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Abstract 

In many cost-sensitive environments class probability estimates are used by deci-
sion makers to evaluate the expected utility from a set of alternatives. Supervised 
learning can be used to build class probability estimates; however, it often is very 
costly to obtain training data with class labels. Active learning acquires data in-
crementally, at each phase identifying especially useful additional data for label-
ing, and can be used to economize on examples needed for learning. We outline 
the critical features of an active learner and present a sampling-based active learn-
ing method for estimating class probabilities and class-based rankings. BOOT-

STRAP-LV identifies particularly informative new data for learning based on the 
variance in probability estimates, and uses weighted sampling to account for a 
potential example’s informative value for the rest of the input space. We show 
empirically that the method reduces the number of data items that must be ob-
tained and labeled, across a wide variety of domains. We investigate the contri-
bution of the components of the algorithm and show that each provides valuable 
information to help identify informative examples. We also compare BOOTSTRAP-
LV with UNCERTAINTY SAMPLING, an existing active learning method designed to 
maximize classification accuracy. The results show that BOOTSTRAP-LV uses fewer 
examples to exhibit a certain estimation accuracy and provide insights to the be-
havior of the algorithms. Finally, we experiment with another new active sam-
pling algorithm drawing from both UNCERTAINTY SAMPLING and BOOTSTRAP-LV and 
show that it is significantly more competitive with BOOTSTRAP-LV compared to 
UNCERTAINTY SAMPLING. The analysis suggests more general implications for im-
proving existing active sampling algorithms for classification.  

Keywords:   active learning, cost-sensitive learning, class probability estimation, rank-
ing, supervised learning, decision trees, uncertainty sampling 

1.   Introduction 

Supervised classifier learning requires data with class labels.  In many applications, 
procuring class labels can be costly. For example, to train diagnostic models experts 
may need to read many historical cases. To train document classifiers experts may 

To appear in Machine Learning. 



Saar-Tsechansky & Provost 

2 

need to read many documents and assign them labels. To train customer response 
models, consumers may have to be given costly incentives to reveal their preferences.   
 Active learning acquires labeled data incrementally, using the model learned "so 
far" to select particularly helpful additional training examples for labeling.  When 
successful, active learning methods reduce the number of instances that must be la-
beled to achieve a particular level of accuracy. Most existing methods and particularly 
empirical approaches for active learning address classification problems—they assume 
the task is to assign cases to one class (from a fixed set of classes).  
 Many applications, however, require more than simple classification. In particular, 
probability estimates are central in decision theory, allowing a decision maker to in-
corporate costs/benefits for evaluating alternatives. For example, in targeted market-
ing the estimated probability that a customer will respond to an offer is combined with 
the estimated profit [Zadrozny and Elkan, 2001] to evaluate various offer propositions. 
Other applications require ranking cases by the likelihood of class membership, to 
improve the response rate to offer propositions, or to add flexibility for user process-
ing.1 For example, documents can be ranked by their probability of being of interest to 
the user, and offers to consumers may be presented/proposed in order of the prob-
ability of purchase or of the expected benefit to the seller. For these reasons we focus 
on learning class probability estimation (CPE) models.  
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1: Learning curves for active sampling vs. random sampling 
 
In this paper we consider active learning to produce accurate CPEs and class-based 
rankings from fewer labeled training examples. We assume a (unspecified) cost is 
associated with acquiring labels specifically rather than with the generation or the 
obtaining of training examples. Figure 1 shows the desired behavior of an active 
                                                             
1 Classification accuracy has been criticized previously as a metric for machine learning research (Pro-
vost et al., 1998). 
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learner.  The horizontal axis represents the information needed for learning, i.e., the 
number of labeled training examples, and the vertical axis represents the error rate of 
the probabilities produced by the learned model. Each learning curve shows how error 
rate decreases as more training data are used. The upper curve represents the decrease 
in error from sampling examples randomly for labeling and training; the lower curve 
represents sampling actively. The two curves form a "banana" shape: very early on, 
the curves are comparable because a model is not yet available to guide the active 
sampling.  The active sampling curve soon accelerates, because of the careful choice 
of training examples. Given enough data, random sampling eventually catches up.   
 We introduce a new sampling-based active learning technique, BOOTSTRAP-LV, for 
learning CPEs. BOOTSTRAP-LV uses bootstrap samples [Efron and Tibshirani, 1993] of 
available labeled data to examine the variance in the probability estimates for not-yet-
labeled data, and employs a weight-sampling procedure to select particularly informa-
tive examples for labeling and learning. We show empirically across a range of data 
sets that BOOTSTRAP-LV decreases the number of labeled instances needed to achieve 
accurate probability estimates, or alternatively that it increases the accuracy of the 
probability estimates for a fixed number of training data. An analysis of the algorithm’s 
characteristics and performance reveals the contributions of its components. The 
results of the analysis lead to the design of a new algorithm for active sampling that is 
more competitive with BOOTSTRAP-LV than a popular existing method and has computa-
tional advantages over BOOTSTRAP-LV. This final result further demonstrates how the 
components of the BOOTSTRAP-LV algorithm contribute to its efficacy and highlights 
why existing algorithms do not perform well for CPE.  

2.   Active Learning and the Bootstrap-LV Algorithm  

 The fundamental notion of active sampling has a long history in machine learning. 
To our knowledge, the first to discuss it explicitly were [Simon and Lea, 1974] and 
[Winston, 1975].  Simon and Lea describe how machine learning is different from 
other types of problem solving, because learning involves the simultaneous search of 
two spaces: the hypothesis space and the instance space.  The results of searching the 
hypothesis space can affect how the instance space will be sampled.  Porter and 
Kibler [Porter and Kibler, 1986] address the symbiosis between learning and problem 
solving, and propose a learning apprentice system that learns problem-solving rules.  
Their method reduces reliance on the teacher to provide examples by acting only 
when the system is unable to determine what to do next. Winston [Winston, 1975] 
discusses how the best examples to select next for learning are "near misses," in-
stances that miss being class members for only a few reasons. Subsequently, theoreti-
cal results showed that the number of training data can be reduced substantially if 
they are selected carefully [Angluin, 1988].  The term active learning was coined later to 
describe induction where the algorithm controls the selection of potential unlabeled 
training examples [Cohn et al., 1994].  
 A generic algorithm for active learning is shown in Figure 2. A learner first is ap-
plied to an initial set L of labeled examples (usually selected at random or provided 
by an expert). Subsequently, sets of M examples are selected in phases from a set of 
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unlabeled examples UL , until some predefined condition is met (e.g., the labeling 
budget is exhausted). If UL  is very large a subset of randomly sampled examples from 
UL  may be used as a substitute for the complete set [Roy and McCallum, 2001]. In 
each phase, each candidate example ULxi ∈  is assigned an effectiveness score 

iES  
based on an objective function, reflecting its contribution to subsequent learning. 
Examples then are selected for labeling based on their effectiveness scores. Often, 
multiple examples, rather than a single example, are selected in each phase due to 
computational constraints. Once examples are selected, their labels are obtained (e.g., 
by querying an expert) before being added to L, to which the learner is applied next.  
 

 

 

Input: an initial labeled set L, an unlabeled set UL, an inducer I, 
a stopping criterion, and an integer M specifying the number of actively selected ex-
amples in each phase. 

1 While stopping criterion not met    
     /* perform next phase: */ 
2   Apply inducer I to L  
3     For each example { ULxx ii ∈| } compute 

iES , the effectiveness score  
4   Select a subset S of size M from UL based on 

iES  
5   Remove S from UL, label examples in S, and add S to L 
Output: estimator E induced with I from the final labeled set L 

Figure 2: Generic Active Learning Algorithm 
 
 The objective of active learning is to select examples that will reduce the generali-
zation error of the model the most. The generalization error is the expected error across 
the entire example space.  Therefore when evaluating a training example an optimal 
active learning approach must evaluate the expected reduction in generalization error 
if the example were to be added to the training set from which the model would be 
induced [Roy and McCallum, 2001]. The example that is expected to reduce the gen-
eralization error the most should be added to the training set.  Unfortunately, as we 
discuss below, assessing the expected reduction of CPE generalization error is not 
straightforward.  
 We are interested in an active learning scheme that will apply to arbitrary learners, 
thus computational considerations may prohibit us from examining the models result-
ing from adding each potential unlabeled example to the training set (as prescribed by 
Roy and McCallum [Roy and McCallum, 2001]). We therefore resort to an indirect 
estimation of potential training examples’ informative value. Also, we consider the 
potential of each training example to help improve the estimation of other examples in 
the space, which we describe in detail below.  
 Given the generic framework presented in Figure 2, BOOTSTRAP-LV embodies a par-
ticular instantiation of steps 3 and 4. The description we provide here pertains to bi-
nary classification problems.   
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 Since our goal is to reduce the class probability estimation (CPE) error, it is useful 
to understand the error’s sources. A model’s estimation )|(ˆ Txf  for a particular 
input x  depends upon the sample T from which the model is induced, and therefore 
can be treated as a random variable. Let )(xf  be the underlying function describing 
the probability of class membership for a case described by input x . One indication of 
the quality of the current class probability estimate )|(ˆ Txf  for example x  given a 
training set T is the expected estimation (absolute) error, reflecting the discrepancy 
between the estimated probability and the true probability, i.e., |)|(ˆ)(| Txfxf − . We 
may infer from the discrepancy whether additional information is needed to improve 
the model’s estimation. Note that unfortunately in our inductive learning setting we 
typically do not know the class probability, )(xf , for an input x , even when we do 
know the true class of a particular instance described by x .  
 A common formulation [Friedman, 1997] of the estimation error decomposes the 
expected squared estimation error into the sum of two terms: 

222 )]|(ˆ)([)]|(ˆ)|(ˆ[)]|(ˆ)([( TxfExfTxfETxfETxfxfE TTTT −+−=− , )(⋅TE represents 
expectation across training sets T. The first term in the sum is referred to as the vari-
ance of the estimation and reflects the sensitivity of the estimation to the training sam-
ple. The second term is referred to as the (squared) bias, reflecting the extent to which 
the induced model can approximate the target function )(xf  [Friedman, 1997]. Calcu-
lating both the estimation error and the estimation bias requires knowing to the actual 
probability function, )(xf , which as mentioned above is not available for an inductive 
learning algorithm to consider. Therefore it is impossible to compute them directly. 
The estimation variance, however, reflects a behavior of the estimation procedure with-
out reference to the underlying probability function.  Therefore, in order to reduce 
the estimation error the BOOTSTRAP-LV algorithm estimates and then tries to reduce the 
estimation variance.  The estimation variance for a certain input is referred to as the 
“local variance” (LV) to differentiate it from the model’s expected variance over the 
entire input space. We ignore the bias, or alternatively assume the bias is zero.  
 The BOOTSTRAP-LV algorithm, shown in Figure 3, first estimates the local variance of 
each potential training example. If the LV is high, the algorithm infers that this input is 
not well captured by the model given the available data. The local variance also re-
flects the potential error reduction if this variance were reduced as more examples 
become available for the learner. BOOTSTRAP-LV then employs the LV estimations to-
gether with a specialized sampling procedure to identify the examples that are particu-
larly likely to reduce the average estimation error across the entire example space (i.e., 
generalization error) the most. We first describe the estimation of the local variance. 
We then will discuss the sampling procedure.  

Given that an efficient closed-form estimation of the local variance may not be ob-
tained for arbitrary learners, we estimate it empirically. The variance stems from the 
estimation being induced from a random sample. We therefore emulate a series of 
samples by generating a set of k bootstrap subsamples [Efron and Tibshirani, 1993] 

jB , 
kj ,...,1=  from L. We generate a set of models by applying the inducer I to each 

bootstrap sample jB , resulting in k estimators 
jE , kj ,...,1= . To calculate the esti-

mated variance, for each example in ULxi ∈ , we estimate the variance among CPEs 
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predicted by the estimators {
jE }. Finally, each example in ULxi ∈  is assigned an 

effectiveness score that is proportional to its local variance.  
The local variance provides an indication of the potential error reduction for each 

individual training example.  However, it does not necessarily provide an indication of 
how much would be learned about other examples in the space.  Recall that our ob-
jective is to reduce the generalization error by training a model with fewer, particularly 
informative examples; a training example therefore must affect the estimation error of 
other examples in the example space.   It may be that an example with a very high 
variance is not well captured by the model, but is an outlier, not similar to any other 
examples in the space. 

 
Algorithm BOOTSTRAP-LV  
Input: an initial labeled set L  sampled at random, an unlabeled set UL, an inducer I, a stop-
ping criterion, and a sample size M. 
2  for (s=1;until stopping criterion is met; s++)  
3       Generate k bootstrap subsamples 

jB , kj ,...,1=  from L 
4   Apply inducer I on each subsample 

jB  and induce estimator 
jE   

5   For all examples { ULxx ii ∈| } compute ( )[ ]{ }
R

ppxp
xD

i
k

j iij

is

min,1

2 /)(
)(

∑ =
−

=    

6  Sample from the probability distribution sD , a subset N of M examples from UL 
without replacement  

7   Remove N from UL, label examples in N, and add them to L 
8  end for 
Output: estimator E induced with I from L 

Figure 3: The BOOTSTRAP-LV Algorithm 
 
Many existing active learning algorithms select examples in order of their effective-

ness score, such that the examples with the highest scores are selected for labeling 
first. Let us refer to this approach as Direct Selection. Direct selection ignores informa-
tion about how the class probability estimation error of other examples in the space 
may be affected by adding the example to the training set.  This information, however, 
is essential to evaluate the expected effect an example may have on the generalization 
error.  

Random sampling is often referred to in the active learning literature as “non-
informed” learning (e.g., [Cohn et al., 1994, Lewis and Gale, 1994]). Nevertheless, 
random sampling is powerful because it allows the incorporation of information about 
the distribution of examples even when this information is not known explicitly. For 
example, consider the case when examples for labeling are sampled at random. An 
example may inform the learning about other examples in the space if it is similar to 
these examples. Consider a set of similar examples. With random sampling, the larger 
this set the more likely it is that an example from this set is sampled, providing infor-
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mation about a larger number of examples. Note that this property is obtained without 
having to capture explicitly how examples are similar to each other.  

In order to reduce the error across the example space, BOOTSTRAP-LV incorporates 
sampling into the selection of training examples by weight sampling examples for label-
ing. In particular, the probability of each example to be sampled is proportional to its 
effectiveness score, i.e., its local variance. Specifically, the distribution from which 

examples are sampled is given by ( )[ ]{ }
R

ppxp
xD

i
k

j iij

is

min,1

2 /)(
)(

∑ =
−

= , where )( ij xp  denotes 

the estimated probability an estimator jE  assigns to the event that example 
ix  belongs 

to one of the two classes (the choice of performing the calculation for either class is 

arbitrary because the variance for both classes is equal); ip =
k

xpk

j ij∑ =1
)( ; min,ip  is the 

average probability estimation assigned to the minority class by the estimators {
jE }, 

and R is a normalizing factor ( )[ ]{ }∑ ∑= =
−= )(

1 min,1

2 /)(ULsize

i i
k

j iij ppxpR , so that 
sD  is a 

distribution.  
There is one additional technical point of note.  Consider the case where the classes 

are not represented equally in the training data. When high variance exists in regions 
of the domain for which the minority class is assigned high probability, it is likely that 
the region is relatively better understood than regions with the same variance but for 
which the majority class is assigned high probability. In the latter case, the class prob-
ability estimation may be exhibiting high variance due simply to lack of representation 
of the minority class in the training data, and would benefit from sampling more from 
this subset of examples. Therefore the estimated variance is divided by the average 
value of the minority-class probability estimates min,ip . The minority class is deter-
mined once from the initial random sample.  

3. Related Work  

 Cohn et al. [Cohn et al., 1996] propose an active learning approach for statistical 
learning models, generating queries (i.e., training examples) from the input space to be 
used as inputs to the learning algorithm. This approach directly evaluates the effec-
tiveness score, i.e., the informative contribution of each example to the learning task.  
At each phase the expectation of the variance of the model over the example space is 
used to generate the example that minimizes this variance. Since it requires a computa-
tion in closed form of the learner’s variance, this approach is impracticable for arbi-
trary models. In addition, queries are generated whereas here we are interested in 
identifying informative examples from an existing set of available unlabeled examples 
(a subset of the set of possible queries). 
 When an efficient closed-form estimation of the expected generalization error is not 
available, the models that result from adding each potential training example to the 
training set can be induced in order to estimate the expected changes in generalization 
error. Roy and McCallum [Roy and McCallum, 2001] propose this approach for build-
ing classifiers. At each phase they update the current model with each additional train-
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ing example for each possible label and calculate an effectiveness score, measured as 
class entropy, as an estimate of the improvement in classification error. They then 
select the example bringing about the greatest expected reduction of entropy. The 
algorithm was shown to be effective, reducing the number of examples needed to 
obtain a certain level of accuracy. For many learning algorithms, however, the induc-
tion of a new model for each possible training example may be prohibitively expen-
sive. A critical requirement for their approach, therefore, allowing it to be 
computationally tractable, is that the learning algorithm allow efficient incremental 
updates of the model, such as the naïve Bayes algorithm used to classify text docu-
ments in their experiments [Roy and McCallum, 2001]. 
 When an efficient closed-form computation of the error or incremental model up-
dating is not possible, various active learning approaches compute alternative effec-
tiveness scores. For example, the QUERY BY COMMITTEE (QBC) algorithm [Seung et al., 
1992] was proposed to select training examples actively for training a binary classifier. 
Examples are sampled at random, generating a “stream” of potential training examples, 
and each example is considered informative (and thus is labeled) if classifiers sampled 
from the current version space disagree regarding its class prediction. The QBC algo-
rithm employs disagreement as a binary effectiveness score, designed to capture 
whether or not uncertainty exists regarding class prediction given the current labeled 
examples.  
 McCallum and Nigam [McCallum and Nigam, 1998] note that a disadvantage of the 
“stream-based” QBC approach lies in the decision as to whether to label an example 
being “made on each document (i.e., example) individually, irrespective of the alterna-
tives.” An attractive method would be to compare the estimation uncertainty of all the 
unlabeled training examples, allowing one to select at each phase the example(s) with 
the largest classification uncertainty. Various other approaches have been developed 
within the Query By Committee framework that identify informative examples for 
constructing classifiers and which use a variety of measures that quantify the level of 
uncertainty or the likelihood of classification error given the current labeled data. In 
particular, these effectiveness scores quantify the estimated informative value of each 
example and thereby obtain a ranking of the examples’ informative values. Subse-
quently the example(s) with the highest effectiveness score(s) is (are) selected.  
 For instance, Abe and Mamitsuka [Abe and Mamitsuka, 1998] use bagging and 
boosting to generate a committee of classifiers and quantify disagreement as the mar-
gin (i.e., the difference in weight assigned to either class). Examples with the minimum 
margin are selected for labeling. The final classifier is composed of an ensemble of 
classifiers whose votes are used for class prediction. UNCERTAINTY SAMPLING [Lewis and 
Gale, 1994] was designed to select informative examples to construct binary classifiers 
by adopting the uncertainty notion underlying the QBC approach, but instead of gen-
erating a committee of hypotheses to estimate uncertainty the algorithm employs a 
single probabilistic classifier. Examples whose probabilities of class membership are 
closest to 0.5 are selected for labeling first. UNCERTAINTY SAMPLING has several attractive 
properties, which we return to below.  
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 These methods are not designed to improve CPEs or rankings, which is our con-
cern in this paper; as indicated by their effectiveness scores, most are designed to 
improve classification.  In addition, as opposed to the approach we propose in this 
paper, these methods do not incorporate the effect of a potential additional training 
example on other examples in the example space.  Particularly, they disregard the 
potential of a training example to reduce the error of the estimation for other exam-
ples. Examples for which the current estimation is most uncertain may have no sig-
nificant contribution to reducing the estimation error of other examples in the instance 
space. The failure to account for this effect was noted by Argamon-Engelson and 
Dagan [Argamon-Engelson and Dagan, 1999] as well as by McCallum and Nigam 
[McCallum and Nigam, 1998] who proposed to incorporate an instance density meas-
ure explicitly into the effectiveness score, where the density measure reflects how 
similar are other examples in the space to the one examined. The underlying assump-
tion is that the proposed similarity measure captures the relative effect an example 
would have on reducing the classification error of other examples in the space. The 
approach was shown to be effective in selecting informative examples for document 
classification.  Yet the proposed density measure is specific to document items, where 
similarity measures are available (e.g., TF/IDF). It is not clear what an appropriate 
density measure would be for an arbitrary domain.2 

Our approach uses weight sampling, by which we argue it implicitly incorporates 
properties of the domain to support the selection of examples more likely to be in-
formative regarding other examples in the space.  Note that weight sampling also is 
employed in the AdaBoost algorithm [Freund and Shapire, 1996] on which Iyengar et 
al. [Iyengar et al., 2000] base their active learning approach. Their algorithm results in 
an ensemble of classifiers where weight sampling is used both to select examples 
from which successive classifiers in the ensemble are generated as well as to select 
examples for labeling. Iyengar et al. note that better results were obtained when ex-
amples were sampled compared to when examples are selected by order of their error 
measure. They propose to study this phenomenon further and hypothesize that sam-
pling allows their approach to avoid selecting the same examples repeatedly. We argue 
that in addition weight sampling acts to increase the likelihood of selecting examples 
that are particularly informative for reducing the generalization error. As we discuss in 
the previous paragraph, selecting examples should address the relevance of each train-
ing example to other examples in order to identify examples that will better decrease 
the average estimation error (i.e., the generalization error). Moreover, whereas the 
domain-specific approach of McCallum and Nigam modeled the example space explic-
itly and incorporated a measure of space density into the effectiveness score  
[McCallum and Nigam, 1998], the weight-sampling mechanism can be applied seam-
lessly for arbitrary domains. 

In sum, BOOTSTRAP-LV employs an effectiveness score that identifies examples whose 
CPE has large variance with respect to the training data used. It uses this measure to 

                                                             
2 Roy and McCallum note the domain-specific limitation of this approach [Roy and Mc-
Callum, 2001]. 
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indicate the potential improvement in class probability estimation error, rather than 
classification accuracy. BOOTSTRAP-LV estimates local variance empirically, enabling its 
computation with an arbitrary modeling scheme. Lastly, we use a sampling mechanism 
to complement the selection of examples for learning. We argue that weight sampling 
can help account for the informative value an example confers for other examples in 
the space. 

4.  Experimental Evaluation  

The experiments we describe here examine BOOTSTRAP-LV’s performance over a 
range of domains in order to assess its general ability to identify particularly useful 
examples for learning. In section 4.1 we present our experimental setting. Sections 4.2 
and 4.3 present and discuss our results when learning simple probability estimation 
trees, and when learning bagged probability estimation trees, respectively. We discuss 
additional evaluation measures in section 4.4. In Section 4.5 we compare BOOTSTRAP-LV 
with UNCERTAINTY SAMPLING, an active learning approach designed to improve classifica-
tion accuracy, in order to provide insight into the operation of the algorithm and its 
advantage compared to existing approaches. Finally, we present experiments with a 
new active learning algorithm inspired by the empirical investigation that provide fur-
ther insight into the elements of the BOOTSTRAP-LV algorithm.  

4.1  Experimental Setting 

We applied BOOTSTRAP-LV to 20 data sets, 17 from the UCI machine learning reposi-
tory [Blake et al., 1998] and 3 used previously to evaluate rule-learning algorithms 
[Cohen and Singer, 1999]. Data sets with more than two classes were mapped into 
two-class problems. For these data sets the minority class was associated with one 
class and all remaining classes were mapped to the second class.  

For these experiments we use tree induction to produce class probability estimates.3 
In particular, for the experiments presented here, the underlying probability estimator 
is a Probability Estimation Tree (PET), an unpruned C4.5 decision tree [Quinlan, 1993] 
for which the Laplace correction [Cestnik, 1990] is applied at the leaves. Not pruning 
and using the Laplace correction had been shown to improve the CPEs produced by 
PETs [Bauer and Kohavi, 1999; Provost et al., 1998; Provost & Domingos, 2000; Per-
lich et al., 2001]. 

As models are learned from more data, performance improves typically as a learning 
curve; BOOTSTRAP-LV aims to obtain comparable performance with fewer labeled data 
(recall figure 1). To evaluate the predictive quality of the CPE models induced by 
BOOTSTRAP-LV it would be desirable to compare against the true class probability values, 
for example, computing the mean absolute error with respect to the actual probabili-
ties. However, these data sets contain only class membership information; the true 
class probabilities are unknown. Instead, we compare the probabilities assigned by the 

                                                             
3 Probability estimation trees are easy to build, fast computationally, robust across data sets, 
comprehensible to human experts, and produce surprisingly good probability-based rankings 
[Provost & Domingos, 2000; Perlich et al., 2001]. 
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model induced with BOOTSTRAP-LV at each phase with those assigned by a “best” esti-
mator, BE , as surrogates to the true probabilities, where BE  is induced from the entire 
set of available training examples ULL ∪  (where the labels of all examples are known 
to us). In particular, we induce BE  using bagged PETs, which have shown to produce 
superior probability estimates compared to individual PETs [Bauer and Kohavi, 1999; 
Provost et al., 1998; Provost & Domingos, 2000; Perlich et al., 2001]. We then calculate 
the mean absolute error, denoted BMAE (Best-estimate Mean Absolute Error), for an 
estimator E with respect to BE 's estimation. BMAE is given by 

N

xpxp
BMAE

N

i iEiEB∑=
−

= 1
)()( , where )( iE xp

B
 is the estimated probability given by BE ; 

)( iE xp is the probability estimated by E , and N  is the number of (test) examples 
examined.  

We compare the performance of BOOTSTRAP-LV with a method, denoted RANDOM, 
where estimators are induced with the same inducer and the same training-set size, but 
for which examples are sampled at random. We compare across different sizes of the 
labeled set L. In order not have very large sample sizes, M, for large data sets and 
very small ones for small data sets, we applied different numbers of sampling phases 
for different data sets, varying between 10 and 30; for a given data set at each phase 
the same number of examples was added to L. Results are averaged over 10 random, 
three-way partitions of a data set into an initial labeled set, an unlabeled set, and a test 
set against which the estimators are evaluated.  For control, the same partitions were 
used by both RANDOM and BOOTSTRAP-LV.  

The banana curve in Figure 4 shows the relative performance for the Car data set. 
As shown in Figure 4, the error of the estimator induced with BOOTSTRAP-LV decreases 
faster initially, exhibiting lower error for fewer examples. This demonstrates that ex-
amples actively added to the labeled set are more informative (on average), allowing 
the inducer to construct a better estimator for a certain number of training examples. 
Note that for visibility the algorithms’ performances with the initial labeled set (for 
which all algorithms perform identically) are not shown. 

Evaluations of active learning algorithms often present only the initial part of the 
learning curve to demonstrate the efficacy of the algorithm. We summarize the com-
parative performance of the competing algorithms instead across the entire leaning 
curve. In particular, the objective of BOOTSTRAP-LV is to enable learning with fewer 
examples in order to obtain a certain level of CPE accuracy. For each data set we 
calculate a set of measures pertaining to the saving obtained with BOOTSTRAP-LV in 
terms of the number of examples that did not need to be labeled when using BOOT-

STRAP-LV instead of RANDOM. The number of examples saved by BOOTSTRAP-LV for a 
certain performance level is demonstrated in Figure 4. For each sampling phase of the 
algorithm we calculate the difference in the number of examples needed by BOOT-

STRAP-LV to obtain the exhibited error level and the number needed by RANDOM to ob-
tain the same error level. We calculate the average saving across all sampling phases, 
referred to as “average saving,” as well as the saving as a percentage of the number of 
examples needed by RANDOM (i.e., the percentage of examples saved if BOOTSTRAP-LV is 
used instead of RANDOM), referred to as “average relative saving.” For instance, in the 
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Car domain (Figure 4) the average saving is 155 examples and the average relative 
saving is 23.3% of the examples needed by RANDOM 

Because of the natural banana shape of the learning curves, even for the ideal case 
the performance of estimators induced from any two samples cannot be considerably 
different at the final sampling phases, as most of the available examples have been 
used by both sampling methods and therefore the samples obtained by the methods 
become increasingly similar. An average across all phases provides an indication of 
whether BOOTSTRAP-LV produces superior estimations. However, it is even more telling 
to examine the improvement at the “fat” part of the banana (where the benefit of ac-
tive learning is concentrated). To allow a stable assessment, instead of presenting the 
saving exhibited by BOOTSTRAP-LV in the single, best sampling phase, we present the 
average saving of the top 20% of the sampling phases. We call this “top-20% saving.” 
We also present the top-20% saving as a percentage of the examples needed 
by RANDOM, referred to as “top-20% relative saving.” For instance, in the Car domain 
the top-20% saving is 281 examples or 35.4% of the examples needed by RANDOM. We 
also present the percentage of the sampling phases in which a saving was obtained, 
that is, where RANDOM needed more examples to obtain the error level exhibited 
by BOOTSTRAP-LV. We refer to this as the percentage of phases with savings.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: Learning behavior of BOOTSTRAP-LV and RANDOM for the Car data set 
 
 
Finally, for each data set we also present the error reduction achieved by BOOT-

STRAP-LV with respect to RANDOM for the same number of training examples. This also 
is demonstrated in Figure 4. We calculate the average error reduction for the 20% of 
the phases in which the largest error reduction is observed, and we refer to the latter 
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as the top-20% error reduction. For the Car domain the top-20% error reduction is 
31.3%.  

 
 
 

4.2 Results: Bootstrap-LV versus Random Sampling 

For some data sets BOOTSTRAP-LV exhibits even more dramatic results than those pre-
sented for the Car data set above; Figure 5 shows results for the Pendigits data set 
(the most impressive “win”). BOOTSTRAP-LV achieves its almost minimal level of error at 
about 4000 examples. RANDOM requires more than 9300 examples to obtain this error 
level. It is important to note that an active learning algorithm’s performance is particu-
larly interesting in the initial sampling phases demonstrating the performance that can 
be obtained for a relatively small portion of the data and therefore a small labeling 
cost. Similarly to the results presented in Figure 4, in the initial phases the error exhib-
ited by the model induced from BOOTSTRAP-LV’s selection of training examples is re-
duced substantially faster than when examples are sampled randomly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: CPE learning curves for the Pendigits data set. BOOTSTRAP-LV accelerates 

error reduction considerably in the initial sampling phases.  
 
 
For 5 of the 20 data sets, BOOTSTRAP-LV did not succeed in accelerating learning 

much or at all, as is shown for the Weather data set in Figure 6. Note that the accu-
racy was comparable to that obtained with random sampling: neither curve consis-
tently resides above the other. This is discussed further below. 
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Table 1 presents a summary of our results for all the data sets. The second column 
shows the percentage of phases with savings. The third and fourth columns show the 
top-20% relative saving and the top-20% saving (respectively). The fifth and sixth 
columns of Table 1 show the average relative saving and the average saving across all 
sampling phases by applying BOOTSTRAP-LV. The seventh Column presents the top-20% 
error reduction.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 6: CPE learning curves for the Weather data set where Bootstrap-lv does not 

provide improvement in CPE 
 

In summarizing these results, to be conservative we regard the two methods to be 
comparable if the percent of phases with saving is 50% ± 15%. Thus our first condi-
tion for BOOTSTRAP-LV to be deemed superior is that it exhibits superior performance in 
at least 65% of the phases examined. In addition, in order for BOOTSTRAP-LV to be supe-
rior we require that the average relative saving be at least 5% or higher (and symmetri-
cally for RANDOM to be superior the average percentage gain must be –5% or lower). 
As can be seen in Table 1 (in bold), in 15 out of the 20 data sets BOOTSTRAP-LV exhib-
ited superior performance. Particularly, in all but one of these data sets the percentage 
of phases with savings is 75% or above. In 13 of those the top-20% relative saving 
was 30% or more, and in 9 data sets BOOTSTRAP-LV used 50% or less of the number of 
examples needed by RANDOM to achieve the same accuracy level. For the Sick-
euthyroid data set, for example, BOOTSTRAP-LV gradually improves until it is saving 
more than 70% of the examples (i.e., needing fewer than 30% of the examples re-
quired by RANDOM to obtain the same level of accuracy). Since the latter results pertain 
to the average improvement obtained for the top-20% phases, the maximal savings are 
even greater.   
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 Table 1: Improvement in examples needed and improvement in error 

using BOOTSTRAP-LV versus RANDOM  

Data set 
 

 
 

Phases with 
savings (%) 

Top-20% 
relative 
saving 

(%) 

Top-
20% 

saving 
(#) 

 

Avg. 
relative 
saving 
(%) 

 

Avg. 
saving 

(#) 
 
 

Top-20% 
relative error 
reduction (%) 

 
  abalone 92.5 76.9 1152 34.9 574 10.1 

 adult  96 30.2 585 17.8 302 6.6 
 breast cancer-w 100 51.6 110 23.8 44 9.3 
 car  89.6 35.4 281 23.3 155 31.3 
 coding1  80 47.1 475 16.2 228 2.5 
 connect-4  100 75.4 1939 45.5 984 9.5 
 contraceptive  93.7 42.3 129 18.4 55 5.7 
 german*  57.1 46.5 113 5.8 7 5.9 
 hypothyroid  100 69.0 1233 64.6 705 41.1 
 kr-vs-kp  100 27.1 57 18.1 37 25.5 
 letter-a** 72.4 24.8 529 14.5 229 10.4 

 letter-vowel+ 50 12.8 429 2.1 121 3.4 
 move1  65 68.4 75 17.2 23 3.9 
 ocr1  93.7 42.9 168 24.5 83 21.7 
 optdigits  94.4 50.0 762 24.5 412 32.6 
 pendigits  100 68.6 5352 61.0 3773 29.9 
 sick-euthyroid  93.1 70.2 924 45.2 600 26.2 
 solar-flare  64.2 41.5 58 13.5 25 6.3 
 weather 41.6 35.9 438 -10.4 -46 1.7 
 yeast  75 58.7 159 23.6 79 4.9 

* German credit database 
** letter-recognition, letter a 
+ letter-recognition, vowels 

 
The measures pertaining to the number of examples saved and the error reduction 

complement each other and can provide interesting insight. For instance, the number 
of examples saved can help evaluate the “difficulty” of error reduction, as reflected 
by the number of examples required by RANDOM to obtain such reduction. For exam-
ple, although the top-20% relative error reduction for Connect-4 is less than 10%, 
Table 1 shows that RANDOM needs 984 additional examples on average to obtain the 
same improvement.  

For a single data set (Weather) BOOTSTRAP-LV exhibited a negative average saving. 
However, the percentage of phases with savings, showing that BOOTSTRAP-LV uses 
fewer examples in 41% of phases examined, and Figure 6, both indicate that the two 
methods indeed exhibit comparable learning curves for this data set.  

An examination of the learning curves for the data sets in which BOOTSTRAP-LV 
exhibits insignificant or no improvement reveals that training examples chosen at ran-
dom seem to contribute to error reduction at an almost constant rate. As shown for 
the Weather data set in Figure 6 and for the data sets in Figure 7, the learning curves 
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Weather data set in Figure 6 and for the data sets in Figure 7, the learning curves for 
all these data sets but one (letter-vowel) have an atypical shape, where additional ex-
amples bring an almost constant reduction in error, rather than the expected decreas-
ing marginal error reduction. This may indicate that training examples are equally 
informative regardless of what or how many examples have been already used for 
training. An intelligent selection of training examples, therefore, is not likely to im-
prove learning, and will produce results comparable to those obtained with random 
selection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Learning curves for data sets where BOOTSTRAP-LV and RANDOM show 
comparable performance 

 

4.3 Experiments with bagged-PETs  

 In order to verify that BOOTSTRAP-LV is effective not solely with PETs, we also ex-
perimented with a different CPE learner. Bagged-PETs creates an ensemble of bagged 
[Brieman, 1996] trees, where each tree is induced from a different bootstrap [Efron 
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and Tibshirani, 1993] sample. The trees are used to estimate the class probability of an 
instance by averaging the CPEs of the individual PETs in the ensemble. Bagged-PETs 
are substantially more complex than simple PETs, but have been shown generally to 
produce superior CPEs compared to simple PETs [Bauer and Kohavi, 1999; Provost 
et al., 1998; Provost & Domingos, 2000; Perlich et al., 2001].  

BOOTSTRAP-LV’s performance for bagged-PETs concurs with the results obtained for 
individual PETs. Particularly, for 15 of the data sets BOOTSTRAP-LV exhibited a percent-
age of phases with savings of more than 65% (in 13 of those the percentage of phases 
with savings is more than 75%). The top-20% relative saving was 25% or greater in 11 
of those data sets. Only in two data sets is the percentage of phases with savings less 
than 40%.  

Figure 8 shows a comparison between BOOTSTRAP-LV and RANDOM for simple PETs 
and for bagged-PETs. The overall error exhibited by the bagged-PETs is lower than 
for the simple PETs, and for both models BOOTSTRAP-LV achieves its lowest error with 
considerably fewer examples than are required for RANDOM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: CPE learning curves for the Hypothyroid data set showing the performance 
of BOOTSTRAP-LV and RANDOM with bagged PETs and with simple PETs.  

4.4  Other Evaluation Criteria 

We also evaluated BOOTSTRAP-LV using alternative performance measures: the mean 
squared error measure used by Bauer and Kohavi [1999], as well as the area under the 
ROC curve (denoted AUC) [Bradley 1997], which specifically evaluates ranking accu-
racy. The results for these measures agree with those obtained with BMAE. For ex-
ample, BOOTSTRAP-LV generally leads to fatter ROC curves with fewer examples. Figure 
9 presents learning curves of both measures for the Car, Pendigits and Hypothyroid 
data sets, whose learning curves using BMAE were presented earlier.  
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Figure 9: Learning curves for Area Under the ROC Curve and MSE, comparing BOOT-

STRAP-LV and RANDOM 
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4.5 Comparisons with Uncertainty Sampling   

We now compare BOOTSTRAP-LV with an active learning algorithm previously shown 
to improve classification accuracy; improved classification accuracy may also result 
from improved class probability estimation error. The comparison shows that focusing 
on improving CPEs indeed adds value, and also provides interesting insight into the 
properties of the algorithms.  
 For the comparison we selected the well-known UNCERTAINTY SAMPLING algorithm 
[Lewis and Gale, 1994], proposed for the active learning of binary classifiers. Our 
choice was based on the generality of the algorithm, allowing it to be applied with an 
arbitrary modeling scheme (that produces CPEs) and an arbitrary data set. In addition, 
UNCERTAINTY SAMPLING focuses on identifying training examples and does not change 
the classifier architecture. In contrast, some active learning algorithms result in an 
ensemble of classifiers [Abe and Mamitsuka, 1998] [Iyegar et. al]. Comparing these to 
active learning for single classifiers (with active or random sampling) confounds the 
effects of active learning and producing ensembles.4 UNCERTAINTY SAMPLING allows us 
to compare the selection mechanism of the two algorithms over a wide range of do-
mains. We present a summary of the comparison results in Table 2, where all the 
measures are the same as in Table 1, except that the baseline comparison is UNCER-

TAINTY SAMPLING rather than RANDOM. 
BOOTSTRAP-LV exhibits markedly superior performance compared to UNCERTAINTY SAM-

PLING. Particularly, BOOTSTRAP-LV is superior for 13 of the data sets (bold), and for 6 
data sets the methods exhibit comparable performance, where savings were exhibited 
in 50% to 60% of the phases. UNCERTAINTY SAMPLING exhibits superior performance for 
one data set, Solar-flare, for which it produces better probability estimations (in the 
prior comparison for this data set BOOTSTRAP-LV was not considerably better than RAN-

DOM).  
 Several factors contribute to the weak performance of UNCERTAINTY SAMPLING for 

CPE compared to BOOTSTRAP-LV. To understand them, recall the differences between 
UNCERTAINTY SAMPLING and BOOTSTRAP-LV: the effectiveness score each algorithm assigns 
to potential training examples and the mechanisms they employ to sample/select ex-
amples for labeling. Consider the latter first. Because it uses direct selection, UNCER-

TAINTY SAMPLING does not account for the potential relevance of a training example for 
improving the estimation of other examples in the space. It therefore is susceptible to 
selecting examples with little contribution to the average error across the example 
space. This may degrade its performance, particularly compared to random sampling. 
Second, its effectiveness score causes UNCERTAINTY SAMPLING to prefer examples whose 
CPE is close to 0.5. Thus examples whose true class probability is close to 0.5 and 
that are captured correctly by the model (hence their CPE is close to 0.5 as well) are 
                                                             
4 Ensembles usually improve learning curves even with random selection. 
 
 
 
 



Saar-Tsechansky & Provost 

20 

more likely to be selected; yet they provide little or no new information for learning. 
Similarly, UNCERTAINTY SAMPLING is less likely to select examples whose CPEs are close 
to either 1 or 0, even when these estimations are erroneous. Note that because UNCER-

TAINTY SAMPLING was designed for classification, this is reasonable. A CPE that is on the 
“correct” side of the decision boundary is sufficient to make a correct classification, 
even though it may exhibit a large estimation error. Hence, this policy is likely to be 
productive for selecting examples to improve classification accuracy, but will deny 
information important for the learner to improve the model’s CPEs.  

 
 

Table 2:  Improvement in number of training examples required to achieve a certain accuracy 
level and improvement in error for a given number of training examples using 
BOOTSTRAP-LV versus UNCERTAINTY SAMPLING  

 
Data set 
 

 
 

Phases with 
savings (%) 

Top-20% 
relative 
saving 

(%) 

Top-20% 
saving 

(#) 
 

Avg. relative 
saving 
(%) 

 

Avg. saving 
(#) 

 
 

Top-20% 
relative error 
reduction (%) 

 abalone 50.00 61.09 801 17.63 102 14.11 

adult 69.23 35.03 284 9.56 69 11.13 

breast cancer-w 55.56 49.37 144 10.90 15 20.20 

car  62.50 50.46 68 9.95 6 36.30 

coding1  93.75 63.25 1027 31.77 686 6.74 

connect-4  89.47 85.52 3230 43.89 1958 54.02 

contraceptive  50.00 54.87 126 11.76 21 10.01 

german 81.25 48.14 146 24.74 69 8.12 

hypothyroid  71.43 62.30 307 17.10 85 62.72 

kr-vs-kp  94.74 57.71 144 33.90 90 60.43 

letter-a 85.00 44.34 771 15.50 395 21.29 

letter-vowel 100.00 81.27 14210 63.80 11463 44.97 

move1  100.00 62.89 247 39.96 194 16.29 

ocr1  100.00 51.90 256 35.86 146 34.30 

optdigits  100.00 44.13 1359 26.08 570 34.91 

pendigits  95.00 60.85 1636 27.45 996 38.30 

sick-euthyroid  100.00 84.12 1692 59.13 1093 40.51 

solar-flare  0.00 -2.98 -17 -16.66 -69 -1.64 

weather 56.25 35.06 351 6.32 3 1.98 

yeast  53.33 40.38 121 7.74 3 6.03 

 
 
 
 



Active Sampling for Class Probability Estimation and Ranking 

21 

Note that when CPEs are extreme but on the “correct side” of the decision bound-
ary, an effort to select examples to improve CPE may undermine an improvement in 
classification accuracy.  This may be inferred from Friedman’s analysis of classification 
error [Freidman, 1997]. In particular, binary classification error is minimized if the 
class most likely to occur is predicted. The probability that due to erroneous CPE the 
predicted class ŷ  is not the most likely class, denoted Ly , is given by  

∫∫ ∞−

∞
≥+<=≠

2/1

2/1
ˆ)ˆ()2/1(ˆ)ˆ()2/1()ˆ( fdfpfIfdfpfIyyP L  

where I(A)= 1 , if A is true, and I(A)=0 otherwise.   Assuming that )ˆ( fp  is approxi-
mated with a standard normal distribution. This probability then is given by: 













 −
−Φ=≠

f

fE
fsignyyP L ˆvar

2/1ˆ
)2/1()ˆ(  

where Φ  is the upper tail area of the standard normal distribution, and E denotes a 
statistical expectation.5 Given a certain estimation variance, when the true class prob-
ability f and the expected probability estimation, fEˆ , are on the same “side” of the 
decision boundary, the farther fEˆ is from 0.5, the more the probability of a classifica-
tion error is reduced, because it is less probable for the estimated class probability to 
be on the “wrong” side of the decision boundary. 

Therefore, for an active learning algorithm aiming to improve classification accu-
racy, it may not always be beneficial to improve CPEs. For instance, consider a true 
class probability of 0.6 and a mean estimation of 0.8. An attempt to alter the procedure 
to reduce the mean estimation to 0.6 increases the likelihood of an estimation that is 
below 0.5, particularly when the estimation variance is large, thus increasing the likeli-
hood of a classification error. 

4.6 The Effect of Weight Sampling 

We argued earlier for using weight sampling to reduce generalization error.  Particu-
larly, we argued for its ability to account for an example’s potential for reducing the 
error of other examples in the example space. Figure 8 shows for the Pendigits data 
set the error obtained with weight sampling (viz., using BOOTSTRAP-LV), BOOTSTRAP-LV 
using direct selection instead (with the same effectiveness score), and random sam-
pling.  For readability we present the first 10 samples. As can be seen in Figure 8, in 
the initial and most critical sampling phases for active learning, weight sampling results 
in lower error compared to direct selection and to random sampling. This phenome-
non can be seen for most of our data sets.  

The superiority of BOOTSTRAP-LV over random sampling demonstrates that the 
weights assigned to examples in BOOTSTRAP-LV, and which underlie the sampling proc-
ess, provide useful information for selecting more informative training examples. The 

                                                             
5 Note that with respect to an active leaning algorithm the estimation procedure whose vari-
ance and expectation appear in the formulation above also incorporates the choice of training 
examples. 
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models induced when these weights are ignored and examples are sampled at random 
(i.e., all weights are equal) are inferior to those induced when the assigned weights are 
incorporated to direct the sampling process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Learning curves for Weight-sampling, Direct Selection with BOOTSTRAP-LV’s 

effectiveness score, and RANDOM  
 
 
Additionally, weight sampling also is important because direct selection often pro-

vides results inferior to BOOTSTRAP-LV. As discussed in section 2, we argue that weight 
sampling is important in order to select examples more likely to affect other examples 
in the space, and to avoid selecting training examples that although not well captured 
by the model (and hence their estimation may be improved) will not provide informa-
tion about (many) other examples in the space—and therefore are not likely to reduce 
the generalization error significantly. These considerations may result in worse error 
reduction for Direct Selection, as observed in the comparison to BOOTSTRAP-LV. Appar-
ently, choosing examples based on the potential of reducing the error of a single ex-
ample, as some methods do, is not sufficient. It is important to consider the effect of 
each training example on the general population of examples in the space. 

4.6.1 Improving Uncertainty Sampling for CPE 

To demonstrate the effect weight sampling has on identifying informative examples, 
we propose an improvement to UNCERTAINTY SAMPLING by incorporating weights which 
reflect the UNCERTAINTY SAMPLING rationale (for its effectiveness score) and then to 
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weight sample examples according to their weights. We will show how the perform-
ance of this algorithm improves CPE and compare it to BOOTSTRAP-LV.  
 Since UNCERTAINTY SAMPLING selects examples whose CPE is close to 0.5, we assign 
to each example a weight that reflects this distance. In particular, at each sampling 

phase s, the weight assigned to example ix  is given by ( )
R

p
xW i

is

−−
=

5.05.0
)( , where 

R is a normalization factor such that W is a distribution. The probability of an example 
being sampled increases the closer its CPE is to 0.5.  The algorithm denoted WEIGHTED 

UNCERTAINTY SAMPLING (WUS), is described in Figure 9 below. 
 
 
Input: an initial labeled set L, an unlabeled set UL, an inducer I, 
a stopping criterion, and an integer M specifying the number of actively selected ex-
amples in each phase. 
1 While stopping criterion not met    
     /* perform next phase: */ 
2   Apply inducer I to L  

3     For each example { ULxx ii ∈| } assign weight ( )
R

p
xW i

is

−−
=

5.05.0
)(  

4 Sample from the probability distribution 
sW , a subset S of M examples from 

UL without replacement  
5   Remove S from UL, label examples in S, and add them to L 
6  end for 
Output: estimator E induced with I from L 

Figure 9: The WEIGHTED UNCERTAINTY SAMPLING Algorithm 
 
 
 Comparing the new WUS algorithm with BOOTSTRAP-LV for CPE we see that WUS is 
much more competitive with BOOTSTRAP-LV than UNCERTAINTY SAMPLING is. A summary of 
the results is presented in Table 3. BOOTSTRAP-LV outperforms WUS for 8 data sets (in 
bold), BOOTSTRAP-LV and WUS are comparable for 10 data sets and WUS is superior in 
two (italicized). In comparison BOOTSTRAP-LV provides superior CPEs compared to 
UNCERTAINTY SAMPLING for 14 out of 20 data sets. For six data sets in which UNCERTAINTY 

SAMPLING is inferior to BOOTSTRAP-LV, WUS exhibits comparable performance to that of 
BOOTSTRAP-LV. Overall BOOTSTRAP-LV remains superior, yet the new WEIGHTED UNCER-

TAINTY SAMPLING algorithm exhibits improved performance compared to UNCERTAINTY 

SAMPLING. 
Figure 10 shows CPE learning curves for BOOTSTRAP-LV, UNCERTAINTY SAMPLING and 

WUS for the Connect-4 data set. Whereas UNCERTAINTY SAMPLING is inferior to BOOT-

STRAP-LV for the Connect-4 data set, WUS’s performance is comparable to that of BOOT-

STRAP-LV. We assert that this can be attributed primarily to WUS accounting for a 
broader set of considerations when selecting examples, particularly WUS’s considera-
tion of the potential error reduction effect an example may have on other examples in 
the space. 
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Figure 11 shows learning curves of the three algorithms for the sick-euthyroid data 
set, where similarly, WUS’s performance is considerably better than that of UNCER-

TAINTY SAMPLING, but the CPE generalization error of BOOTSTRAP-LV still is better than 
that obtained with WUS. The improved performance of BOOTSTRAP-LV in 8 data sets 
demonstrates that the weights assigned by BOOTSTRAP-LV better support the sampling 
mechanism in identifying informative examples to improve CPE. As we discussed in 
section 4.2, weights assigned to examples in WUS may not always be adequate to im-
prove CPEs. Particularly, the focus on selecting examples whose CPE is closer to 0.5 
and avoiding examples whose CPE is closer to either 0 or 1 sometimes hinders the 
reduction of CPE generalization error.  
 
Table 3: Improvement in examples needed and improvement in error using 

BOOTSTRAP-LV versus WEIGHTED UNCERTAINTY SAMPLING 
Data set 
 

 
 

Phases with 
savings (%) 

Top-20% 
relative saving 

(%) 

Top-
20% 

saving 
(#) 

Avg relative 
saving 
(%) 

 

Avg saving 
(#) 

 
 

Top-20% 
relative error 
reduction (%) 

 abalone 57.1 46.30 577 7.97 62 3.57 
adult  76 14.07 414 4.99 123 2.71 
breast cancer-w 44.44 18.75 44 0.10 -9 6.86 
car  92.85 17.62 136 9.74 67 14.08 
coding1  87.5 28.33 671 16.55 379 2.77 
connect-4  47.36 18.11 413 2.10 27 3.07 
contraceptive  33.33 14.15 58 -2.51 -5 3.19 
german 68.75 43.01 133 17.24 43 6.66 
hypothyroid  100 81.83 1782 65.41 1260 62.08 
kr-vs-kp  31.57 3.77 5 -1.34 -5 3.84 
letter-a 30 13.30 693 -7.23 -583 7.26 
letter-vowel 46.66 10.73 765 0.32 -24 3.44 
move1  88.88 26.73 138 13.45 62 8.11 
ocr1  62.5 13.74 66 2.68 16 11.20 
optdigits  64.28 20.40 721 8.32 229 12.14 
pendigits  90 53.40 4064 36.39 2468 22.85 
sick-euthyroid 100 53.61 859 41.33 537 17.54 
solar-flare 0 2.46 -19 -16.79 -56 -9.11 
Weather 52.63 17.80 328 0.35 45 1.50 
yeast  73.33 41.79 189 16.59 64 5.03 
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Figure 10: An example where WUS is superior to UNCERTAINTY SAMPLING and achieves 

performance comparable to that of BOOTSTRAP-LV 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 11: BOOTSTRAP-LV remains superior but WUS shows significant improvements 

compared to UNCERTAINTY SAMPLING 
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 The above results suggest that given an informative effectiveness score, weight 
sampling indeed provides important additional information, improving the selection of 
informative training examples. Given the performance of the two algorithms, the ef-
fectiveness score computed in BOOTSTRAP-LV is superior to the score assigned to exam-
ples by WUS, yet the effectiveness score in WUS is informative. As we discussed 
earlier in the paper, by preferring examples whose CPE is close to 0.5 WUS identifies 
examples whose class is uncertain; however, such uncertainty apparently also implies 
some uncertainty regarding CPE and can benefit from gaining more relevant evidence. 
Yet BOOTSTRAP-LV produces better results because WUS may fail to identify all CPE 
uncertainties, particularly when these uncertainties do not imply class uncertainty. In 
addition, as we mentioned above, a CPE that is close to 0.5 does not necessarily imply 
CPE uncertainty when the true CPE is also close to 0.5 and is correctly estimated by 
the model. 

Our results with WUS further suggest that algorithms for improving classification 
accuracy can capitalize on weight sampling. For example, WUS may also exhibit im-
proved performance compared to UNCERTAINTY SAMPLING for classification accuracy. 
Similarly, other effectiveness scores proposed to identify examples to increase classi-
fication accuracy, such as entropy, and that do not incorporate additional measures to 
capture the effect of a training example on other examples in the space are likely to 
benefit from weight sampling.  

6  Limitations 
The advantages gained by BOOTSTRAP-LV come with computational cost. At each 

phase of the algorithmk models are induced from bootstrap samples. If n  is the num-
ber of training examples, the cost of generating each bootstrap sample is )(nkO ; for an 
arbitrary modeling scheme whose computational complexity of inducing a model 
fromn  examples is )(nC , the added complexity from inducing these k models is 

)(nkC . In order to compute the weights for weight sampling, the model is applied to 
estimate the class probability for all examples in UL . Let the average complexity of 
applying the model for a particular input example be A , which depends on the type 
of model. For each phase, BOOTSTRAP-LV subsequently samples M examples fromUL , a 
procedure whose generic complexity is ( )MMO log + UL , which constitutes the cost 
of sorting the list of selected random numbers and of scanning UL  for the corre-
sponding examples. Therefore the computation cost at each phase is 

[ ])()( nCnOk + + ( ) ( )MMOULA log1 +⋅+ , where )(nC  and A are dependent on the 
modeling scheme used.  

Given that the number of examples sampled in each phase, M, is relatively small, 
the dominant computational components are )(nC , the cost of generating a model 
(which must be done k times), and A the cost of applying a model, which must be 
done for all of UL . As mentioned earlier, for a very large unlabeled set, a sample 
from UL  can be used instead. In addition, because of the typical shape of the learn-
ing curve, beyond a certain training-set size the marginal error reduction is insignifi-
cant, whether active learning or random sampling is employed. Thus, intelligent 



Active Sampling for Class Probability Estimation and Ranking 

27 

selection of examples for learning is critical only in the early part of the curve (where 
n  is small). If the n  remains relatively small, multiple model induction from bootstrap 
samples does not constitute a considerable computational toll.  

Moreover, BOOTSTRAP-LV provides an appropriate solution whenever labeling costs 
are more important than computational costs, such as when the primary concern is to 
obtain accurate CPE or ranking with minimal costly labeling.  

BOOTSTRAP-LV also does not address computational concerns explicitly, as do Lewis 
and Catlett [Lewis and Catlett, 1994]. However, while UNCERTAINTY SAMPLING is simpler 
computationally, its performance is significantly inferior to that of BOOTSTRAP-LV and in 
the initial sampling phases is often inferior to random sampling as well. BOOTSTRAP-LV’s 
performance also surpasses the performance of WEIGHTED UNCERTAINTY SAMPLING. Yet, 
since WEIGHTED UNCERTAINTY SAMPLING also incorporates a CPE uncertainty measure 
and is computationally simpler it may be considered for active learning of CPEs when 
computational concerns are particularly critical.  

Lastly, BOOTSTRAP-LV relies on detecting variance in CPE to infer what examples are 
useful for obtaining more accurate estimation. Its performance may be hampered, 
therefore, when a low-variance model such as logistic regression is used for learning.  

7  Conclusions  

BOOTSTRAP-LV was designed to use fewer labeled training data to produce accurate 
class probability estimates. The algorithm addresses two key components of active 
learning: an effectiveness score and a selection procedure, which complement each 
other to identify particularly informative examples for learning class probability esti-
mates. BOOTSTRAP-LV is domain independent and is not restricted to a particular learning 
algorithm.  

An empirical evaluation of the approach shows that it performs well, indeed using 
fewer training data. The evaluation encompasses a wide range of benchmark domains 
providing evidence for the general efficacy of the algorithm. In particular, the results 
show how the information provided by the effectiveness scores improves upon ran-
dom sampling (i.e., when all weights are equal).  They also show that BOOTSTRAP-LV 
outperforms an existing active learning method, UNCERTAINTY SAMPLING. We investigate 
the properties of the algorithms to explain these results. For example, we demonstrate 
how both the weights assigned to potential training examples and the weight sampling 
procedure combine to produce superior CPEs.   

Lastly, we use the results of this investigation to propose yet another active learning 
algorithm, WEIGHTED UNCERTAINTY SAMPLING, which assigns effectiveness scores reflect-
ing the rationale of UNCERTAINTY SAMPLING’s effectiveness score, but which in addition, 
employs the scores to weight sample examples for training (as does BOOTSTRAP-LV). A 
comparison with BOOTSTRAP-LV reveals that BOOTSTRAP-LV still is superior for improving 
CPEs, demonstrating the value of BOOTSTRAP-LV’s effectiveness score, but also demon-
strates the advantages conferred by weight sampling. The improvement over direct 
selection suggests the application of weight sampling with other effectiveness scores 
proposed in the literature for the active learning of classifiers.  



Saar-Tsechansky & Provost 

28 

Making decisions in cost-sensitive environments often takes a decision-theoretic 
approach to evaluating alternatives, requiring the estimation of probabilities of events 
or classes in order to assess alternative decisions.  In such environments labeling 
costs often also must be taken into account.  We have shown that active sampling can 
be effective for reducing the cost of labeling necessary to build accurate models for 
class-probability estimation and ranking.   
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