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ABSTRACT

Evaluating classifier performance in a cost-sensitive setting
is straightforward if the operating conditions (misclassifi-
cation costs and class distributions) are fixed and known.
When this is not the case, evaluation requires a method
of visualizing classifier performance across the full range of
possible operating conditions. This paper reviews the classic
technique for classifier performance visualization — the ROC
curve — and argues that it is inadequate for the needs of re-
searchers and practitioners in several important respects. It
then shows that a different way of visualizing classifier per-
formance — the cost curve introduced by Drummond and
Holte at KDD’2000 — overcomes these deficiencies. A soft-
ware package supporting all the cost curve analysis described
in this paper is available by contacting the first author.

1. INTRODUCTION

In this paper!, our focus is on the visualization of a clas-
sifier’s performance. This is one of the attractive features
of ROC analysis — the tradeoff between false positive rate
and true positive rate can been seen directly. A good visu-
alization of classifier performance allows an experimenter to
immediately see how well a classifier performs and to com-
pare two classifiers — to see when, and by how much, one
classifier outperforms others.

We restrict the discussion to classification problems in
which there are only two classes. The main point of this pa-
per is to show that, even in this restricted case, ROC curves
are not a good visualization of classifier performance. In
particular, they do not allow any of the following important
experimental questions to be answered visually:

e what is classifier C’s performance (expected cost) given
specific misclassification costs and class probabilities?

e for what misclassification costs and class probabilities
does classifier C outperform the trivial classifiers?

! An early version of this paper appeared in [4].
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e for what misclassification costs and class probabilities
does classifier C1 outperform classifier C27

e what is the difference in performance between classifier
C1 and classifier C27

e what is the average of performance results from several
independent evaluations of classifier C (e.g. the results
of 5-fold cross-validation)?

e what is the 90% confidence interval for classifier C’s
performance?

e what is the significance (if any) of the difference be-
tween the performance of classifier C1 and the perfor-
mance of classifier C27

The paper is organized around these questions. After a
brief review of essential background material, there is a sec-
tion devoted to each of these questions.

2. BACKGROUND

For 2-class classification problems ROC space is a two-
dimensional plot with true positive rate (I'P) on the y-axis
and false positive rate (F'P) on the x-axis. A single confu-
sion matrix thus produces a single point in ROC space. An
ROC curve is formed from a sequence of such points, includ-
ing (0,0) and (1,1), connected by line segments. The method
used to generate the sequence of points for a given classifier
(or learning algorithm) depends on the classifier. For exam-
ple, with Naive Bayes [5, 9] an ROC curve is produced by
varying its threshold parameter.

An ROC curve implicitly conveys information about per-
formance across all possible combinations of misclassifica-
tion costs and class distributions?. We use the term “oper-
ating point” to refer to a specific combination of misclassi-
fication costs and class distributions.

One point in ROC space dominates another if it has a
higher true positive rate and a lower false positive rate. If
point A dominates point B, A will have a lower expected
cost than B for all operating points. One set of points A is
dominated by another B when each point in A is dominated
by some point B and no point in B is dominated by a point
in A.

2«All” distributions and costs with certain standard restric-
tions. For class distributions “all” means any prior prob-
abilities for the classes while keeping the class-conditional
probabilities, or likelihoods, constant [16]. For costs “all”
means all combinations of costs such that a misclassifica-
tion is more costly than a correct classification.



Cost curves were introduced in [2]. Performance (ex-
pected cost normalized to be between 0 and 1) is plotted
on the y-axis. Operating points are plotted on the x-axis
after being normalized to be between 0 and 1 by combining
the parameters defining an operating point in the following
way:

p(+)C(—|+) (1)
p(+)C(=[+) +p(=)C(+|-)

where C(-|+)is the cost of misclassifying a positive example
as negative, C(+|-)is the cost of misclassifying a negative
example as positive, p(+) is the probability of a positive
example, and p(—) = 1 — p(+). The motivation for this
PC definition, and cost curves more generally, originates in
the simple situation when misclassification costs are equal.
In this case PC(+) = p(+) and the y-axis becomes error
rate, so the cost curve plots how error rate varies a function
of the prevalence of positive examples. The PC definition
generalizes this idea to the case when when misclassification
costs are not equal. The PC formula is intimately tied to
the definition of the slope of a line in ROC space, which
plays a key role in ROC analysis. The x-axis of cost space
is “slope in ROC space” normalized to be between 0 and 1
instead of being between 0 and infinity (historically this is
how cost curves were invented).

PC(+) =
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Figure 1: Two ROC points

There is a point/line duality between ROC space and cost
space, meaning that a point in ROC space is represented by
a line in cost space, a line in ROC space is represented by a
point in cost space, and vice versa. A classifier represented
by the point (FP,TP) in ROC space is a line in cost space
that has y = FP when x =0 and y =1 — TP when z = 1.
The set of points defining an ROC curve become a set of
lines in cost space For example, Figure 1 shows the ROC
points for two classifiers for the Japanese credit dataset from
the UCI repository [1]: the dashed point is for the decision
stump produced by 1R [7], the solid point is for the decision
tree produced by C4.5 [12]. Each point becomes a line in
cost space, as shown in Figure 2.

Given the cost lines for a set of classifiers, a cost curve is
created by deciding which classifier to use for every possible
operating point. If, for each operating point, the classifier is
chosen that minimizes normalized expected cost, the result-
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Figure 2: Corresponding Cost Lines

ing cost curve is the lower envelope of the given cost lines,
the dual of the ROC convex hull.

3. VISUALIZING PERFORMANCE

ROC analysis does not directly commit to any particu-
lar measure of performance. This is sometimes considered
an advantageous feature of ROC curves. For example, Van
Rijsbergen [15] quotes Swets [13] who argues that this is
useful as it measures “discrimination power independent of
any ‘acceptable criterion’ employed”. Provost and Fawcett
substantiate this argument by showing that ROC dominance
implies superior performance for a variety of commonly-used
performance measures [10]. The ROC representation allows
an experimenter to see quickly if one classifier dominates
another and therefore, using the convex hull, to identify po-
tentially optimal classifiers visually without committing to
a specific performance measure.

For example, Figure 3 shows a set of ROC points for C4.5
on the sonar data set from the UCI collection. Each point
corresponds to a different setting of the classification thresh-
old parameter. Even though ROC analysis does not commit
to any particular measure of performance it is still possible
to read certain performance-related information from this
figure. For example, certain ROC points are obviously dom-
inated by others, and from the visually obvious fact that all
the ROC points are well above the chance line, the diagonal
joining (0,0) to (1,1), one can easily see that the decision
trees perform well overall.

Being independent of any particular performance measure
can be a disadvantage when one has a particular perfor-
mance measure in mind. ROC curves do not visually depict
the quantitative performance of a classifier or the difference
in performance between two classifiers.

The solid lines in Figure 4 are the the cost lines for the
classifiers whose ROC points are shown in Figure 3. Each
cost line in Figure 4 corresponds to one of the individual
ROC points in Figure 3. All the conclusions drawn from
the ROC plot, and more, can be made from a quick visual
inspection of this cost curve plot. The lower envelope is
visually obvious as is the fact that C4.5’s decision tree will
never have a normalized expected cost higher than 25%.
One can also see that there are many choices of classification
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Figure 3: ROC Points for C4.5 on the Sonar dataset
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Figure 4: Cost Lines Corresponding to Figure 3

threshold that result in near-optimal normalized expected
cost when PC(+) is near 0.5.

4. COMPARING A CLASSIFIER TO THE
TRIVIAL CLASSIFIERS

In an ROC diagram points (0,0) and (1,1) represent the
trivial classifiers: (0,0) represents classifying all examples as
negative, and (1,1) represents classifying all points as posi-
tive. The cost lines for these classifiers are the dashed lines
shown in Figure 4. The dashed line from (0,0) to (0.5,0.5)
is the cost line for the classifier that classifies all examples
as negative, and the diagonal line from (0.5,0.5) to (1,0) is
the cost line for the classifier that classifies all examples as

positive.

The operating range of a classifier is the set of operating
points where it outperforms the trivial classifiers. A classi-
fier should not be used outside its operating range, since one
can obtain superior performance by assigning all examples
to a single class.

The operating range of a classifier cannot be seen readily
in an ROC curve. It is defined by the slopes of the lines tan-
gent to the ROC curve and passing through (0,0) and (1,1).
By contrast, a classifier’s operating range can be immedi-
ately read off of a cost curve: it is defined by the PC values
where the cost curve intersects the diagonal lines represent-
ing the trivial classifiers. For example, in Figure 4 it can
be seen immediately that all the classifiers being considered
perform worse than a trivial classifier when PC < 0.15 or
PC > 0.85.

5. CHOOSING BETWEEN CLASSIFIERS

If the ROC curves for two classifiers cross, each classifier
is better than the other for a certain range of operating
points. Identifying this range visually is not easy in an ROC
diagram and perhaps surprisingly the crossover point of the
ROC curves has little to do with the range. Consider the
ROC curves for two classifiers, the dotted and dashed curves
of Figure 5. The solid line is the isoperformance line tangent
to the two ROC curves. Its slope represents the operating
point at which the two classifiers have equal performance.
For operating points corresponding to steeper slopes, the
classifier with the dotted ROC curve performs better than
the classifier with the dashed ROC curve. The opposite is
true for operating points corresponding to shallower slopes.
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Figure 5: ROC Space Crossover

Figure 6 shows the cost curves corresponding to the ROC
curves in Figure 5. It can immediately be seen that the dot-
ted line has a lower expected cost and therefore outperforms
the dashed line when PC < 0.5 and vice versa.
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Figure 6: Corresponding Cost Space Crossover

6. COMPARING PERFORMANCE

The ROC curves in Figure 7 show the performance of
the decision trees built on the Sonar dataset by C4.5 with
different splitting criteria [3]. The ROC curves are close
together and somewhat tangled, making visual analysis dif-
ficult. These are typical of the comparative experiments in
machine learning. While it is clear that the DKM splitting
criterion dominates the others, there is no indication of how
much better DKM is than them or how much their perfor-
mances differ from one another.

Figure 8 shows the corresponding cost curves. The tan-
gled ROC curves are now cleanly separated, and the vertical
distance between two cost curves directly indicates the dif-
ference in their performance. Although DKM dominates,
it can now be seen that its performance differs little from
ENT’s over a fairly broad range, 0.3 < PC(+) < 0.6. These
two splitting criteria have similar operating ranges and are
clearly superior to the other two. It can also be clearly
seen that GINI dominates ACC over most of their operat-
ing range.

7. AVERAGING MULTIPLE CURVES

Each solid line in Figure 9 is an ROC curve based on
a single non-trivial classifier. One is based on the point
(FP;, TPy) = (0.04,0.4), the other is based on the point
(FP2,TP;) = (0.3,0.8). We assume that they are the re-
sult of learning or testing from different random samples,
or some other cause of random fluctuation in performance,
and therefore their average can be used as an estimate of
expected performance.

There is no universally agreed-upon method of averaging
ROC curves. Swets and Pickett [14] suggest two methods,
pooling and “averaging”, and Provost et al. [11] propose an
alternative averaging method. The Provost et al. method
is to regard y, here the true positive rate, as a function of
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Figure 7: ROC Curves for Various C4.5 Splitting
Criteria on the Sonar Dataset
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Figure 8: Cost Curves Corresponding to Figure 7

x, here the false positive rate, and to compute the average
y value for each z value. We call this method “vertical
averaging”. In Figure 9 the vertical average is one of the
dotted lines in between the two ROC curves. The other
dotted line is the “horizontal” average - the average false
positive rate (z) for each different true positive rate (y).
An important shortcoming of all these methods of averag-
ing ROC curves is that the performance (error rate, or cost)
of the average curve is not the average performance of the
two given curves. The easiest way to see this is to consider
the isoperformance line that connects the central vertices of
the two ROC curves in Figure 9. The vertical and horizontal
averages do not touch this line, they are well below it.
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Figure 9: Vertical and Horizontal Averages of two
ROC curves
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Figure 10: Average Cost Curves

Now consider what vertical averaging would do in cost
space, where each z value is an operating point and y is
performance (normalized expected cost). The vertical aver-
age of two cost curves is the average performance at each
operating point — precisely what we wish to estimate. The
solid lines in Figure 10 are the ROC curves from Figure 9
translated into cost curve lower envelopes. The expected
performance based on these two cost curves is given by the
bold dotted line.

8. CONFIDENCE INTERVALS ON COSTS

The measure of classifier performance is derived from a

confusion matrix produced from some sample of the data.
As there is likely to be variation between samples, the mea-
sure is, itself, a random variable. So some estimate of its
variance is useful, which usually takes the form of a confi-
dence interval. The most common approach to producing
a confidence interval is to assume that the distribution of
the estimate belongs to, or is closely approximated by, some
parametric family such as Gaussian or Student-t. An alter-
native, data driven, method has become popular in recent
times which does not make any parametric assumptions.
Margineantu and Dietterich [8] described how one such non-
parametric approach called the bootstrap [6] can be used to
generate confidence intervals for predefined cost values. We
use a similar technique, but for the complete range of class
distributions and misclassification costs.

The bootstrap method is based on the idea that new sam-
ples generated from the available data are related to that
data in the same way that the available data relates to the
original population. Thus the variance of an estimate based
on the new samples should be a good approximation to its
true variance. Confidence limits are produced by resampling
from the original matrix to create numerous new confusion
matrices. The exact way bootstrapping is carried out de-
pends on the sampling scheme. We propose a resampling
method analogous to stratified cross validation, in which
the class frequency is guaranteed to be identical in every
sample.

predi
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Figure 11: Binomial Sampling

For example, consider the confusion matrix of Figure 11.
There are 30 instances, 20 of which are positive and 10
negative. The classifier correctly labels 16 out of 20 of
the positive class, but only 6 out of 10 of the negative
class. We fix the row totals at 20 and 10, and treat the two
rows as independent binomial distributions with probabili-
ties P1 = 16/20 = 0.8 and P2 = 4/10 = 0.4, respectively,
of assigning a positive label to an example.

A new matrix is produced by randomly sampling accord-
ing to these two binomial distributions until the number of
positive and negative instances equal the corresponding row
totals. For each new confusion matrix, a dotted line is plot-
ted in Figure 12 representing the new estimate of classifier
performance. For ease of exposition, we generated 100 new
confusion matrices (typically at least 500 are used for an
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Figure 12: 90% Confidence Interval on a Cost Curve

accurate estimate of variance). To find the 90% confidence
limits, if we had values just for one specific x-value, the fifth
lowest and fifth highest value could be found. This process is
repeated for each small increment in the PC(+) value. The
centre bold line in Figure 12 represents the performance of
the classifier based on the original confusion matrix. The
other two bold lines are the upper and lower confidence lim-
its for this classifier.

9. TESTING IF PERFORMANCE DIFFER-
ENCES ARE SIGNIFICANT

The difference in performance of two classifiers is statis-
tically significant if the confidence interval around the dif-
ference does not contain zero. The method presented in the
previous section can be extended to do this, by resampling
the confusion matrices of the two classifiers simultaneously,
taking into account the correlation between the two classi-
fiers. A single resampling thus produces a pair of confusion
matrices, one for each classifier, and therefore two lines in
cost space. However, instead of plotting the two lines, we
plot the difference between the two lines. We can repeat
this process a large number of times to get a large number
of lines and then, as above, extract a 90% confidence interval
from this set of lines. This is the confidence interval around
the difference between the classifiers’ performances.

The thick continuous line at the bottom of Figure 13 rep-
resents the mean difference between performance of the two
classifiers (which are shown in the figure as bold dashed
lines). The shaded area represents the confidence interval
of the difference, calculated as just described. As the differ-
ence can range from —1 to +1 the y-axis has been extended.
Here we see that the confidence interval does not contain
zero, so the difference between the classifiers is statistically
significant. Figure 14 shows two classifiers with the same in-
dividual confusion matrices but with their classifications less
correlated. Notably, the confidence interval is much wider
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Figure 13: Confidence Interval for the Difference,
High Correlation

0.5

0.4

0.3

0.2

Normalised Expected Cost

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability Cost Function

Figure 14: Confidence Interval for the Difference,
Low Correlation

and includes zero, so the difference is not statistically signif-
icant. Thus cost curves give a nice visual representation of
the difference in expected cost between two classifiers across
the full range of misclassification costs and class frequen-
cies. The cost curve representation also makes it clear that
performance differences might be significant for some range
of operating points but not others. An example of this is
shown in Figure 15, where the difference is significant only
if PC > 0.7.
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Figure 15: Confidence Interval for the Difference,
Medium Correlation

10. CONCLUSIONS

This paper has demonstrated shortcomings of ROC curves
for visualizing classifier performance, and shown that cost
curves overcome these problems. We do not, however, con-
tend that cost curves are always better than ROC curves.
For example, for visualizing the workforce utilization mea-
sure of performance[10], ROC curves are distinctly superior
to cost curves. But for many common visualization require-
ments, cost curves are by far the best alternative and we rec-
ommend their routine use instead of ROC curves for these
purposes.

A software package supporting all the cost curve analysis
described in this paper is available by contacting the first
author.
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