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abstract 
 

Re-Sampling methods are commonly used for dealing with the class-imbalance problem. 
Their advantage over other methods is that they are external and thus, easily 
transportable.  Although such approaches can be very simple to implement, tuning them 
most effectively is not an easy task. In particular, it is unclear whether oversampling is 
more effective than undersampling and which oversampling or undersampling rate 
should be used. This paper presents an experimental study of these questions and 
concludes that combining different expressions of the re-sampling approach is an 
effective solution to the tuning problem. The proposed combination scheme is evaluated 
on  imbalanced subsets of the Reuters-21578 text collection and is shown to be quite 
effective for these problems. 
  
 
 
Introduction  
In a concept- learning problem, the data set is said to present a class imbalance if it 
contains many more examples of one class than the other. Such a situation poses 
challenges for typical classifiers such as Decision Tree Induction Systems or Multi-Layer 
Perceptrons that are designed to optimize overall accuracy without taking into account 
the relative distribution of each class (Japkowicz & Stephen 2002; Estabrooks 2000). As 
a result, these classifiers tend to ignore small classes while concentrating on classifying 
the large ones accurately. Unfortunately, this problem is quite pervasive as many domains 
are cursed with a class imbalance. This is the case, for example, with text classification 
tasks whose training sets typically contain much fewer documents of interest to the reader 
than on irrelevant topics. Other domains suffering from class imbalances include target 
detection, fault detection, or fraud detection problems, which, again, typically contain 
much fewer instances of the event of interest than of irrelevant events. 
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A large number of approaches have previously been proposed to deal with the class 
imbalance problem.1 These approaches can be categorized into two groups: the internal 
approaches that create new algorithms or modify existing ones to take the class 
imbalance problem into consideration (Pazzani et al. 1994; Riddle et al. 1994; Japkowicz 
et al. 1995;Kubat et al. 1998) and external approaches that use un-modified existing 
algorithms, but re-sample the data presented to these algorithms so as diminish the effect 
caused by their class imbalance (Lewis & Gale 1994; Kubat & Matwin 1997;Ling & Li 
1998). The internal approaches just mentioned may, in certain cases, be quite effective, 
but they have the disadvantage of being algorithm-specific. This is a problem since data 
sets presenting different characteristics are better classified by different algorithms (see, 
for example, (Weiss & Kapouleas 1990)), and it might be quite difficult—if not, 
sometimes, impossible—to transport the modification proposed for the class imbalance 
problem from one classifier to the other. External approaches, on the other hand, are 
independant of the classifier used and are, thus, more versatile. This is why we chose to 
focus on these approaches rather than internal ones in this study. 
 
External approaches may, themselves, be divided into two types of categories. First, there 
are approaches that focus on studying what the best data for inclusion in the training set 
are (Lewis & Gale 1994; Kubat & Matwin 1997) and, second, there are approaches that 
focus on studying what the best proportion of positive and negative examples to include 
in a training set is (Ling & Li 1998). We decided to focus on the second question with the 
idea that once a good framework for dealing with the proportion question  is chosen, this 
framework can be refined by making �marter” re-sampling choices as per the first 
category of external approaches.   
 
In more detail, our study considers the two different categories of resampling approaches: 
methods that oversample the small class in order to make it reach a size close to that of 
the larger class and methods that undersample the large class in order to make it reach a 
size close to that of the smaller class.  The purpose of this paper is to find the best way to 
tune the re-sampling paradigm.  In particular, we ask the following three questions: 
 
§ Should we oversample or undersample? 
§ At what rate should this oversampling or undersampling take place? 
§ Can a combination of different expressions of the  re-sampling paradigm help 

improve classification accuracy? 
 
These questions are answered in the context of a decision tree induction system: C4.5, 
and all re-sampling is done randomly. 
 
The paper is divided into four  parts. The first part establishes the problems caused by the 
class imbalance problem by studying its effect on different artificial and real-world 
domains.  In the second part, we conduct an experimental study on some of these data 
sets in order to explore the problems of oversampling versus undersampling and of 
finding optimal re-sampling rates (the first two questions asked above). This study 
suggests an answer to the third question in the form of a combination scheme that is 
                                                 
1 For a full review of these works, please consult (Estabrooks 2000). 
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described in the third part of the paper. In the fourth part, the combination scheme is 
tested, first, on the artificial and real-world data sets used in Parts I and II of the paper 
and, second, on the top ten categories of the Reuters-21578 text collection. In the first 
series of experiments, the combination scheme is pitted against the oversampled and 
undersampled scheme on data sets presenting a very large imbalance. It is shown that the 
combination scheme is generally more successful than the other methods on these 
domains. In the second series of experiments, the class imbalances are less drastic, but 
the combination scheme is pitted against another, very robust, general-purpose 
combination scheme: Adaboost. There again, our specialized combination scheme is 
shown to prevail. 
 
Part I: The Effects of Class Imbalances 
In this part of the paper, we study the effect of class imbalances on three categories of 
domains. The first category consists of data sets representing target concepts of various 
complexities. In this particular series of domains, the size of the training set is held 
constant, which means that, as the target concept (represented by the positive class) 
becomes more complex, the positive class becomes sparser relative to the target concept.2 
This study is relevant since, in real-world data sets, we often encounter situations where 
the target concept is quite complex, but there are not enough data available to describe it. 
The second category of domains was taken from the UCI Repository while the third one 
belongs to the Reuters 21578 data set. 
 
In the first category of domains, seven sets of training and testing data of increasing 
complexities were created over the domain of DNF expressions.  DNF expressions were 
specifically chosen because of their simplicity as well as their similarity to text data 
whose classification accuracy we are ultimately interested in improving.  In particular, 
like in the case of text-classification, DNF concepts of interest are, generally, represented 
by much fewer examples than there are counter-examples of these concepts, especially 
when 1) the concept at hand is fairly specific; 2) the number of disjuncts and literals per 
disjunct grows larger; and 3) the values assumed by the literals are drawn from a large 
alphabet. Furthermore, an important aspect of concept complexity can be expressed in 
similar ways in DNF and textual concepts since adding a new subtopic to a textual 
concept corresponds to adding a new disjunct to a DNF concept.   
 
The target concepts in the data sets were made to vary in concept complexity by 
increasing the number of disjunctions in the expression to be learned, while keeping the 
number of conjunctions in each disjunct constant. In particular, expressions of 
complexity c= 4x4, 4x5, 4x6, 4x7, 4x8, 4x9 and 4x10 were created where the first 
number represents the number of literals present in each disjunct and the second 
represents the number of disjuncts in each concept.  We used an alphabet of size 50. For 
each concept, we first created a training set containing 6,000 positive and 6,000 negative 
examples. We then 1) randomly removed 4,800 positive examples from the training set, 

                                                 
2 A similar but more thorough study relating different degrees of 
imbalance ratios, training set sizes and concept difficulty was 
conducted by Japkowicz & Stephen (2002). However, that study falls 
beyond the scope of this paper. 
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thus creating a 1:5 class imbalance in favour of the negative class and 2) randomly 
removed 960 extra examples from the training set, thus creating a 1:25 class imbalance in 
favour of the  negative class.3 In all three cases (no class imbalance, a 1:5 class imbalance 
and a 1:25 class imbalance), we tested the classifier on 6,000 positive and  6,000 negative 
examples. For each expression, the results of C4.5 were averaged over 10 runs on 
different domains of the same complexity. 
 
In the second category of domains, three standard data sets were chosen: Wisconsin 
Breast Cancer, Pima Indian Diabetes, and Classification of Grass versus Path Images. 
These three domains are highly challenging and particularly imbalanced. 
 
In the third category of domains, we chose the two top categories of Reuters 21578. Since 
our study is ultimately geared at text classification, we wanted to keep track of the 
problem at hand in our preliminary investigation. 
 
In all the domains tested, we cons idered both negative dominant imbalances (the cases 
where there are more negative examples than positive ones) and positive dominant 
imbalances (the opposite case). 
 
Table 1 presents the distribution of the number of training and testing examples used in 
the series of experiments we ran in this part of the paper to test the influence of class 
imbalances on classification performance. In each table cell, the number on the left of the 
colon represents the number of positive examples in the data set while  the right number 
represents the number of negative examples. 
 

Table 1. The Number of Training Examples to each Ratio and each Domain 
  |----------- -------Training----- -----------------------| Testing 

Balance Negative Dominant Positive Dominant Balance Domains 

1:1 1:5 1:25 5:1 25:1   

4*4 6000: 6000 1200: 6000 240: 6000 6000:1200 6000:240 6000:6000 

4*5 6000: 6000 1200: 6000 240: 6000 6000:1200 6000:240 6000:6000 

4*6 6000: 6000 1200: 6000 240: 6000 6000:1200 6000:240 6000:6000 

4*7 6000: 6000 1200: 6000 240: 6000 6000:1200 6000:240 6000:6000 

4*8 6000: 6000 1200: 6000 240: 6000 6000:1200 6000:240 6000:6000 

4*9 6000: 6000 1200: 6000 240: 6000 6000:1200 6000:240 6000:6000 

Dnf 
Expression 

4*10 6000: 6000 1200: 6000 240: 6000 6000:1200 6000:240 6000:6000 

Breast  150:150 30:150 6:150 150:30 150:6  50:50 

Pima 200:200 40:200 8:200 200:40 200:8  50:50 

UCI 
Repository 

Image 250:250 50:250 10:250 250:50 250:10 50:50 

Earn 2500:2500 500: 2500 100:2500 2500:500 2500:100 1000:1000 Reuter 
21578 

ACQ 1500:1500 300:1500 60:1500 1500:300 1500:60 800:800 

 

                                                 
3 Imbalanced ratios greater than 1:25 were not tried on this particular 
problem since we did not want to confuse the imbalance problem for the 
small sample problem. 
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The results of our experiments are presented in Figures 1, 2 and 3. 
 
Figure 1 illustrates the influence of class imbalances on the classification of domains 
from the first category, DNF expressions. In figure 1.a we report the error on the 
balanced test set; in figure 1.b, we show the error obtained on the positive test set alone  
(i.e., we show the percent of false positives); and in figure 1.c, we show the error 
obtained on the negative test set alone (i.e., we show  the percent of false negatives). Our 
results show that the more complex the DNF expression, the higher the error rate. Note 
that in all the graphs,  1:5 and 1:25 correspond to negative dominant class imbalances, 
while 5:1 and 25:1 are positive dominant class imbalances. Taking this into consideration, 
it is clear that the classifier is always biased in favour of the dominant class. There is a 
difference, however, between positive- and negative- dominant imbalances: we see in 
figure 1.a  that the positive dominant class imbalances yield higher error rates than the 
negative dominant ones. In DNF expressions, 4*7, 4*8, 4*9, and 4*10, the error rate is 
0.5 (or 50%) in the positive dominant 25:1 class imbalances. As shown in figures 1.b and 
1.c, this is due to the fact that all the negative examples are misclassified as positive ones. 
This can be explained as follows: the positive class is more concise than the negative one 
since it represents a given concept while the negative class represents everything but that 
concept. When the imbalance is in favour of the positive class, the classifier will naturally 
by-pass any negative examples that are difficult to describe concisely, given their 
parseness and their low degree of representation. 
 
Figure 2 shows the influence of class imbalances on three domains from the UCI 
Repository (Wisconsin Breast Cancer, Pima Indian Diabetes, Image Classification of 
Path or Grass). The results show that in both the Cancer and Pima domains,  both kinds 
of class imbalances hamper  the performance of C4.5. In the Image domain, however, 
class imbalances have little if any noticeable effect on classification accuracy. Figures 2.b 
and 2.c show that the trends observed with the DNF data sets with regard to both general 
dominance and positive- versus negative- dominance, are also the ones followed in the 
UCI domains. 
Figure 3 displays the results obtained on two selected domains from Reuters 21578.4 In 
these experiments, the number of positive and negative examples was manipulated in 
order to obtain the desired exagerated imbalance ratios. This was done by removing 
examples at random. The results show clearly that, once again, class imbalances impair 
classification performance. Furthermore, as in the first two groups of domains, figures 3.b 
and 3.c confirm the trend in misclassification already reported. 
 

                                                 
4 See Part IV of the paper to gather more detail about the construction of these data sets 
from the raw Reuters data. 
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Figure 1: The Effect of Class Imbalance on Test Data in DNF Expression. Figure 1.a 
shows the effect on the overall balanced set; Figure 1.b does so for the positive test set 
only and Figure 1.c does so for the negative test data only. 
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Figure 2: The Effect of Class Imbalance on Test Data in the UCI Domains. Figure 2.a 
shows the effect on the overall balanced set; Figure 2.b does so for the positive test set 
only and Figure 2.c does so for the negative test data only. 
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Figure 3: The Effect of Class Imbalance on Test Data in the Reuters Domains. Figure 3.a 
shows the effect on the overall balanced set; Figure 3.b does so for the positive test set 
only and Figure 3.c does so for the negative test data only. 
 
The results of this section can be generalized as follows: class imbalances usually tend to 
hamper the classification performance of C4.5. The data belonging to the dominating 
class tend to be very well classified while those belonging to the minor class tend to be 
misclassified. Furthermore, these results get amplified in the case of a positive- rather 
than negative- dominance. All these trends were seen in all the domains except for the 
UCI Image classification domain which didn� seem much affected by the class 
imbalance.  
 
 
Part II: Over-Sampling versus Under-Sampling 
In this part of the paper, we study the effects of oversampling versus undersampling and 
oversampling or undersampling at different rates.5 The part is divided into two sections. 
In the first section, we study the effect of over-sampling versus under-sampling when 
both methods keep on re-sampling until the imbalance has completely vanished.  The 
second section considers the question of resampling at different rates rather than until the 
two classes get fully balanced. 

                                                 
5 Throughout  the experiments of this section, we consider a fixed 
imbalance ratio, a fixed number of training examples and a fixed degree 
of concept complexity. 
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2.1 Over-Sampling and Under-Sampling to Full Balance  
The purpose of this section is to explain the effects of full oversampling and 
undersampling on imbalanced domains. In order to illustrate these effects, a subset of the 
domains of Part I was used: 4x7  DNF concepts, Wisconsin Breast Cancer, Pima Indian 
Diabetes, Earn and ACQ. Each domain was designed with a 1:25 class imbalance in 
favour of each class in turn.  
 
Table 2 summarizes the number of training and test examples before and after resampling 
took place. This experiment considers both positive- and negative- dominant class 
imbalances and resampling was applied to both of them. Five domains participated in this 
experiment, as illustrated in this table. 
 

Table 2. The Number of Training and Test Examples in this Experiment 
Train Test Domain 
Imbalanced Over Under Positive Negative 

4*7 6000:240 
240: 6000 

6000:6000 240:240 6000 6000 

Breast 150:6 
6:150 

150:150 6:6 50 50 

Pima 200: 8 
8: 200 

200: 200 8:8 50 50 

Earn 2500:100 
100:2500 

2500:2500 100:100 1000 1000 

ACQ 1500:60 
60:1500 

1500:1500 60:60 800 800 

 
Re-sampling was conducted as follows: oversampling consisted of copying existing 
training examples  at random and adding them to the training set until a full balance was 
reached. Undersampling consisted of removing existing examples at random until a full 
balance was reached. Since each run of this experiment consists of different sets of 
resampled training examples, the error reported is the average of 25 repeated runs.  
 
Figure 4 shows the effect of the oversampling and undersampling strategies on three of 
the domains that were tested. These domains were selected because they each depict a 
different situation. In Figure 4.a, we see a case in which oversampling is more useful than 
undersampling, which, actually hurts the performance of C4.5. This is a rare case that 
occurred only in the Wisconsin Breast Cancer data set with when a negative-dominant.  
The negative-dominant 4*7 DNF expression case is related to the Wisconsin Breast 
Cancer case since oversampling was also more useful than undersampling. However,  
undersampling did not hurt C4.5� performance. The most common case observed in all 
our domains is the one depicted in figure 4.b which displays the results obtained on the 
Pima Indian Diabetes domain with a negative-dominant imbalance. In this  domain, both 
oversampling and undersampling help but undersampling helps more than oversampling. 
Finally, Figure 4.c represents the other rare case where oversampling and undersampling 
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are about as helpful in ACQ with a positive-dominant imbalance. The same type of result  
also occurred in the case of 4*7 DNF expression with a positive-dominant imbalance.  
 
Table 3 summarizes our results by showing what type of trend was observed in each 
domain. 
Oversampling 
surpasses  
Undersampling 

Undersampling surpasses 
Oversampling 

Undersampling is equivalent 
To Oversampling 

• Negative-
dominant  
Wisconsin 
Breast Cancer 

• Negative-
dominant           

      4*7DNF  
      Expressions 

• Positive-dominant 
WisconsinBreast 
Cancer 

• Negative-dominant 
ACQ 

• Pima(both dominances) 
• Earn (both dominances) 

• Positive-dominant 
ACQ 

• Positive-dominant 
4*7 DNF Expressions 

 
Altogether, our results suggest that neither the oversampling nor the undersampling 
strategy is always the best one to use and finding a way to combine them could perhaps 
be useful, especially if the bias employed by each strategy is of a different nature.  Figure 
4.b, which represents the most common case, suggests that the biases of oversampling 
and undersampling methods are, indeed, different since undersampling reduces the error 
on the positive examples and increases the error on the negative ones relatively more than 
oversampling. Our experiment s, thus, motivate the search for a combination of the two 
re-sampling methods rather than the selection of either of them. 
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Figure 4. The Comparison of Resampling Methods in the case of Class Imbalances. All 
three characteristic cases are displayed. Figure 4.a shows the case where oversampling is 
better than undersampling (Wisconsin Breast Cancer with negative-dominant imbalance). 
Figure 4.b shows the case where undersampling is better than oversampling (Pima Indian 
Diabetes with negative-dominant imbalance). Figure 4.c shows the case where the two 
resampling methods are almost equivqlent (ACQ with positive-dominant imbalance). 
 
2.2. Oversampling and Undersampling at various Rates 
The purpose of this section is to find out what happens when different oversampling or 
undersampling rates are used, and whether the effect of using different resampling rates is 
the same for different domains. In order to illustrate our answer to these questions, we 
considered the same domains as in Section 2.1 However, this time, rather than simply 
oversampling and undersampling our domains by equalizing the size of the positive and 
the negative training sets, our experiments consisted of oversampling and undersampling 
them at different rates. In particular, we divided the difference between the size of the 
positive and negative training sets by 10 and used this value as an increment in our 
oversampling and undersampling experiments. We then chose to make the 100% 
oversampling rate correspond to the fully oversampled data sets of section 2.1 but to 
make the 90% undersampled rate correspond to its fully undersampled data sets.6 For 
example, data sets with a 10% oversampling rate contain 240 + (6,000-240)/10 = 816 
positive examples and 6,000 negative examples. Conversely, data sets with a 0% 
undersampling rate contain 240 positive examples and 6,000 negative ones while data 
                                                 
6 This was done so that no classifier was duplicated in our combination scheme. (See Section 3.1) 
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sets with a 10% undersampling rate contain 240 positive examples and 6,000 - (6,000-
240)/10 = 5424 negative examples. A 0% oversampling rate and a 90% undersampling 
rate correspond to the fully imbalanced data sets designed in section 2.1 while a 100% 
undersampling rate corresponds to the case where no negative examples are present in the 
training set. 
 
The results are reported for a single domain, Pima Indian Diabetes, which was always 
considered characteristic of most data sets in Section 2.1. Figure 5 shows the results 
obtained on the negative-dominant version of the problem while Figure 6 shows the 
results obtained on the positive-dominant version of the problem. 
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Figure 5: The Effect of Oversampling and Undersampling at different rates on the Pima 
Indian Diabetes dataset with a negative-dominant imbalance. 5.a: Oversampling; 5.b: 
Undersampling. 
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Figure 6: The Effect of Oversampling and Undersampling at different rates on the Pima 
Indian Diabetes dataset with a positive-dominant imbalance. 6.a: Oversampling; 6.b: 
Undersampling. 
 
The results of these experiments allow us to make two remarks of interest. First, re-
sampling to full balance is not necessarily optimal (e.g., Figure 5.a where optimality is 
reached at 20% re-sampling) and second, the best re-sampling rate is not always the same 
(e.g., in Figure 5.a, it occurs at 20% while in Figure 6.a, it occurs at 80%). The results on 
all the other domains but  one—Wisconsin Breast Cancer—were similar to those obtained 
in the Pima Indian Diabetes case and lead to the same observations. In order to reach 
additional conclusions, we summarized our results in terms of general trends of the effect 
of re-sampling in Table 4. Table 4 shows that the effect of resampling on imbalanced 
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domains is stable and gradual on the full test set. However, its effect is different on the 
positive and the negative data sets taken separately. Within each class, changes tend to be 
radical in the case of undersampling and gradual in the case of oversampling. This 
suggests yet another difference in the way undersampling and oversampling behave. 
 
Table 4. The Summary of Resampling Trends in all domains but Wisconsin Breast 
Cancer  

  1:1   Negative Positive 

Over Gradual 
Reduction 

Gradual 
Increment 

Gradual 
Reduction 

Negative-
basedClass 
Imbalance Under Gradual 

Reduction 
Radical 
Increment 

Radical 
Reduction 

Over Gradual 
Reduction 

Gradual 
Reduction 

Gradual 
Increment 

Positive-
basedClass 
Imbalance Under Gradual 

Reduction 
Radical 
Reduction 

Radical 
Increment 

 
The one domain that did not exhibit the types of trends just described is the Wisconsin 
Breast Cancer data set. In this domain, the results were abnormally stable (in the case of 
resampling) or abnormaly unstable (in the case of undersampling). This probably results 
from the fact that the 6 examples in the minor class were not sufficient to desribe the 
concept at hand no matter how often it was duplicated.  
 
All in all, the experiments of this section suggest that resampling to full balance is 
generally not the optimal resampling rate, at least when the test set is balanced. 
Furthermore, the optimal re-sampling rate varies from domain to domain and re-sampling 
strategy to re-sampling strategy. Another possible observation is that there, generally, is a 
trade off between the two resampling methods with respect to their effect on the positive 
and negative test data considered separately. In general, oversampling changes its effect 
gradually and stably with different rates, while undersampling does so radically and in an 
unstable manner.  
 
Part III: Multiple Resampling Methods 
The results obtained in the previous part of the paper suggest that it might be useful to 
combine oversampling and undersampling versions of C4.5 sampled at different rates. On 
the one hand, the combination of the oversampling and undersampling strategies may be 
useful given the fact that the two approaches are both useful in the presence of 
imbalanced data sets and appear to learn concepts in different ways (cf. results of Section 
2.1 and 2.2).  On the other hand, the combination of classifiers using different 
oversampling and undersampling rates may be useful since optimal sampling rates are 
different in different domains and we may not be able to predict, in advance, which rate is 
optimal given a new domain (cf. results of Section 2.2). We will now describe the 
combination scheme we designed to deal with the  class imbalance problem. This 
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combination scheme is first tested on some artificial domains and it is then tested on a 
series of imbalanced subsets of the Reuters-21578 text classification domain. 
 
A combination scheme for inductive learning consists of two parts. On the one hand, we 
must decide which classifiers will be combined and on the other hand, we must decide 
how these classifiers will be combined. We begin our discussion with a description of the 
architecture of our mixture of experts scheme.  This discussion explains which classifiers 
are combined and gives a general idea of how they are combined.  The specifics of our 
combination scheme are motivated and explained in the subsequent part of the discussion.  
 
3.1 Architecture  
In order for a combination method to be effective, it is necessary for the various 
classifiers that constitute the combination to make different decisions (Hansen 1990). The 
previous part of our study suggests that undersampling and oversampling will produce 
classifiers able to make different decisions. Furthermore, different sampling rates will 
allow us to ``hit" an optimal rate which could not be predicted in advance. This suggests 
a 3-level hierarchical combination approach consisting of the output level, which 
combines the results of the oversampling and undersampling experts located at the expert 
level, which themselves each combine the results of 10 classifiers located at the classifier 
level and trained on data sets sampled at different rates. In particular, the 10 oversampling 
classifiers  oversample the data at rates 10%, 20%, ... 100% (the positive class is 
oversampled until the two classes are of the same size) and the 10 undersampling 
classifiers undersample the negative class at rate 0% (no re-sampling), 10%, ..., 90% (the 
negative class is undersampled until the two classes are of the same size). Figure 7 
illustrates the architecture of this combination scheme that was motivated by Shimshoni 
(1998)'s Integrated Classification Machine.7 
 

                                                 
7 However, (Shimshoni 1998) presents a general architecture. It was not 
tuned to the imbalance problem, nor did it take into consideration the 
use of oversampling and undersampling to inject principled variance 
into the different classifiers. Another notable difference is that 
(Shimshoni 1998) uses ensemble methods to combine his various 
classifiers 
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Over-sampling Expert Downsizing Expert 

 

Input (Examples to be classified) 

Output  

Over-sampling Classifiers Downsizing Classifiers 

 
Figure 7: The Architecture of Multiple Resampling Methods 

 
3.2. Detailed Combination Scheme 
Our combination scheme is based on two different assumptions/observations: 
 
Assumption #1: Within a single testing set, different testing points could be best  
                            classified by different single classifiers. 
Observation #2: In class imbalanced domains, classifiers tend to make many  
                            Classification errors on the non dominant class. (See Part I) 
 
In order to deal with the first assumption, we decided not to average the outcome of 
different classifiers by letting them vote on a given testing point, but rather to let a single 
``good enough" classifier make a decision on that point. The classifier selected for a 
single data point needs not be the same as the one  selected for a different data point. In 
general, letting a single, rather than several classifiers decide on a data point is based on 
the assumption that the instance space may be divided into non-overlapping areas, each 
best classified by a different expert. In such a case, averaging the result of different 
classifiers may not yield the best solution.  We, thus, created a combination scheme that 
allowed single but different classifiers to make a decision for each point. 
 
Of course, such an approach is dangerous given that if the single classifier chosen to 
make a decision on a data point is not reliable, the result for this data point has a good 
chance of being unreliable as well. In order to prevent such a problem, we designed an 
elimination procedure geared at preventing any unfit classifier present at our 
architecture's classification level from participating in the decision-making process. This 
elimination program relies on the results of C4.5 applied in a ten fold cross validation 
fashion to the original imbalanced training data. The individual classifiers of the 
combination scheme (trained with various re-balanced versions of the training set) 
displaying with lower error rates than the average of ten fold cross validation error of all 
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classifiers are selected and trained again with all of training examples. The others are 
eliminated from the combination scheme. 
 
In more detail, our combination scheme consists of:  
 

• a combination scheme applied to each expert at the expert level 
• a combination scheme applied at the output level 
• an elimination scheme applied to the classifier level 

 
The expert and output level combination schemes use the same very simple heuristic: if 
one of the non-eliminated classifiers decides that an example is positive, so does the 
expert to which this classifier belongs. Similarly, if one of the two experts decides (based 
on its classifiers' decision) that an example is positive, so does the output level, and thus, 
the example is classified as positive by the overall system. 
 
It is important to note that, at the expert and output level, our combination scheme is 
heavily biased towards the under-represented class. This was done as a way to 
compensate for the natural bias against that class embodied by the individual classifiers 
trained on the class imbalanced domain. This heavy bias in favour of the under-
represented class, however, is mitigated by our elimination scheme which strenuously 
eliminates any classifier believed to be too biased towards that class. 
 
Part IV: Experiments and Results 
This section will compare the proposed approach for learning in the presence of 
imbalanced data sets to C4.5, C4.5 Resampled and Adaboost. This will be done through 
two series of experiments. In the first series, the data from the five domains previously 
used in Part II of this paper will be tested and the proposed approach will be compared to 
resampling methods that resample to full balance. In the second series, the most frequent 
ten categories of the Reuter 21578 collection will be useed and the proposed approach 
will be compared to C4.5 and AdaBoost. 
 
4.1 Classification in Artificial, UCI, and two Reuters  Domains  
The purpose of this series of experiments is to compare the proposed approach to C4.5 in 
the context of class imbalances, on several domains. In this experiment, the ratios of class 
imbalances are fixed at 1:25 and 25:1. The proposed approach is compared to 1) C4.5 
applied to the original imbalanced data, 2) C4.5 applied to to the oversampled data, and 
3) C4.5 applied to the undersampled data. 
 
The evaluation will be done using two measures: the error rate and ROC (Receiver 
Operating Characteristic) curves. The first measure will be applied to balanced test 
examples, negative ones, and positive ones. The second measure is based on the ratio of 
the true positive rate in positive examples to the false positive rate in negative examples. 
Note that the two measures are different from one another and that a particular approach 
may obtain good results when evaluated by one method and bad results when evaluated 
by another one.  
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ROC curve is the plotted curve, where the x-axis is the false positive rate and y-axis the 
true positive rate. This measure is from the signal detection to characterize the trade off 
between hit rate and false alarm rate. The false positive rate means the rate of the number 
of examples classified into positive ones among all negative examples, and the true 
positive rate does that of the number of examples classified into such ones among all 
positive examples.  
 
We show the results obtained on two domains and, in order to save space, we summarize 
the others in Table 4. Figure 8(a) and 8(b) show the results obtained on the negative-
dominant version of the Pima Indian Diabetes data set. Figure 8(a) reports the results 
with respect to the accuracy of the method while Figure 8(b) focuses on the ROC curves. 
Figures 9(a) and 9(b) report on similar results for the positive-dominant version of the 
Earn category of Reuters. Figure 8 is an example where the combined method is about 
equivalent to (though slightly worse than) the undersampled approach while Figure 9 
shows an example where the combined approach is clearly superior. 
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Figure 8: Results on  the Pima Indian Diabetes domain with negative-dominant  
imbalance. 8.a: Error rates; 8.b: ROC curves 
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Figure 9: Results on the Pima Indian Diabetes domain with positive-dominant  imbalance. 
9.a: Error rates; 9.b: ROC curves 
 
Table 5 summarizes the result of this series of experiment. Its rows correspond to the 
domain and the class dominance while its columns correspond to the approaches that 
participated in this experiment and the evaluation method. The entry in each cell indicates 
the rank of the performance corresponding to the approach, the domain, and the type of 
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class dominance. 1 is the best rank and 4, the worst. The rows of the table corresponding 
to a win for the proposed approach are boldened. The table shows that such cases are 
very frequent and this experiment thus allows us to conclude that the proposed method 
performs generally better than any resampling method that resamples blindly to full 
balance. 
 
Table 5. The Summary of the Experiments on the Artificial, UCI, and Reuters Domains. 

Performance in 1:1 Test Data ROC Curve   

Imbalance Over Under Proposed Imbalance Over Under Proposed 

1:25 3 2 4 1 4 3 2 1 DNF 
4*7 

25:1 4 2 1 3 4 1 2 3 

1:25 4 2 3 1 4 2 3 1 Cancer 

25:1 3 4 2 1 2 4 3 1 

1:25 4 3 1 2 4 3 2 1 Pima 

25:1 4 3 1 2 4 3 1 2 

1:25 4 3 2 1 4 3 1 2 Reuter 
Earn 

25:1 4 3 2 1 4 2 3 1 

1:25 4 3 2 1 4 3 2 1 Reuter 
ACQ 

25:1 4 3 2 1 4 2 3 1 

 
 

4.2 Text Classification 
Since our combination scheme was shown to help increase classification accuracy on 
several classes of domains, we also decided to test it systematically on a real-world 
domain. In particular, we chose to test it on a subset of the ten largest categories of the 
the Reuters-21578 Data Set. Unlike in the previous section, in this case, we do not 
manipulate the ratio of the training data: we leave the natural imbalance untouched. We 
first present an overview of the data, followed by the results obtained by our scheme on 
these data. 
 
The ten largest categories of the Reuters-21578 data set consist of the documents 
included in the classes of financial topics listed in table 6: 
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Table 6: The top 10 Reuters-21578 categories 
Class Document Count 
Earn 3987 
ACQ 2448 
MoneyFx 801 
Grain 628 
Crude 634 
Trade 551 
Interest 513 
Wheat 306 
Ship 305 
Corn 254 

 
Several typical pre-processing steps were taken to prepare the data for classification. First, 
the data was divided according to the ModApte split which consists of considering all 
labelled documents published before 04/07/87 as training data (9603 documents, 
altogether) and all labelled documents published on or after 04/07/87 as testing data 
(3299 documents altogether). The unlabelled documents represent 8676 documents and 
were used during the classifier elimination step. 
 
Second, the documents were transformed into feature vectors in several steps. 
Specifically, all the punctuation and numbers were removed and the documents were 
filtered through a stop word list8. The words in each document were then stemmed using 
the Lovins stemmer 9  and the 100 most frequently occurring words were used as the 
dictionnary for the bag-of-word vectors representing each documents.10 Finally, the data 
set was divided into 10 concept learning problems where each problem consisted of a 
positive class containing 100 examples sampled from a single top 10 Reuters topic class 
and a negative class containing the union of all the examples contained in the other 9 top 
10 Reuters classes. Dividing the Reuters multi-class data set into a series of two-class 
problems is typically done because considering the problem as a straight multiclass 
classification problem causes difficulties due to the high class overlapping rate of the 
documents, i.e., it is not uncommon for a document to belong to several classes 
simultaneously.  
 
The results obtained by our scheme on these data were pitted against those of C4.5. 
However, since we decided that it was not fair to compare the effectiveness of a system 
of 20 classifiers to that of a single classifier, we also ran C4.5 with the Ada-boost option 
combining 20 classifiers.11 The results of these experiments are reported in Figure 10 as a 

                                                 
8 The stop word list was obtained at:  
http://www.dcs.gla.ac.uk/idom/it_resources/linguistic_utils/stop-words 
9 The Lovins stemmer was obtained from: ftp://n106.isitokushima-u.ac.ip/pub/IR/Iterated-Lovins-stemmer 
10 A dictionary of 100 words is smaller than the typical number of words used  (see, for example, (Scott & 
Matwin 1999)), however, our results show that this restricted size did not affect the results too negatively 
while it did reduce processing time quite significantly. 
11 C5.0, a cousin of c4.5, was shown in (Estabrooks 2000) to obtain results close to those obtained by state-
of-the-art classifiers designed for text classification. We expected Adaboost to obtain even better results 
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function of the micro-averaged (over the 10 different classification problems) Recall, 
Precision and F1 measures. Figure 11 shows the same results but for the macro-average. 
 
In more detail, Precision, Recall and the F1 measures are defined as follow:  
 

P = TruePositives/(TruePositives + FalsePositives) 
R = TruePositives/(TruePositives + FalseNegatives) 
F1 = (2 * P * R) / (P + R) 

  
where P is the precision, R, the Recall, and F1, the F1 measure.  
 
More informally, precision corresponds to the proportion of examples classified as 
positive that are truly positive; recall corresponds to the proportion of truly positive 
examples that were classified as positive; and the F1 measure combines precision and 
recall in a way that considers them as being of equal importance.  
Because 10 different results are obtained for each combination system (1 result per 
classification problem), these results had to be averaged in order to be presented in a 
single graph. Micro-averaging consists of the summation of contingency tables of 
categories. This method considers that each category has different weights based on its 
number of news articles. Macro-averaging consists of a straight average of the F1 measure 
obtained in all the problems, by each combination system. Using Macro-averaging gives 
each problem the same weight, independently of the number of  examples they contain.  
 
Figure 11 shows the micro-averaged results of text classification, with the assumption 
that each category has its different weight based on its number of news articles. Although 
the proposed method is worse than Adaboost in terms of precision, its recall value is 
excellent, leading to a better general integrated performance in the context of both the F1 

measure and the ROC curves. 
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                             a                                                                b                
Figure 10: Micro-averaged Results on Reuters ten top categories. 10.a: Error rates; 10.b: 
ROC Curves. 
 

                                                                                                                                                 
than C4.5 given that it is currently considered one of the best general-purpose classification algorithm 
(Breiman 1998). 
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Figure 11.a and 11.b show the macro-averaged results of text classification, with the 
assumption that each category has the same weight. The distribution of macro-averaged 
performance is similar to that of the micro-averaged one. 
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Figure 11: Macro-averaged Results on Reuters ten top categories. 11.a: Error rates; 11.b: 
ROC Curves. 
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Figure 12: F1-measure on each individual domain for the Proposed combination scheme, 
Adaboost and C4.5. 
 
Figure 12 shows the results for each individual domain considered. The domains are 
ordered as a function of increasing class imbalance ratios. There does not seem to be any 
correlation between the size of the class imbalance ratio and the peformance of the 
proposed method relative to the other two approaches. However, this figure shows us that 
our method prevails over C4.5 in all cases and over Adaboost in 7 out of 10 cases. 
              
Our experiments, thus, confirms that the proposed method performs better than not only a 
single classifier but also a good-performing combination method such as Adaboost on 
class imbalanced problems.  
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Related Work, Conclusion and Future Work 
This paper presented an approach for dealing with the class-imbalance problem that 
consisted of combining different expressions of re-sampling based classifiers in an 
informed fashion. In particular, our combination system was built so as to bias the 
classifiers towards the positive set in order to counteract the negative bias typically 
developed by classifiers facing a higher proportion of negative than positive examples. 
The positive bias we included was carefully regulated by an elimination strategy designed 
to prevent unreliable classifiers to participate in the process. The technique was shown to 
be effective on a subset of the Reuters text classification task as compared to a single 
classifier or another general-purpose combination method, Adaboost. 
 
The work presented in this paper is related to two notable studies. The first one is by 
Weiss and Provost (2003). Their study attempts to find out what data distribution is 
optimal in a classification problem. Based on results they obtained on a large number of 
domains, they conclude that the naturally occuring data distribution is not necessarily 
optimal. Their work is related to our search for and ultimate combination of different 
class imbalance ratios. The second study is by Chawla et al. (2002). Like in our work, 
their study attempts to combine both oversampling and undersampling. Their 
oversampling method is quite sophisticated, but on the other hand, they do not look at 
different class distribution ratios as we do. 
 
For the future, there are different ways in which this study could be expanded. First, 
although experimental results bode well for our method, it would be interesting to study 
its various components separately and explain their various roles. Such a study, we 
expect, could lead to a simplification and a strengthening of our framework. For example, 
we could do an analysis of which classifier gets selected when and eliminate those than 
are never involved in the classification procedure. Furthermore, we could find ways to 
eliminate those that are often selected and often issue an erroneous classification. Second, 
the technique we presented was used in the context of a very naive oversampling and  
undersampling scheme. It would be useful to apply our scheme to more sophisticated re-
sampling approaches such as those of (Kubat & Matwin 1997) or (Chawla et al. 2002). 
Third, it would be interesting to find out whether our combination approach could also 
improve on cost-sensitive techniques previously designed. Finally, we would like to test 
our technique on other domains presenting a large class imbalance. 
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