unobtrusive—less than two minutes for each of the data sets. We used
10,000 cases to train the baseline model. (Again, larger data sets produced similar results.)
In addition, as we varied the abbreviated training method, we held other experimental
conditions fixed including the parameter initialization for EM. In every condition, after
selecting the appropriate sample size, we used the parameters obtained by the abbreviated
training method as the initial parameters for the final run of EM to full convergence. Finally,
in preliminary experiments, we examined mixture models with 25, 50, and 100 components.
The results were similar, and so we report results for the 25-component mixture model only.

All runs in our study were performed on a Pentium III (Family 6 Model 8 Stepping
3) 800 MHz Processor running the Windows 2000 Professional operating system. We used
enough amount of random access memory—2 gigabytes—so that each of the data sets fit
into memory. This eliminated the need for the operating system to perform disk accesses
(swapping) when learning. We note that results using a system with less memory would
have shown an even more striking improvement than those described below.

Figure 4 contains a graphical summary of the utilities obtained for the MSNBC, MS.COM
and USCensus1990 domains as a function of training method. The important observations
are that (1) the Standard LCS obtains higher utilities than EM-full, (2) the abbreviated
methods usually obtain higher utilities than Standard LCS, and (3) the fixed and thresh
methods yielded similar utilities with the exception of the lower-convergence-threshold
thresh methods, which did not perform as well.

Tables 1, 2 and 3 show the detailed results for the MSNBC, MS.COM and USCen-
sus1990 domains, respectively. These tables contain the utilities presented in Figure 4 as
well as speedup factors, overhead ratios, run times, benefits and selected sample sizes for
the experiments.
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These results help us discriminate the performance of the abbreviated methods. In all
cases but one, fixed-1 does best. In particular, this abbreviated training method usually
chooses the same sample size as the other training methods, but has the advantage of
running the fastest. This speedup is demonstrated by the low overhead ratio for the fixed-1
method. In addition,the speedup factors are dramatic. For larger values of α, the run times
of the fixed-1 learning-curve sampling method are an order-of-magnitude smaller than that
for EM run on the full data sets.

Note that the values for Nlc increase as the stopping threshold α decreases. This is
expected as α corresponds to the relative importance of benefit to cost. Also note that the
speedup factor increases with the size of the data set. Naturally, when the learning-curve
sampling methods choose smaller sample size it leads to large speedup factors. For instance,
on the USCensus1990 data set the speedup factor for an α = 1 benefit per hour, the speedup
factor is 25. For massive data sets, speedups can be arbitrarily large. This is especially true
for larger data sets where the data set cannot fit into random access memory.

In addition to the results described above, we evaluated the sensitivity of our results to
the choice of data sequence. In particular, we evaluated all methods using α = 1, 0.2, 0.04
benefit per hour on ten different data sequences randomly generated from the MS.COM
data set. In all runs except for three runs at α = 0.04 benefit per hour, Standard LCS
yielded higher utilities than full-EM. Also, in all runs, fixed-1 yielded higher utilities than
both Standard LCS and full-EM. Furthermore, in all but one run, fixed-1 yielded the highest
utilities among abbreviated methods.

Finally, let us evaluate our approximations for expected values described in Equations 4,
6, 8, 9, 11, and 12. To do so, we can compare the sample sizes (Nlc) chosen by our
algorithm, to the sample sizes (Noracle) chosen by the same algorithm but where the future
benefits and costs are known with certainty. Differences between these sample sizes reflect
the quality of our approximations. Table 4 shows this comparison. As seen in the table,
the largest differences in sample size correspond to differences of two stages. In addition,
Noracle ≤ Nlc in all experimental conditions, providing evidence for the conservative nature
of the approximations.

7. Related Work

In this section, we discuss related work on choosing the number of samples when applying
a learning method.

Domingos & Hulten (2001) describe a method called VFKM that chooses a sample
size for K-means clustering. The sample sizes they consider are adaptively chosen using
Hoeffding bounds on the accuracy of the output of K-means as a function of sample size.

John & Langley (1996) describe a method called dynamic sampling in which they con-
sider a sequence of data sets whose sizes increase by a fixed increment. Their method, which
they apply to classification problems, stops at data set Di if âcc(D) − acc(Di) > ε where
âcc(D) is an estimate of the accuracy on the entire data set and acc(Di) is the accuracy
on the current data set. Their method estimates the quantity âcc(D) by extrapolating the
shape of the learning curve.

Provost et al. (1999) describe a method called progressive sampling, which they apply
to classification problems. They consider a sequence of data sets whose sizes increase
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Table 1: Selected sample sizes (Nlc), holdout scores, run times, utilities, speedups, and over-
heads as a function of training method and stopping threshold α for the MSNBC
domain.

MSNBC

α = 1 benefit per hour

Training Nlc Benefit Run time Utility Speedup Overhead
method (hours) factor ratio

fixed-1 80000 0.978 0.063 0.915 5.12 1.65
fixed-3 80000 0.978 0.063 0.915 5.12 1.65
fixed-5 80000 0.978 0.063 0.915 5.12 1.65
fixed-10 80000 0.978 0.063 0.915 5.12 1.65

thres-0.1 80000 0.978 0.063 0.915 5.12 1.65
thres-0.01 80000 0.978 0.063 0.915 5.12 1.65
thres-0.001 160000 0.987 0.128 0.859 2.53 1.41
thres-0.0001 160000 0.987 0.142 0.845 2.29 1.56

standard LCS 160000 0.987 0.155 0.833 2.10 1.70

EM-full 587971 1.000 0.325 0.675 1.00 1.00

α = 0.2 benefit per hour

Training Nlc Benefit Run time Utility Speedup Overhead
method (hours) factor ratio

fixed-1 160000 0.987 0.117 0.963 2.79 1.28
fixed-3 160000 0.987 0.117 0.963 2.76 1.29
fixed-5 160000 0.987 0.118 0.963 2.75 1.30
fixed-10 160000 0.987 0.120 0.963 2.70 1.32

thres-0.1 160000 0.987 0.117 0.963 2.77 1.29
thres-0.01 160000 0.987 0.119 0.963 2.72 1.31
thres-0.001 160000 0.987 0.128 0.961 2.53 1.41
thres-0.0001 160000 0.987 0.142 0.958 2.29 1.56

Standard LCS 160000 0.987 0.155 0.956 2.10 1.70

EM-full 587971 1.000 0.325 0.934 1.00 1.00

α = 0.04 benefit per hour

Training Nlc Benefit Run time Utility Speedup Overhead
method (hours) factor ratio

fixed-1 320000 1.001 0.188 0.993 1.72 1.16
fixed-3 320000 1.001 0.191 0.993 1.70 1.18
fixed-5 320000 1.001 0.194 0.993 1.68 1.19
fixed-10 320000 1.001 0.200 0.993 1.62 1.24

thres-0.1 320000 1.001 0.191 0.993 1.70 1.18
thres-0.01 320000 1.001 0.196 0.993 1.65 1.21
thres-0.001 160000 0.987 0.128 0.982 2.53 1.41
thres-0.0001 320000 1.001 0.265 0.990 1.22 1.64

standard LCS 320000 1.001 0.317 0.988 1.03 1.95

EM-full 587971 1.000 0.325 0.986 1.00 1.00

413



Meek, Thiesson and Heckerman

Table 2: Selected sample sizes (Nlc), holdout scores, run times, utilities, speedups, and over-
heads as a function of training method and stopping threshold α for the MS.COM
domain. MS.COM

α = 1 benefit per hour

Training Nlc Benefit Run time Utility Speedup Overhead
method (hours) factor ratio

fixed-1 160000 0.892 0.132 0.760 9.54 1.28
fixed-3 160000 0.892 0.133 0.760 9.50 1.28
fixed-5 160000 0.892 0.134 0.759 9.43 1.29
fixed-10 160000 0.892 0.135 0.757 9.33 1.31

thres-0.1 160000 0.892 0.133 0.759 9.46 1.29
thres-0.01 160000 0.892 0.136 0.756 9.23 1.32
thres-0.001 160000 0.892 0.143 0.750 8.83 1.38
thres-0.0001 160000 0.892 0.162 0.730 7.76 1.57

standard LCS 160000 0.892 0.185 0.707 6.81 1.79

EM-full 1928877 1.000 1.259 -0.259 1.00 1.00

α = 0.2 benefit per hour

Training Nlc Benefit Run time Utility Speedup Overhead
method (hours) factor ratio

fixed-1 320000 0.972 0.261 0.919 4.82 1.13
fixed-3 320000 0.972 0.263 0.918 4.78 1.13
fixed-5 320000 0.972 0.266 0.918 4.74 1.15
fixed-10 320000 0.972 0.271 0.917 4.65 1.17

thres-0.1 320000 0.972 0.265 0.918 4.76 1.14
thres-0.01 320000 0.972 0.271 0.917 4.64 1.17
thres-0.001 640000 0.997 0.625 0.869 2.02 1.22
thres-0.0001 640000 0.997 0.680 0.858 1.85 1.33

standard LCS 320000 0.972 0.417 0.887 3.02 1.80

EM-full 1928877 1.000 1.259 0.743 1.00 1.00

α = 0.04 benefit per hour

Training Nlc Benefit Run time Utility Speedup Overhead
method (hours) factor ratio

fixed-1 1280000 1.000 0.744 0.969 1.69 1.05
fixed-3 1280000 1.000 0.754 0.969 1.67 1.06
fixed-5 1280000 1.000 0.765 0.968 1.65 1.08
fixed-10 1280000 1.000 0.790 0.967 1.59 1.11

thres-0.1 1280000 1.000 0.760 0.968 1.66 1.07
thres-0.01 1280000 1.000 0.783 0.967 1.61 1.10
thres-0.001 1280000 1.000 0.787 0.967 1.60 1.11
thres-0.0001 640000 0.997 0.680 0.968 1.85 1.33

standard LCS 640000 0.997 0.928 0.958 1.36 1.82

EM-full 1928877 1.000 1.259 0.948 1.00 1.00
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Table 3: Selected sample sizes (Nlc), holdout scores, run times, utilities, speedups, and
overheads as a function of training method and stopping threshold α for the US-
Census1990 domain. USCensus1990

α = 1 benefit per hour

Training Nlc Benefit Run time Utility Speedup Overhead
method (hours) factor ratio

fixed-1 80000 0.998 0.056 0.942 25.05 1.43
fixed-3 80000 0.998 0.056 0.942 25.05 1.43
fixed-5 80000 0.998 0.056 0.942 25.05 1.43
fixed-10 80000 0.998 0.056 0.942 25.05 1.43

thres-0.1 80000 0.998 0.056 0.942 25.05 1.43
thres-0.01 80000 0.998 0.056 0.942 25.05 1.43
thres-0.001 80000 0.998 0.056 0.942 25.05 1.43
thres-0.0001 80000 0.998 0.056 0.942 25.05 1.43

standard LCS 80000 0.998 0.056 0.942 25.05 1.43

EM-full 2448248 1.000 1.403 -0.403 1.00 1.00

α = 0.2 benefit per hour

Training Nlc Benefit Run time Utility Speedup Overhead
method (hours) factor ratio

fixed-1 80000 0.998 0.056 0.987 25.20 1.42
fixed-3 80000 0.998 0.056 0.987 25.09 1.43
fixed-5 160000 1.001 0.094 0.980 14.85 1.32
fixed-10 160000 1.001 0.101 0.980 13.93 1.41

thres-0.1 80000 0.998 0.056 0.987 24.94 1.43
thres-0.01 160000 1.001 0.096 0.981 14.62 1.34
thres-0.001 80000 0.998 0.057 0.987 24.78 1.44
thres-0.0001 80000 0.998 0.056 0.987 25.12 1.43

standard LCS 80000 0.998 0.056 0.987 25.19 1.42

EM-full 2448248 1.000 1.403 0.714 1.00 1.00

α = 0.04 benefit per hour

Training Nlc Benefit Run time Utility Speedup Overhead
method (hours) factor ratio

fixed-1 80000 0.998 0.056 0.996 25.05 1.43
fixed-3 160000 1.001 0.092 0.997 15.25 1.29
fixed-5 160000 1.001 0.094 0.997 14.85 1.32
fixed-10 160000 1.001 0.101 0.997 13.93 1.41

thres-0.1 160000 1.001 0.093 0.997 15.01 1.31
thres-0.01 160000 1.001 0.096 0.997 14.62 1.34
thres-0.001 160000 1.001 0.104 0.996 13.46 1.46
thres-0.0001 80000 0.998 0.056 0.996 25.05 1.43

standard LCS 80000 0.998 0.056 0.996 25.05 1.43

EM-full 2448248 1.000 1.403 0.942 1.00 1.00
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Table 4: Sample sizes (Nlc) selected by learning-curve sampling methods and sample sizes
(Noracle) selected by these methods when given the true incremental benefit and
cost at each stage.

MSNBC

α = 1 benefit per hour α = 0.2 benefit per hour α = 0.04 benefit per hour

Training method Nlc Noracle Nlc Noracle Nlc Noracle

fixed-1 80000 80000 160000 8000 320000 320000
fixed-3 80000 80000 160000 8000 320000 320000
fixed-5 80000 80000 160000 8000 320000 320000
fixed-10 80000 80000 160000 8000 320000 320000

thres-0.1 80000 80000 160000 8000 320000 320000
thres-0.01 80000 80000 160000 8000 320000 320000
thres-0.001 160000 80000 160000 8000 160000 320000
thres-0.0001 160000 80000 160000 8000 320000 320000

standard LCS 160000 80000 160000 8000 320000 320000

MS.COM

α = 1 benefit per hour α = 0.2 benefit per hour α = 0.04 benefit per hour

Training method Nlc Noracle Nlc Noracle Nlc Noracle

fixed-1 160000 160000 320000 320000 1280000 640000
fixed-3 160000 160000 320000 320000 1280000 640000
fixed-5 160000 160000 320000 320000 1280000 640000
fixed-10 160000 160000 320000 320000 1280000 640000

thres-0.1 160000 160000 320000 320000 1280000 640000
thres-0.01 160000 160000 320000 320000 1280000 640000
thres-0.001 160000 160000 640000 320000 640000 640000
thres-0.0001 160000 160000 640000 320000 640000 640000

standard LCS 160000 160000 320000 320000 640000 640000

USCensus1990

α = 1 benefit per hour α = 0.2 benefit per hour α = 0.04 benefit per hour

Training method Nlc Noracle Nlc Noracle Nlc Noracle

fixed-1 80000 40000 80000 40000 80000 80000
fixed-3 80000 40000 80000 40000 160000 80000
fixed-5 80000 40000 160000 40000 160000 80000
fixed-10 80000 40000 160000 40000 160000 80000

thres-0.1 80000 40000 80000 40000 160000 80000
thres-0.01 80000 40000 160000 40000 160000 80000
thres-0.001 80000 40000 80000 40000 160000 80000
thres-0.0001 80000 40000 80000 40000 80000 80000

standard LCS 80000 40000 80000 40000 80000 80000
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geometrically, and stop at data set Di with |Di| cases if the slope of the learning curve
at |Di| is below some threshold δ. The slope of the learning curve at a particular data set
is determined by linear regression from a set of points in the neighborhood of |Di|. As the
authors indicate, this can lead to an accurate estimate of the slope of the learning curve
but at a significant cost to the overall run-time. As mentioned in Section 5, the use of an
abbreviated training method can significantly reduce this cost.

When viewed from a decision-theoretic perspective, the methods of Domingos & Hulten
(2001) and John & Langley (1996) do not consider the costs of computation. Instead, they
seek to achieve a result whose performance differs from that obtained using the full data set
by at most a fixed amount. Thus, from our perspective, these algorithms may be performing
too little or too much computation, depending on how easy it is to obtain the performance
guarantee. Also, whereas Provost et al. (1999) do consider a tradeoff, they consider one
between benefit and sample size rather than between benefit and cost.

Finally, we note that we chose the name learning-curve sampling method because we felt
that the name was more descriptive than either dynamic or progressive sampling. Both of
these alternative names capture the notion that one is choosing larger and larger samples
of examples, but fail to indicate the method by which these choices are being made.

8. Summary and Future Work

Learning-curve sampling methods are a natural way to apply a learning algorithm to large
data sets. In this paper, we have formalized the cost-benefit tradeoff in the learning-curve
sampling method in terms of decision theory. In addition, we have applied the learning-curve
sampling method to the task of model-based clustering, and have shown that the approach
yields higher utilities—dramatically increasing computational efficiency while sacrificing
little accuracy. Finally, we have shown of the use of one-step EM to identify sample size
yields even higher utility.

There are many areas for future investigation. For example, one can consider (1) ben-
efits and costs that are non-linear in model-score and run time, respectively, (2) methods
for choosing the size of D1, (3) and on-the-fly selection of sample size and training method.
As another example, our methods can be extended to include the simultaneous selection of
sample size and number of clusters. Here, an interesting challenge arises because the optimal
number of clusters may increase with the size of the data set. Finally, our approach of us-
ing computationally efficient abbreviated training methods for determining the appropriate
number of training cases can be—in principle—applied to various iterative training meth-
ods such as stochastic gradient descent and Newton-Raphson, and to alternative statistical
models including classification/regression models and finite mixture models having compo-
nents without the mutual independence assumption. The performance of our approach on
these alternative training methods and model classes should be investigated.
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