
CS2 Notes

1. All variables have a lifetime, i.e., they are created at some point in time during the
program’s execution, and deleted/destroyed at a later point in time during the
program’s execution.

• How to tell a variable’s lifetime?

2. For any object variable, a constructor is called at its creation, the destructor is
called at its deletion.

• Which constructor of the class?
• Depends on the parameters (or the lack of) provided:

Rational a; //no-parameter constructor
Rational b(1,3); //constructor with two int parameter
Rational c(3);
Rational d(a); //copy constructor

3. If a class does not define a constructor, then C++ provides a default no-parameter
constructor…

 in which

1. base/parent class’s no-parameter constructor is called first (which in turn
calls its parent class’s no-paramter constructor, …)

2. all member variables’s no-parameter constructors is called

4. If a class does not define a destructor, then C++ provides a default destructor

 in which

 1. all member variables’s destructor are called one by one
 2. call the base class’s destructor (which in turns call the its base class’s destructor).

5. If a class does not provide them, C++ provides default copy constructor, default
assignment operator overload

 which makes a byte-by-byte copy

 Rational d(a); // copy a’s memory byte-by-byte to d

 a=b; //assignment operator is called

6. Reference variables: create a second name (alias) for a variable. (safer, more
user-friendly than pointer!)

* a reference parameter in function: is refering to the actual argument

void swap (int& x, int &y)
{

 int tmp = y;
 y = x;
 x = tmp;

}

 int main()
 {
 int a[2] = {0, 100};
 swap (a[0], a[1]); // on this call, x is referring to a[0], y is referring to a[1]
 }

* int x = 10, y=20;
 int& a = x; //a reference variable has to be initialized at the declaration,
and canot be reassigned. a is referencing x, alias for variable x

 // There is no way to change a to refere some other variable!!!
 a = 100;
 cout <<x<<endl;
 a = y; //What’s being done here?
 cout <<x <<endl;
 a++;
 cout <<x<<“; “ << y<<endl;

 * return reference from a function

 int& func(int i)
 {

 static int a[4]={0,0,0,0};
 return a[i];
 }

 func(0)=10; //as the func return a reference to a variable, we can assign a
value to the variable being returend
 cout <<func(0) <<endl;

7. Most operators can be overloaded as non-member functions and as member
functions, except
 — except <<, >> can only be overloaded as non-member
 — [], = can only be overlaoded as member function

class Rational{
public:
 // overload + as member
 Rational operator+ (const Rational & secOp){
 Rational sum;
 sum.num = num*secOp.den+secOp.num*den;
 sum.den = den*secOp.den;
 return sum;
 }

};

Rational operator- (const Rational & first, const Rational & sec)
{
 …
}

int main()
{

 Rational a(1/3), b(1/2);
 Rational c = a+b; //is same as a.operator+(b);

 Rational d = a - b; // is same as operator- (a, b)
}

