
Pointers and Dynamic Variables

Fall 2018, CS2

1 2

Data, memory

❒ memory address: every byte is identified by a numeric
address in the memory.

❒ a data value requiring multiple bytes are stored
consecutively in memory cells and identified by the
address of the first byte

❒ In program we can:
❒ find amount of memory (num. of bytes) assigned to

a variable or a data type: sizeof(int), sizeof x
❒ find the address of a variable: &x

3

Example

int x, y;

int takes 4 bytes
address of x is the

address of its first
byte…

1000

1004

x

y

4

Pointers Variables (or Pointers)
❒ Pointer variables: a variable that stores

memory address (of another variable)
❒ is used to tell where a variable is stored in memory
❒ Pointers "point" to a variable

❒ Memory addresses can be used to access
variables
❍ Array variable actually stores address of the first element

in array
❍ int a[10]; cout <<a<<endl; cout <<&(a[0])<<endl;

❍ When a variable is used as a call-by-reference  
argument, its address is passed

Declaring Pointers
❒ Pointer variables must be declared to have

a pointer type
❍ Ex: To declare a pointer variable p that can

"point" to a variable of type double: 
 
 double *p;

❍ The asterisk identifies p as a pointer variable

6

Declaring pointer variables
❒ DataType * pointerVariable; //declare a pointerVariable that can be used to

point to DataType variable
 int * p;
 char *cptr;
 DayOfYear * pDate; //pDate is a pointer pointing to DayOfYear obj
 double *q; //no space between * and variable name
• Like other variables, before initialization, p and cptr might contain some arbitrary value
• So, important to initialize:
 int *p=NULL; // assign NULL constant to p, a pointer variable to indicate
 // that p does not point to any valid data
 // internally, NULL is value 0.

Common pitfall:
int *p1, *p2; //p1,p2 are both pointers that point to int
int *p1, p2; //p1 is pointer, but p2 is int
//* only applies to the variable that follows it, p1; not p2

7

pointer to different types

❒ DataType * pointerVariable; //declare a pointerVariable
that can be used to point to DataType variable

 int * p=NULL;
 char *cptr=NULL;
 DayOfYear * pDate=NULL; //pDate is a pointer pointing to

DayOfYear obj
 double *q=NULL; //no space between * and variable name
• Pointers to different types

• have same size, sizeof(int *)==sizeof(double *) //8
• why differentiate them?

• int and double, char, … takes different number of bytes, and
interpret data differently…

“address of” Operator

❒ &variable: yield the address of a variable
❒ can then be assigned to a pointer variable

int v1;
int * p1;

 p1 = &v1; // assign “address of v1” to p1
 //p1 is now a pointer (pointing) to v1
 int a[10];
 assert (a==&(a[0])); //array variable itself stores address

9

Example

int x, y;
int *p1, *p2;

1000

1004

1008

1012

x

y

p1

p2

address

address of x: 140724463361388
address of y: 140724463361384
address of p1:140724463361376
address of p2:140724463361368

address of x0x7ffcbf8f5a8c
address of y0x7ffcbf8f5a88
address of p10x7ffcbf8f5a80
address of p20x7ffcbf8f5a78

name

Typical layout of a program in memory

10

Global variables
static variables

local variables

11

…..
int a()
{
 b();
 c();
 return 0;
}

int b()
{ return 0; }

int c()
{ return 0; }

int main()
{
 a();
 return 0;
}

Stack and StackFrame

12

Example

int x, y;
int *p1, *p2;
x=-42;
y=163;

-42

163

1000

1004

1008

1012

x

y

p1

p2

13

Example

int x, y;
int *p1, *p2;
x=-42;
y=163;
p1=&x;
p2=&y;

-42

163

1000

1004

1000

1004

1008

1012

x

y

p1

p2

dereferencing Operator

❒ *pointerVariable: the variable that pointerVariable
points to
❍ Here the * is dereferencing operator, pointerVariable is

said to be dereferenced
int v1;
int *p1; //this * means p1 is a pointer

 p1 = &v1; // assign “address of v1” to p1
 cout << *p1; //display the int that p1 points to, i.e, v1

Pitfall/reminder: the context is important!
* used between type and name
vs. * before a pointer variable

15

Example int x, y;
int *p1, *p2;
x=-42;
y=163;
p1=&x;
p2=&y;

*p1=17;

//*p1 is another name of for x

-42

163

1000

1004

1000

1004

1008

1012

x

y

p1

p2

17

163

1000

1004

1000

1004

1008

1012

x

y

p1

p2 16

Fundamental pointer operations
& address-of a variable. Its operand is a variable.
 example: int *p; int a=10; p=&a;

* variable that a pointer is pointed to. Its operand is a pointer.
 example: *p=5;

they are used to move back and forth between variables and
pointers to those variables.

int *p;
*p=5; //the variable pointed to by aptr has to be valid

int *p=NULL; <=> int *p; p=NULL;

17

example int x, y;
int *p1, *p2;
x=-42;
y=163;
p1=&x;
p2=&y;
p1=17; / another name of for x*/

p1=p2; /* pointer assignment, now
two pointers point to the same
location*/

17

163

1000

1004

1000

1004

1008

1012

x

y

p1

p2

17

163

1004

1004

1000

1004

1008

1012

x

y

p1

p2 18

example int x, y;
int *p1, *p2;
x=-42;
y=163;
p1=&x;
p2=&y;
p1=17; / another name of for x*/

*p1=*p2; /*value assignment*/

//think of *p1 as another name of the
variable p1 points to.

17

163

1000

1004

1000

1004

1008

1012

x

y

p1

p2

163

163

1000

1004

1000

1004

1008

1012

x

y

p1

p2

19

Usage of pointers
❒ Allow one to refer to a large data structure in a compact way.

❍ Each pointer (or memory address) typically fits in four bytes of memory!

❍ Array: static or dynamic arrays
❒ Different parts of a program can share same data:

passing parameters by reference (passing address between different
functions), or by pointers

❒ One can reserve new memory in a running program: dynamic
memory allocation

❒ Build complicated data structures by linking different data
items

20

Passing parameters by reference using
pointers

Suppose we want to set x (defined in main() function) to zero,
compare the following code:

/*pass by value*/
void SetToZero1 (int var) {
 var=0;
}

/*pass by pointer*/
void SetToZero2(int *ip) {
 *ip=0;
}

int main()
{
 int x=163;
 SetToZero1(x)
 SetToZero2 (&x);
}

21

1631000

1004

1008

1012

x

1631208

1212

var

int main ()
{
 …
 x=163;
 SetToZero(x);
 …
 …
}

void SetToZero (int var) {
 var=0;
}

stack

frame

for main()
in our
computer’s
memory

stack

frame

for
SetToZero1()
in our
computer’s
memory 22

1631000

1004

1008

1012

x

01208

1212

var

int main ()
{
 …
 x=163;
 SetToZero(x);
 …
 …
}

void SetToZero (int var) {
 var=0;
}

stack

frame

stack

frame

23

1631000

1004

1008

1012

x

10001208

1212

ip

int main ()
{

…
x=163;
SetToZero2(&x);
…
…

}

void SetToZero2(int *ip)
{

*ip=0;
}

stack frame
of main()

stack frame of
SetToZero2

24

01000

1004

1008

1012

x

10001208

1212

ip

int main ()
{

…
x=163;
SetToZero(&x);
…
…

}

void SetToZero(int *ip)
{

*ip=0;
}

stack

frame

stack

frame

25

Passing parameters

void SetToZero1 (int var) {
 var=0;
}
SetToZero(x);
/* has no effect on x*/

void SetToZero2(int *ip) {
 *ip=0;
}

SetToZero2(&x);

void SetToZero3 (int & var){
 var = 0;
}

SetToZero3 (x);

SetToZero(x);
var=x;
var=0;

main stack
frame

SetToZero1
stack frame

SetToZero(&x);

ip=&x;//ip points to x
*ip=0;

stack frame SetToZero2
stack frame

SetToZero3(x);

var refers to x
var=0; //x=0

stack frame SetToZero3
stack frame

26

Example
write a program to solve quadratic equation:
 ax^2 + bx + c = 0;

program structure:

input phase: accept values of coefficients from users;

void GetCoefficients(double *pa, double *pb, double *pc);

computation phase: solve the equation based on those coefficients;

 void SolveQuadratic(double a, double b, double c, double *px1, double *px2);

output phase: display the roots of the equation on the screen

 void DisplayRoots(double x1, double x2);

Variable Scopes and Lifetimes
—- a bigger picture about memory used by a program

27

Global Variables

❒ Variables declared outside any function are
global variables
❍ they have “global scope”, i.e., they can be accessed

by the name from all parts of a program —- unless
there is an eclipse!

❍ they comes into being when program starts, and
disappears when program ends ==> static lifetime

❍ We discourage the usage of global variables
❍ too many cooks in the kitchen: everyone can

modify it

Local Variables
❒ Variables declared in a function are local variables

❒ they have “local scope”: they can be accessed using the name from
the function/block

❒ They are typically created when the function is called, and
destroyed when the function call ends ==> automatic lifetime

❒ Local variable with static lifetime?
void some_func()

 {
 static int counter=0; //created at program starts,
 //destroyed when program ends
 counter++;
 cout <<"called " << counter<<" times\n”;
 //…
 }

Dynamic Variables
❒ Programmer/Code can create variables and then destroy

them using operators new and delete
❒ such variables are dynamic variables, their lifetime is dynamic

(decided at running time, based upon running time condition).
They have no name.

❒ e.g.,
int *p1; //declare a pointer variable
p1 = new int; //create a int variable, save its
address in p1

❍ This variable can only be referred by address (as it has no name),
*p1

❍ *p1 can be used any place an integer variable can  
 cin >> *p1;  
 *p1 = *p1 + 7;

Display 9.2  

31

Display 9.3

32

Caution! Pointer Assignments

❒ Some care is required making assignments to  
pointer variables
❍ p1= p3; // changes the location that p1 "points" to 

❍ *p1 = *p3; // changes the value at the location that  
 // p1 "points" to

Basic Memory Management

❒ An area of memory called the freestore/heap
is reserved for dynamic variables
❍ New dynamic variables use memory in the

freestore
❍ If all of the freestore is used, calls to new will fail

❒ Unneeded memory can be recycled
❍ When variables are no longer needed, they need to

be deleted and the memory they used is returned
to the freestore

delete Operator

❒ When dynamic variables are no longer needed,  
delete them to recycle memory to freestore
❍ e.g.,  

 delete p;  
 
memory used by the variable that p pointed to is
back in freestore. p still stores that address.
 *p=10; // Disaster!!!
 p = NULL; //value of p is now NULL

Dangling Pointers

❒ Using delete on a pointer variable destroys the
dynamic variable pointed to

❒ If another pointer variable was pointing to the
dynamic variable, that variable is also undefined

❒ Undefined pointer variables are called 
dangling pointers
❍ Dereferencing a dangling pointer (*p) is usually 

disasterous

Type Definitions

❒ A name can be assigned to a type definition, then
used to declare variables

❒ The keyword typedef is used to define new  
type names
❍ Syntax:

typedef Known_Type_Definition
New_Type_Name;  

• Known_Type_Definition can be any type

Defining Pointer Types
❒ To avoid mistakes using pointers, define a  

pointer type name
❍ Example:

typedef int* IntPtr;

Defines a new type, IntPtr, for pointer variables
containing pointers to int variables

IntPtr p;
is equivalent to
int *p;  

Multiple Declarations Again

❒ Using our new pointer type defined as  
 typedef int* IntPtr;  

 Then, we can prevent this error in pointer
declaration:  
int *P1, P2;//Only P1 is a pointer variable

 with
 

IntPtr P1, P2;
// P1 and P2 are pointer variables

Pointer Reference Parameters

❒ A second advantage in using typedef to  
define a pointer type is seen in parameter lists
❍ Example:

void sample_function(IntPtr&
pointer_var);  
 
 is less confusing than  

void sample_function(int*& pointer_var);

