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(Standard) Batch Learning Model

Target Function F:
Input?Ï Output

Learner

X1, X2,..,Xt

Learner’s Goal: Minimize Error(H, F) for given t

F(X1), F(X2),..,F(Xt)

Model H

e.g.) PAC-Learning Model[Valiant’84]

Distribution D

δε <>≠≈ })]()([Pr{ xFxHE DxPAC-Learning =
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(Utility-based) Batch Learning Model

Target Function F:˜
Input ?Ï Output

Learner

X1, X2,..,Xt

Learner’s Goal: Minimize Loss(H, F) for given t

F(X1), F(X2),..,F(Xt)

Model H

e.g.) Decision Theoretic Generalization of PAC Learning*… [Haussler’92]

δε <>≈ }))](),(([Pr{ xFxHlE DxGeneralized-PAC-Learning =

*Subsumes cost-matrix formulation of cost-sensitive learning, but not example dependent cost formulation …

Distribution D
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Active Learning Model

Target Function F:˜
Input ?Ï Output

Active Learner

X1, X2,..,Xt

Active Learner’s Goal: Minimize err(H, F) for given t
(Minimize t for given err(H,F))

F(X1), F(X2),..,F(Xt)

Model H

e.g.) MAT-learning model [Angluin’88]:
Minimize t to achieve err(H,F)=0, assuming that F belongs to given class

Learner chooses
example

Learner is given
its label/value
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(Utility-based) Active Learning Model

Target Function F:˜
Input ?Ï Output

Active Learner

X1, X2,..,Xt

Active Learner’s Goal: Minimize cost(H, F) +S�cost(Xi) for given t

F(X1), F(X2),..,F(Xt)

Model H

c.f.) Active feature value acquisition [Melville et al ’04, ’05]*
*Not subsumed since acquisition of individual feature values is considered
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On-line Learning Model

Target Function F:˜
Input ?Ï Output

On-line Learner

X1, X2,..,Xt

On-line Learner’s Goal: Minimize Cum. Error S�err(F(Xi),F(Xi))

F(X1), F(X2),..,F(Xt)

e.g.) Mistake Bound Model [Littlestone ’88], Expert Model [Cesa-Bianchi et al 97]
Minimize the worst-case

F(X1), F(X2),..,F(Xt)^ ^ ^

^

Adversary

|)()(ˆ|
1

i

t

i
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−
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(Utility-based) On-line Learning Model

Target Function F:˜
Input ?Ï Output

On-line Learner

X1, X2,..,Xt

On-line Learner’s Goal: MinimizeS• Loss(F(Xi),F(Xi))

F(X1), F(X2),..,F(Xt)

e.g.) On-line loss bound model [Yamanishi ’91]

F(X1), F(X2),..,F(Xt)^ ^ ^

^

Adversary
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On-line Active Learning
(Associative Reinforcement Learning*)

Environment F:ø
Action?/Reward

Actor
(Learner)

Actor’s Goal: Maximize Cumulative Rewards SŠF(Xi)
(F(xi) can incorporate cost(xi): this is already a utility-based model !)

e.g.) Bandit Problem [BF’85], Associative Reinforcement Learning [Kaelbling’94]
Apple Tasting [Helmbold et al’92], Lob-Pass [Abe&Takeuchi’93]
Linear Function Evaluation [Long 97, Abe&Long 99, ABL’03]

*Also known as “Reinforcement Learning with Immediate Rewards”

X1, X2,..,Xt F(X1), F(X2),..,F(Xt)

Actor Chooses one
of given alternatives:

Actor receives
Corresponding reward

Xi,1,Xi,2,..,Xi,n
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Environment F:u

State, Action?ÜState

Reinforcement Learning

Environment R:�
State, Action
?| Reward

Actor
(Learner)

Actor’s Goal: Maximize Cumulative RewardsSáRi (or Sá?�iRi)

Markov Decision Processes

A1, A2,..,At
R1, R2,..,Rt

Actor Chooses
one action

Actor receives
Corresponding reward

S1, S2,..,St

Actor moves
to another state

e.g.) Reinforcement Learning for Active Model Selection [KG’05]
Pruning improves cost-sensitive learning [B-Z,D’02]
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Example Dependent Cost-Sensitive Learning
[ZE’01,ZLA’03]

Cost Distribution
Input ?ž(Label ?žCost)

Learner

X1, X2,..,Xt

Policy h: X ?�Y

PAC Cost-sensitive Learning… [ZLA’03]

δε <>−≠⋅ ∈≈ })}({min)])(([Pr{ ,, fCostyxhIcE HfDcyx

Distribution D

tCCC





,...,, 21

•A key property of this model is that the learner must learn the utility-function from data
•Distributional modeling has let to simple but effective method with theoretical guarantee
•The full cost knowledge model works for 2-class or cost-matrix formulations, but…

Instance Distribution
?�Input

http://www.go2pdf.com


One Benefit (Cost-Sensitive) Learning
[Zadrozny’03,’05]

Cost Distribution
Input, Label ?~ Cost

Learner Policy h: X ?GY

Distribution D

),(),...,,(),,( 2211 tt CyCyCy
Sampling Policy
Input ?žLabeltxxx ,...,, 21

Instance Distribution
?þInput

*Key property is that the learner gets to observe the utility corresponding only to
the action (option/decision) it took…
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One Benefit Cost-Sensitive Learning
[Zadrozny’03,’05]

Cost Distribution
Input, Label ?~ Cost

Learner Policy h: X ?GY

Distribution D

),(),...,,(),,( 2211 tt CyCyCy

*Key property is that the learner gets to observe the utility corresponding only to
the action (option/decision) it took…
*Another key property is that sampling policy and learned policy differ

Learned Policy
h: Input ?žLabeltxxx ,...,, 21

Instance Distribution
?¾Input

Learner’s Goal: Minimize Cost(h) w.r.t. D?•h
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An Example On-line Active Learning Model:
Linear Probabilistic Concept Evaluation

– Select one from a number of alternatives
– Success probability =Linear Function(Attributes)
– Performance Evaluation for Learner/Selector

Actor
(JLearner/Selector)J

(1,1,0,1)

(0,0,1,0)

(0,1,0,1)

(1,0,0,1)Alternative1J

Alternative20

Alternative4a

Alternative3”

(1,0,0,1)Altlernative1Š

Linear Function
FY(x)=YSYwi xi

Success OR Failure

Selection

Reward

E(Regret)=ãEã(ãOptimal Rewards)ã-ãEã(ãCumulative Rewards)ã

Actor’s Goal: Maximize Total Rewards!õ

At each trial

[Abe and Long ’99]

If you knew function F
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An Example On-line Learning/Selection Method
[AL’99]

• Strategy Ap
– Learning:j Widrow-Hoff Update with Step Size aj =j 1/t
– Selection:

• Explore: Select J (?ðI*) with prob. ?ð1/|F(I*)-F(J)|
• Exploit: Otherwise select I* with max estimated success

probability

1/2

^ ^

http://www.go2pdf.com


• Upper Bound on Expected Regret
– Learning Strategy A

• Expected Regret =/O(t n )

• Lower Bound on Expected Regret
– Expected Regret of any Learner=+O+(t n )3/4 1/4

3/4 1/2

Bounds on Worst Case Expected Regrets

Expected regret of Strategy A is asymptotically optimal as function of t!�

Performance Analysis

Theorem [AL’99]
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One-Benefit Cost-Sensitive Learning
[Zadrozny ’05] as On-line Active Learning

On-line Actor
(”Learner/Selector)”

(1,1,0,2)

(1,1,0,3)

(1,1,0,4)

(1,1,0,1)Alternative 1
(1,1,0,3)Alternative 3

Linear Function
F²(x)=² S² wi xi

Benefit

Selection

Reward

Actor’s Goal: Maximize Total Benefits!õ

At each trial

“One-Benefit Cost-Sensitive Learning” [Z’05] could be
thought of as a “batch” version of on-line active learning

• Each alternative consists of the common x-vector and a
variable y-label

• Alternative Vectors:
(X·³Y1), (X·³Y2), (X·³Y3),…, (X·³Yk)

Alternative 2

Alternative 3

Alternative 4
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Environment F:Þ

?HState x

One-Benefit (Cost-Sensitive) Learning [Z’05] as
Batch Random-Transition Reinforcement Learning*

Environment R:~
State x, Action y

?èReward r

Actor
(Policy:x ?zy)

On-line Learner’s Goal: Maximize Cumulative Rewards S”ri

*Called “Policy Mining” in Zadrozny’s thesis [’03]

y1, y2,..,yt
r1, r2,..,rt

Actor chooses
one action y

depending on state x

Actor receives
corresponding reward

x1, x2,..,xt

Batch Learner’s Goal: Find policy F s.t. expected reward ED[R(x,F(x))]
is maximized, given data generated w.r.t. sampling policy P(y|x)
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Transition T:
State, Action?ˆState

On-line v.s. Batch Reinforcement Learning

Environment R:ž
State, Action
?�Reward

Actor
(Policy F:S ?º A)

On-line learner’s Goal: Maximize Cumulative Rewards ScRi

A1, A2,..,At
R1, R2,..,Rt

Actor receives
corresponding reward

S1, S2,..,St

Actor moves
to another state

Batch Learner’s Goal: Find policy F s.t. expected reward ET[R(s,F(s))]
is maximized, given data generated w.r.t. sampling policy P(a|s)

Actor chooses
one action a

depending on state s
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Internet Banner Ad Targeting
[LNKAK’98,AN’98]

• Learn Fit Between Ads and Keywords/Pages
• Display a Toyota Ad on keyword ‘drive’
• Display a Disney Ad on animation page
• The Goal is to maximize the total click-through’s

Search
Keyword
‘drive’

Car Ad
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A Solution with On-line Active Learning

Ad Targeting
Engine

(ŠLearner/Selector)Š

(1,1,0,1)

(0,0,1,0)

(0,1,0,1)

(1,0,0,1)Ad 1�

Ad 2ð

Ad 4p

Ad 3Š

(1,0,0,1)Ad 1%

Linear Function
F�(x)=�S�wi xi

Click OR Non-Click

Selection

Reward

Ad Targeter’s Goal: Maximize Total Click-throughs!�

At each trial

• Represent Click-through Rates as Linear Function of
Ad/User Attribute Vectors

• Ad/User Attribute Vector =
(A1·ÈU1, A2·ÈU1, A1·ÈU2, A2·ÈU2)

• Key issue is the Exploration Exploitation Trade-Off !
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A Simpler Solution Using
Gittins Index for Bandit Problem

#clicks
#non-clicks

0 1 2 3 4 5 6

0. 84 0.91 0.94 0.95 0.96 0.96 0.97
0.53 0.71 0.78 0.82 0.85 0.87 0.88
0.37 0.56 0.66 0.71 0.75 0.78 0.80
0.28 0.46 0.56 0.62 0.67 0.71 0.74
0.22 0.39 0.48 0.55 0.60 0.64 0.68
0.17 0.33 0.43 0.49 0.55 0.59 0.62
0.15 0.29 0.38 0.45 0.50 0.54 0.58

0
á

1
�

2
Š

3
í

4
Ï

5
¨

6
‚

ßá a�

(á1à+à?àRà(àaà+à1à?àßà?àpà)à)à+à

a™

aà+àßà aÂ+ÂßÂ

ß£
?áRà(àaà?àßà+à1à?àpà)à

pÂ

1Ì?Ì ?Ì
=

discounted cumulative reward of p = discounted cumulative reward of (a2,ß2)
G(a2,ß2) = p such that

i.e.

Gittins Index Empirical Results [AN’98]
(LP with Gittins modification)
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§ Model CRM process using "Markov Decision Process"(MDP)
§ Customer is in some "state" (his/her attributes) at any point in time
§ Enterprise's action will move customer into another state
§ Enterprise's goal is to take sequence of actions to guide customer's path to

maximize customer's life time value
§ Produce optimized targeting rules as a policy

§ If customer is in state "s", then take marketing action "a"
§ Customer state “s” represented by customer attribute vector computed from data

§ Batch Reinforcement Learning applied on past data collected by sampling policy

Bargain
Hunter

Repeater

Loyal
Customer

Valuable
Customer

One Timer

Repeater

Defector Defector

Repeater

Loyal
Customer

Potentially
Valuable

Campaign A

Campaign B

Campaign C

Campaign ETypical CRM Process

Campaign D

Maximizing Customer Lifetime Value by Batch
Reinforcement Learning [PAZ…’02,AVAS’04]
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Bias Correction in Evaluation
• Key Challenge is the Bias Correction due

to Batch Learning:
– Need to evaluate new policy using data

collected by existing (sampling) policy
• Solution: Use bias-corrected estimation of

“policy advantage” using data collected by
sampling policy

• Definition of policy advantage:
– (Discrete Time) Advantage

– Policy Advantage

• Estimating policy advantage with bias
corrected sampling

Apá(s,a):= Qpá (s,a) – maxa’ Qpá (s,a’)

As~pž(p?’):= Epá [Ea~pž’ [Apá(s,a)]]

As~pp(p² ’):= Epá [(p² ’(a|s)/ p² (a|s)) [Apá(s,a)]]

Policy Advantage

-4

-2

0

2

4

6

8

10

1 2 3 4 5

Learning iterations

A
dv

an
ta

ge
(p

er
ce

nt
ag

e)

Policy advantage over actual policy
of Saks Fifth Avenue data
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This rule suggests that the enterprise wait until it has seen
enough of the customer’s behavior to judge that he or she is not
interested in a given product group … i.e. it invests in the
customer until it knows it is not worth it
If

then don’t mail
• Interpretation: If a customer has spent significantly in the past and yet

has not spent much in the current division (product group) then don’t
mail

An Example Rule (that addresses
Exploration-Exploitation Trade-off)
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Discussions

• Machine Learning Paradigms vs. Utility-based Data Mining
– Practical considerations lead to refinement and extension of existing

learning models (Details matter !)

• Utility-based Data Mining as
– “On-line” Reinforcement Learning and special cases thereof ?
– “Batch” Reinforcement Learning and special cases thereof?

• Issues
– “On-line”: Exploration v.s. Exploitation Trade-off
– “Batch”: Bias Correction
– Combining the two (!)
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