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Abstract. In many knowledge discovery applications the data mining step is fol-
lowed by further data acquisition. New data may consist of new instances and/or
new features for the old instances. When new features are to be added an ac-
quisition policy can help decide what features have to be acquired based on their
predictive capability and the cost of acquisition. This can be posed as a feature se-
lection problem where the feature values are not known in advance. We propose a
technique to actively sample the feature values with the ultimate goal of choosing
between alternative candidate features with minimum sampling cost. Our algo-
rithm is based on extracting candidate features in a “region” of the instance space
where the feature value is likely to alter our knowledge the most. An experimental
evaluation on a standard database shows that it is possible outperform a random
subsampling policy in terms of the accuracy in feature selection.

1 Introduction

Data mining is mainly concerned with data analysis and the related step
of preprocessing. Usually it is assumed that the data are given in advance
and their quality and size are parameters beyond the learner’s control.
The goal of the mining process is the development of an accurate predic-
tive model that will aid in future decision making.

Sometimes the amount and the quality of data are insufficient to per-
form accurate induction. In these cases the data mining task fails. Taking
the perspective of knowledge discovery, the mining process can be con-
ceived not as a linear sequence of steps but as a never ending loop [15, 7,
11]. After an analysis step that produces a rough model a further step of
data collection can be arranged to obtain a more accurate model.

Viewing the mining process as an iteration of data collection and data
analysis steps, the objective at each step becomes twofold: a descrip-
tive/predictive model and an acquisition policy. A new decision support
system has to be developed whose objective is the planning of the data
acquisition campaign. The two concerns of a data acquisition plan are



1) what instances to focus on and 2) what features have to be taken into
account.

This paper aims to deal with the acquisition policy, restricted to fea-
ture extraction (or measurement). This work is motivated by a research
project (SMAP) in the domain of agriculture dealing with the Apple Pro-
liferation disease in apple trees1. The scenario [3, 9, 8] is the following:
biologists monitor a distributed collection of apple trees affected by the
disease; the goal is to characterize the conditions for infection spreading.
An archive is arranged with a finite set of records each describing a sin-
gle apple tree. The monitored set contains both infected and not infected
trees. All the instances are labeled with respect to this boolean classifi-
cation. Each summer the archive is updated extending each record with
new features. Every year the biologists start by proposing new candidate
features that could be extracted (or measured) and at the end of sum-
mer a new process of analysis is performed taking into account the past
and new data. Since the data collection on the field can be very expen-
sive or time consuming, at the beginning of summer the biologists have
to arrange a data acquisition plan by selecting a subset of the candidate
features that should be really acquired.

Clearly the usual approach in data mining, that regards feature selec-
tion as an a posteriori task performed on a database with a large number
of features that are fully extracted on the set of instances, is inappropriate
in our case. For our problem the feature selection has to be performed in
advance.

We propose a look-ahead strategy for feature selection. Given a sam-
ple of labeled instances ��� ���	��
������������� � � , described with respect to a
set of features � � �����	
������������� � � , the problem is to choose between
two alternative candidate features � and � (In general, there are sev-
eral candidate features to be ranked in order of relevance). The basic
idea is to prescribe a policy that iteratively probes the value of the candi-
date features on instances � �!� . The challenge is to minimize the cost
of feature extraction. If all the candidate features have unit cost, this is
equivalent to minimizing the sum of sizes of the subsamples �#"%$&�
and �(')$%� on which the features � and � are respectively extracted.
At the same time the policy should enable an accurate choice of the most

1 This work is funded by Fondo Progetti PAT, SMAP (Scopazzi del Melo - Apple Proliferation),
art. 9, Legge Provinciale 3/2000, DGP n. 1060 dd. 04/05/01.



relevant feature. Notice that when we conduct an exhaustive sampling,
i.e., *,+.- *0/1-2* , both 3 and 4 are measured on all the instances, we
fall into the traditional framework of feature selection [1, 6].

The goal of this work is to find a trade-off between the assessment of
the feature relevance and the cost incurred in the acquisition of the feature
values. The optimum solution should select the same features that a fully
informed method would select, but with a small subsample of the feature
values.

It is supposed that after the initial data acquisition to determine fea-
ture relevance a full acquisition campaign is performed only for the most
promising features, while the remaining features are discarded. There-
fore the total cost incurred is the sum of the cost of the acquisition driven
by the active feature extraction policy and the cost of full acquisition on
the chosen features. For simplicity we assume a simple cost model where
all the features have equal and unit cost.

After a brief overview of the related literature we sketch an acquisi-
tion policy based on the notion of entropy. An empirical evaluation on a
standard dataset shows that it is possible to outperform the trivial random
subsampling policy.

2 Related Work

Feature selection is a well studied problem in machine learning [1, 6] and
in some respects the problem of active acquisition can be considered as
a feature selection problem. Nevertheless the common premise of tradi-
tional feature selection techniques is the availability of a large amount of
known features whose values are available for the entire set of instances.
The assessment of a feature relevance is usually performed considering
all the values of the given instances.

A recent work [4] proposes a feature selection method based on selec-
tive sampling. The idea is to reduce the computational cost of the feature
selection by reducing the number of sampled data points. Random sam-
pling is replaced by selective sampling that exploits the data distribution
to detect the most informative examples. The detection of closely related
examples is performed using a kd-tree indexing avoiding the necessity of
comparing an example against all others. Although this approach saves
computational effort during the relevance assessment, to build the kd-tree
all the feature values for all the examples need to be known in advance.



Usually the output of a feature selection algorithm is a set of rele-
vant features while a ranking may be more suitable for decision making
support. A recent work that takes this perspective proposes a statistical
approach that produces a rank built on a probe: the decision of keeping
or discarding a given feature is based on the probability that this feature
is ranked higher or lower than the probe [5]. Again, even though this
approach reduces computational complexity because it does not require
the assessment of all the possible rankings, the single step to check the
relative order between two features requires the full knowledge of their
values.

Our work on the active sampling for feature selection is inspired by
earlier work on active learning [2, 14, 10]. Active learning is a frame-
work where the learner has the freedom to select which data points are
added to its training set. The acquisition of new examples is driven by the
knowledge gained by the past acquisition steps with the aim of accurately
learning the concept using as few labeled examples as possible.

We propose an analogous method that selects the next example with
the aim of optimizing a target criterion (reduced error rate on feature
ranking). In contrast to the conventional active learning paradigm, where
the class labels of unlabeled samples are probed to quickly ascertain the
best predictor of the class from the features, our problem is to choose
from a set of class-labeled samples on which candidate features are to be
extracted while still trying to obtain the best predictor for the class.

Although the influence of the cost model on a learning process has
been studied (see the works on cost-sensitive learning [12, 13]), we cur-
rently ignore this aspect for our active sampling approach.

3 Active Sampling of Feature Values

Consider a set of monitored pattern instances (or subjects) 5.687�9;:�<�:�=�>�?�@�@�@ ? A .
Let the random variable corresponding to the class label be denoted byB

taking values in C . We assume that the class labels 7;D�:E<�:�=�>�?�@�@�@ ? A for all
the instances are known. FHGJIH>KG	L	LMLMGJI1N are discrete valued features that
can be extracted on any pattern taking on values in OHGJPQ>RG	LML	L�PSN and re-
spectively. Assume that feature F is extracted for all the subjects and
therefore the feature values 7�TU:�< :V=�>�?�@�@�@ ? A are known. Therefore the esti-
mated probability distribution WX AZYED�GJT�[ on CH\]O is assumed be accurate



(the subscript ^ represents the number of samples used in for estima-
tion). Initially none of the instances have features _a`RbMc	c	c�bJ_1d extracted.
The problem is to rank the candidate features _e`Kb	c	c	cfbJ_1d according to
relevance for classification of the subjects given the feature g minimiz-
ing the cost incurred for feature extraction. Although for the following
discussion we assume g is scalar valued, in general it can be a vector
valued feature.

Our proposed method assumes that all features are nominal valued
and the probability densities in question are multinomial. The feature ex-
traction policy considers each candidate feature separately. Let _ denote
the candidate feature whose relevance we are trying to learn. Whereas
a random feature extraction scheme (denoted hji ) chooses an instance
randomly from all the instances on which _ is not extracted, our active
sampling strategy (denoted hjk ) decides on the most ‘profitable’ subset
(or region) lm of instances for feature extraction. Then the candidate fea-
ture is extracted on a randomly chosen instance from lm .

Let
m,n]oqpsrEtKuwv bJx uyv b{z uyv}| bMc	c	c�b rEtKu�~}� v bJx u�~}� v b{z u�~}� v |R� be the current set

of samples with _ extracted (i.e., with complete descriptions). Then

h�k r m,n b��� rEt bJx |�|�o2rEtJ� bJx �	|��]�a���
is the result of the active policy. The active sampling scheme is an itera-
tive process that proposes at each step the class label and the value taken
by the previous feature of the samples on which it is most beneficial to
extract the candidate feature.

We define the set of all pattern instances � u with
r�t�u bJx u�|#o�rE� b{� | as

region �Q�	� . At every iteration, the active sampling algorithm chooses the
subset lm for the candidate feature extraction as

lm.o�p � u�� � u�� �Q�����R��bJ_ not already extracted on � u��
The next region for feature extraction is chosen as follows. The intu-

ition behind the algorithm is that the most informative region (informa-
tion expressed in terms of entropy) at a given stage is where a sample
most alters our current knowledge.

At iteration � of the active sampling algorithm we have an estimate
(based on

m�n
) of the probability distribution �� n�r�t b�x�b{z |�o �� n�r z � t b�x | ���� rEt bJx |

on
��� � �¢¡

, where £ is the estimator of the conditional probabil-
ity distribution (i.e., �� n¤r z � t b�x |¥o £ r m,n§¦Kt bJx�b{z | ). The subscript � for the
probability estimates makes it explicit that the estimates are based on

m¨n
.



Given the estimate for the conditional densities we can estimate the
entropy in the class given both features which is given by

©«ª¤¬®1¯ °H±J²H³,´2µ�¶
·�¸ ¹º¸ »½¼¾

ª�¬E¿�±JÀ�±{ÁÂ³ÂÃwÄ§Å
¼¾
ª§¬E¿�¯ À�±{ÁÂ³

(1)

Now for every
¬EÆ�±{Çº³SÈ]É.ÊHË

we compute ¼©«ªKÌ�Í�¬�1¯ °H±J²H³ , where

¼©«ªKÌ�Í�¬®1¯ °H±J²H³,´2µ ¶Î�Ï » ¼
¾ ª¤¬�²�´ÑÐ(¯ ¿;±JÀ�³ ¶·�¸ ¹º¸ »SÒ Î

¬�¿;±JÀ�±JÁÓ³ÂÃyÄ¤Å
Ò Î
¬E¿�¯ À�±{ÁÂ³

(2)
where Ò Î

¬�¿;±�À�±{ÁÓ³�´
¼¾�Ô
¬E¿�±JÀ�³�ÕÂ¬ Ö,ª�×Ø¬�ÆS±{Ç(±JÐj³RÙK¿;±�À�±{ÁÓ³

. That is Ò Î is the
estimated probability distribution if we augment the current data with the
sample

¬EÆ�±{Ç(±JÐj³
.

Now the expected benefit of sampling in ÚÜÛ	Ý is given by the benefit
function Þ defined as

Þ ª�¬�ÆS±{Çº³,´%¯ ¼©«ªKÌ�Í�¬®1¯ °H±J²H³ºµß©«ª�¬®]¯ °H±J²�³�¯ (3)

After the benefit function is evaluated for every
¬EÆ�±{Çº³#ÈHÉàÊeË

, the
region with maximum expected benefit is chosen for extracting the next
feature. That is, ¬�¿{á;±�ÀÂá	³0´ argmaxâäã ¸ å�æ Ï ·¤ç¤¹ Þ ª�¬E¿�±JÀ�³Rè

Thus the active decision is based upon the absolute change between
the current estimate of the entropy in the class given the previous fea-
ture and the candidate feature and the expected entropy in the class after
the candidate feature is extracted from a sample in the said region. The
expectation is over the possible values that the candidate feature can as-
sume and the probabilities used in calculation of the expectation are the
current estimates. The algorithm iterates until the candidate feature is ex-
tracted on a specified number of instances denoted é ( é ´�¯ Ö(ê¨¯ , whereÖ,ê

is the final subsample). é is problem dependent and is determined by
the cost constraints (for feature extraction).

In practice the monitored set is finite sized warranting the search for
the most beneficial region with at least one sample on which the candi-
date feature is not extracted. We use a Bayes estimate for the distribution¾ ¬�Á�¯�¿�±JÀ�³ under a Dirichlet prior (independent for each

¬�¿;±�À�³ëÈìÉßÊàË ³
with all parameters set to unity. Due to the independence in the priors



the estimator í is decoupled for each î�ï;ð�ñ�ò implying that ó�ôsî�õ÷ö ï;ðJñ�ò�øùúÓû î�õ�ö�ï�ðJñ�ò for all î�ï;ðJñ�òHüøýî�þSð{ÿºò where ����� is the region whose bene-
fit function is being computed. This fact can be used to show that the
following benefit function is equivalent to the one in Equation 3.

�� û î�þSð{ÿºò,ø ö ù� û	��
 î�)ö���ø þSð�� ø ÿºò�� � û î�)ö��8ø þSð	� ø ÿºò� ù� û���
 î��!ö � ø ÿºò�� � û î��!ö � ø ÿºò�ö ú î��8ø þSð�� ø ÿºò
This allows for a more efficient implementation of the active learning

algorithm. As mentioned earlier our active learning algorithm considers
each candidate feature separately. Therefore the candidate features � and�

are not necessarily extracted on the same subsample of the instances.
After the candidate feature is extracted on the specified number ( � ) of

samples or after the cost budget is exhausted, we can construct a Bayes
maximum a posteriori classifier using the final estimate

ùú�� î�ï;ðJñ�ðJõÓòHøùú�� î�õ÷ö ï;ðJñ�ò ùú�� îEï�ðJñ�ò of the joint distribution. The features are ranked based
upon the error rates of these classifiers.

4 Experimental evaluation

To compare the active feature sampling strategy and the random feature
extraction scheme for feature evaluation we use two performance mea-
sures.

The first is based on the mean square error between the estimated er-
ror rate at a particular sample size and the “true” error rate for a given
feature. For us the true error rate represents the estimated error rate of
the classifier trained after extracting the candidate feature on all  sam-
ples in the training set (denoted ú"! ��#$ ), i,e, the error rate of the classifier
designed using

ùú�� îEï�ðJñ�ð{õÂò (the estimate of the probability densities from
all  samples).

For each of the schemes, a classifier % û'&)(+*-,/. 0 is constructed
after extracting the candidate feature � on a given number ( � ) of sam-
ples (i.e, based upon

ùú1� îEï�ðJñ�ð{õÂò ). Now the error rate of the classifier is
evaluated as

ú ! �2#$ ø/3546�87:9�; < ùú�� î�ñ�ðJõ÷ö=��ø>% û î ñ�ð{õÂòJò@?6A�4CB2B



Therefore at every iteration of the learning scheme we can estimate the
error rate of the resulting classifier to obtain a ranking. However, in real-
ity we cannot extract the candidate feature for all the samples to estimate
the error rates. We can circumvent this problem by obtaining a small
random subsample for testing.

The quantity DFEHG�I E JLKNM�OQP�RS T MUOWV2RSYX[Z�\ is a measure of the correctness
in the estimated error rate for a feature after the given number of samples
were extracted. We compute the error rate of the classifier for several
runs of the learning scheme for the given sample size to compute the
mean square error. For a particular learning scheme and for each feature
the mean square error can be plotted against the sample size.

The second performance measure which is based on the Spearman
rank-order correlation more directly indicates the efficacy of a sampling
scheme for feature ranking and therefore for feature selection. The Spear-
man rank-order correlation coefficient ] between two vectors of scores
for ^ variables is given by

]_Ia` T bdcfe Z^gKh^ Z T ` X
where e is the difference in the ranks of corresponding variables.

For each sample size we compute the error rate (as described above)
for every candidate feature which are then ranked accordingly. The rank-
order correlation between this ranking and the “true” ranking (based onM�OQP�RS for all candidates) is computed and its average value over many
iterations of the learning scheme is plotted against the sample size.

We chose the “mushroom” database from the UCI machine learn-
ing repository for experimentation because it contains a large number
of instances with several nominal features whose relevance to the class
varies widely. The 8124 instances are almost evenly distributed between
2 classes (“edible” and “poisonous”) and there are 22 features extracted
of which feature 11 (“stalk-root”) has several missing values and was
therefore deleted from the database leaving 21 features for each instance.
Feature 5 (“odor”) is the most relevant and feature2 15 (“veil-type”) is the
least relevant for classification. We only use ijIlk2m2m2m randomly chosen
samples for experimentation. We vary the number of samples extractedn

from m through `�m2m for the plots.
2 Feature 16 before deleting the “stalk-root” feature



To compare the performance of the active and the random learning
schemes given previous features we partitioned the 21 features into seven
sets of three. This was done instead of experimenting with all possibleoqp�rs�t combinations for simplicity. Each of these sets was fixed as the pre-
vious feature set u and the remaining v wyxCz features were evaluated
as candidates. The error rates for the classifier trained on each of previous
feature set (i.e, before the candidate feature is extracted on any sample)
is given in Table 1.

Table 1. Error rates in % when the classifier is trained on each set of previous features { .

{-|~}N{6�q�{��[��{d��� (1, 2, 3) (4, 5, 6) (7, 8, 9) (10, 11, 12) (13, 14, 15) (16, 17, 18) (19, 20, 21)
Error rate 30.9 2.3 12.8 17.5 24.7 21.3 11.1

5 Discussion of results

Figure 1 shows the behaviour of the rank-order correlation coefficient (y-
axis) between the vector of error rates estimated after a specific number
of samples (x-axis) are extracted and the true error rates. As mentioned
earlier, true error rate represents the estimated error rate of the classifier
trained on all the samples in the database. The different plots correspond
to different sets of previous feature vectors u indicated on the top of each
subplot. Our active feature extraction strategy converges more quickly
to the correct ranking of the features than the random scheme. Whenu w ����@�L�	��� the difference is not significant. This can be attributed
to the fact that feature 5 individually leads to a very low error rate and
therefore the candidate features have to be extracted on a large number
of samples to be confidently ranked.

For each set of previous features we plotted the mean square dif-
ference between the true error rate and the estimated error rate (y-axis)
after the candidate feature is extracted on a specific number of samples
(x-axis). Figure 2 shows the plot for feature where the active policy prof-
fered the most advantage over the random scheme. The plots indicate that
the active policy can be used to lower the cost for feature evaluation.
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Fig. 1. The plot against sample size of the Spearman rank-order correlation between estimated
error rates and the true error rates. For each sample size the rank-order correlation coefficient is
averaged over 500 runs of the experiment. For each set of previous features only the feature for
which the active policy was most beneficial over the random scheme is shown.
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Fig. 2. The plot of the mean square difference (computed over 500 runs of the experiment) be-
tween estimated error rate and the true error rate. For each set of previous features � only the
feature for which the active policy is most advantageous (based on the area between the curves)
over the random policy is shown.



6 Conclusions and Future Work

In this paper we have dealt with the problem of cost-constrained feature
selection in a knowledge discovery process. An active strategy that se-
lects the instances for feature extraction is proposed to aid in choosing
the most relevant features among a set of candidate features. The choice
is based upon the absolute change between the current estimate of the
entropy in the class before and the predicted entropy after the candidate
feature value acquisition. A ranking is produced over the candidate fea-
tures based on the estimate of the error rate of a classifier trained on a
subsample of the feature values.

We provided empirical evidence on a standard dataset for the domi-
nance of the active sampling scheme over a random policy for subsample
selection for feature evaluation. A deeper analysis should be performed to
derive an active policy with a non-trivial feature acquisition cost model.

The main purpose of this work was to investigate the possibility of ex-
ploiting the active learning approach for feature sampling. The promising
results, although restricted to a specific case study, encourage more study
taking scalability factors into account. Our current method does not scale
to large number of previous features because of the necessity to estimate
full class-conditional distributions (we do not assume any feature inde-
pendence). Moreover the current design of solution is strongly related
to the specific classifier, i.e. the Bayes classifier with class-conditional
multinomial feature distributions. A general solution should be indepen-
dent of the specific classifier and suitable for both nominal and real val-
ued features.
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