
All about flow control

Prof. Zhang

March 11, 2014

1 Read Coding Style Guideline

Please go to the class website, find the resource part, click on the “how labs are graded?”
link. Read the guideline, and then follow the “Quick Hints” to fix the indentation of your
lab4.cpp (before you submit the labs).

2 Basics

In order to do something interesting, we need to be able to

• branch off in our code, i.e., execute different codes depending on whether some con-
dition is met or not.

• repeat some codes for a certain number of times, or until some condition becomes
true

C++’s answer to the above two needs are

• if-else statement, if statement, and switch statement

• for loop, while loop, and do-while loop.

3 Branch off

3.1 if-else statements

The basic format (or syntax) or a if-else statement is as follows

if (condition)

yes_statement;

else

no_statement;

1

The semantics (or meaning) of the above statement is

1. first check condition’s value

2. if condition’s value is true, execute yes statement

3. if condition’s value is false, execute no statement

4. execute next statement.

3.2 if statement

The basic format (or syntax) or a if statement is as follows

if (condition)

yes_statement;

The semantics (or meaning) of the above statement is

1. first check condition’s value

2. if condition’s value is true, execute yes statement

3. execute next statement .

3.3 Nested if-else and if statements

Nested if-else and if statements: the yes statement or no statement itself can be a if-else
or if statement. For example:

if (x==1)

if (y==2) //this if-else statement is the yes_statement for the if (x==1)

cout <<"x==1 and y==2\n";

else

cout <<"x==1 and y!=2\n";

else

if (y==3) //this if statement is the no_statement for the if (x==1)

cout <<"x!=1, y==3\n";

Note that the above code is not hard to understand due to the indentation style. Now
compare that with the following:

if (x==1) if (y==2) //this if-else statement is the yes_statement for the if (x==1)

cout <<"x==1 and y==2\n";

else cout <<"x==1 and y!=2\n";

else

if (y==3) //this if statement is the no_statement for the if (x==1)

cout <<"x!=1, y==3\n";

2

Both reads the same to the compiler, but the second one gives everyone a big headache
to figure out. So often the first step to debug your program, or even just to understand it,
is to fix its indentation.

3.4 Multi-way branch

Multi-way branch We often use nested if-else statement to express a multi-way branch,
for example,

if (coin=="quarter")

value=25;

else

if (coin=="dime")

value=10;

else

if (coin=="nickle")

value=5;

else

if (coin=="penny")

value=1;

else

cout <<"Invalid coin name" << coin <<"\n";

A conventional way to format a multi-way branch such as above is follows:

if (coin=="quarter")

value=25;

else if (coin=="dime")

value=10;

else if (coin=="nickle")

value=5;

else if (coin=="penny")

value=1;

else

cout <<"Invalid coin name" << coin <<"\n";

Compare the above code segment with the following (where 5 consecutive if statements
are used):

if (coin=="quarter")

value=25;

if (coin=="dime")

value=10;

3

if (coin=="nickle")

value=5;

if (coin=="penny")

value=1;

if (coin!="quarter" && coin!="dime" && coin!="nickle" && coin!=penny")

cout <<"Invalid coin name" << coin <<"\n";

3.5 Dangling else problem

Dangling else problem is a problem in computer programming in which an optional else
clause in an if(else) statement results in nested conditionals being ambiguous.

if (condition1)

if (condition2)

yes_statement;

else //is this else for the first if, or the second if ?

no_statement;

In C++, the compiler will associate the else with the nearest unmatched if statement.
So in the above example, the else is associated with if condition2. If you want the else to
be associated with the first if condition, do the following:

if (condition1)

{ //use {} to demarcate this if statement

if (condition2)

yes_statement;

}

else

no_statement;

3.6 switch statement

switch statement has the following syntax:

switch (expression)

{

case constant1:

statement11;

...

break;

case constant2:

statement21;

...

4

break;

...

default:

statement31;

...

}

There are some constraints about switch statement:

• The expression that we “switch” on needs to be integetral type, including int, long,
char, bool.

• The switch “case” needs to be constants (named constants or literal constants)

The meaning (or semantics) of the switch statement can be explained in terms of the
equivalent if-else statement:

if (expression==constant1)

{

statemt11;

...

}

else if (expression==constant2)

{

statemnet21;

...

}

...

else {

statement31;

...

}

Note: Pay special attention to the break statements at the end of each cases. As
beginners, use break always. Without break statement, the flow of execution cascade
down to next case, and the case after (if the next case also does not have break statement).

char lettergrade;

...

switch (lettergrade)

{

case ’A’:

cout <<"you got 90-100\n";

5

case ’B’:

cout <<"You are above average\n";

break;

case ’C’:

cout <<"Try harder!\n";

break;

case ’D’:

case ’F’:

cout <<"Danger of failing!\n";

break;

defalut:

cout <<"Invalid grade\n";

}

Here are the outputs of the program depending on lettergrade’s value:

• A: you got 90-100 you are above average

• B: You are above average

• C: try harder!

• D: Danger of failing!

• F: Danger of failing!

• other values: invalid grade

4 Understand and Build Loop

4.1 for loop statement

The basic format (or syntax) or a for loop statement is as follows

for (initialiation; condition; update)

statement_to_repeat;

The semantics (or meaning) of the above statement is

1. first execute initialization

2. condition is checked,

3. if condition is true, executes statement, then update, and then goes back to step 2.

6

4. if condition is false, for loop ends, execution continues from the next statement
(after the for loop statement)

A for loop can be converted to a while loop as follows:

initialization;

while (condition)

{

statement_to_repeat;

update;

}

For example, the following code prints out integers from 0 to 99:

for (int i=0;i<100;i++)

cout << i <<"\n";

First, variable i is declared and initialized to 0 (in the initialization of the loop). As
long as i is less than 100, the loop body prints out i ’s value, and then i is incremented by
1. This continues until i==100.

Note that the above for loop is the most commonly used form. Variable i is called
counter variable, it counts up from 0 to 100 by 1. One can count up, or count down, or by
other increment other than 1.

//this for loop calculate the sum of all even numbers between 0 and 98

sum=0;

for (int i=0;i<100;i=i+2)

sum = sum+i;

Exercises:

• Write a for loop to print out 30 asterisk signs on the same line We can count up:

for (int i=0;i<30;i++)

cout <<"*";

or count donw:

for (int i=30;i>0;i--)

cout <<"*";

• Write a for loop to print power of 2’s, i.e., 20, 21, 22,..., up to 231. We first initilaizes
our power variable that keeps track the current power, and then keeps doubling its
value:

7

int power=1;

for (int i=0;i<32;i++)

{

cout <<"2^" << i <<"= "<<power;

power=power*2;

}

for loop can be nested, for example, the following code prints multiplication table:

for (int i=1;i<10;i++) //we call this outer loop

{

for (int j=1;j<10;j++) //we call this inner loop

cout << " " << i*j << " ";

cout <<"\n";

}

Let’s follow (trace) this loop to see how it works...
Exercises:

• Write a program to print a rectangle made up of asterisks, the length and height of
the rectangle are given by the user. For example, if the length is 5, and the height is
3, the output should be:

• Write a program to print a right triangle made up of asterisks of a given side length.
For example, if the side length is 5, the output should be:

*

**

• Write a program to print a triangle of the following shape with a given side length.
For example, if the side length is 4, the output should be:

*

8

4.2 while loop statement

The basic format (or syntax) or a while loop statement is as follows

while (condition)

statement;

The semantics (or meaning) of the above statement is

1. condition is checked,

2. if condition is true, executes statement, and then goes back to step 1.

3. if condition is false, while loop ends, execution continues from the next statement
(after the loop statement)

The most simple while loop is as follows:

int i=0;

while (true)

{

i++;

cout <<"i=" <<i <<"\n";

}

Exercise

• What will happen when the above while loop is executed?

• How to make the loop ends when i reaches the maximum int value? Use break
statement

// To read any number of values, end with a -1

int num;

while (true)

{

cout <<"Enter next value:";

cin >> num;

if (num==-1)

break;

}

Preferred way to write such as loop is to avoid using break statement. What do you
think are the downsides of using break statement (one or multiple?)?

We prefer to express the loop condition in the while header only, so that it’s easy to
see when the loop continues, as the loop can be very long and complicated.

9

// To read any number of values, end with a -1

int num=0;

while (num!=-1) // as long as value is not -1, continue...

{

cout <<"Enter next value:";

cin >> num;

}

4.3 do-while loop

The do-while loop has the following syntax:

do

statement;

while (condition);

The semantics (or meaning) of the statement is as follows:

1. execute statement first

2. evaluate condition, if it’s true, go back to 1

The difference between while loop and do-while loop is that while loop might iterate
for zero time (if the condition is false the first time), while do-while loop always iterate
the first time.

10

