
Review of Important Topics in
CS1600

 Functions

 Arrays

 C-strings

Array Basics

Arrays

 An array is used to process a collection of data
of the same type

 Examples: A list of names
 A list of temperatures

 Why do we need arrays?

 Imagine keeping track of 5 test scores, or
100, or 1000 in memory
 How would you name all the variables?

 How would you process each of the variables?

Declaring an Array

 An array, named score, containing five
variables of type int can be declared as
 int score[5];

 This is like declaring 5 variables of type int:
 score[0], score[1], … , score[4]

 The value in brackets is called

 A subscript

 An index

The Array Variables

 The variables making up the array are referred to as

 Indexed variables

 Subscripted variables

 Elements of the array

 The number of indexed variables in an array is
the declared size, or size, of the array

 The largest index is one less than the size

 The first index value is zero

 Not all variables are actually being used all the time!

Array Variable Types

 An array can have indexed variables of any
type

 All indexed variables in an array are of the
same type

 This is the base type of the array

 An indexed variable can be used anywhere an
ordinary variable of the base type is used

Using [] With Arrays

 In an array declaration, []'s enclose the size
of the array such as this array of 5 integers:
 int score [5];

 When referring to one of the indexed variables,
the []'s enclose a number identifying one of the
indexed variables
 E.g.,

 score[3]=7;

 score[3] is one of the indexed variables

 The value in the []'s can be any expression that
evaluates to one of the integers 0 to (size -1)

Indexed Variable Assignment

 To assign a value to an indexed variable, use
the assignment operator:

 int n = 2;
 score[n + 1] = 99;

 In this example, variable score[3] is
assigned 99

Loops And Arrays

 for-loops are commonly used to step through
arrays

 Example: for (int i = 0; i < 5; i++)
 {
 cout << score[i] << " off by “
 << (max – score[i]) << endl;
 }
could display the difference between each
score and the maximum score stored in an
array

First index is 0

Display 7.1

Last index is (size – 1)

Display 7.1

Constants and Arrays

 Use constants to declare the size of an array

 Using a constant allows your code to be easily
altered for use on a smaller or larger set of
data
 Example:
const int NUMBER_OF_STUDENTS = 50;

int score[NUMBER_OF_STUDENTS];

for (i = 0; i < NUMBER_OF_STUDENTS; i++)

 cout << score[i] << " off by “ << (max – score[i]) << endl;

 Only the value of the constant must be changed to
make this code work for any number of students

Variables and Declarations

 Most compilers do not allow the use of a
variable to declare the size of an array

Example:

 cout << "Enter number of students: ";
cin >> number;
int score[number];

 This code is illegal on many compilers

Array Declaration Syntax
 To declare an array, use the syntax:

 Type_Name Array_Name[Declared_Size];

 Type_Name can be any type

 Declared_Size can be a constant to make
your program more versatile

 Once declared, the array consists of the
indexed variables:
Array_Name[0] to Array_Name[Declared_Size
-1]

Arrays and Memory
 Declaring the array

 int a[6];

 Reserves memory for six variables of type int

 The variables are stored one after another

 The address of a[0] is remembered by C++
 The addresses of the other indexed variables is

not remembered by C++

 To determine the address of a[3]
 C++ starts at a[0]

 C++ counts past enough memory for three integers
to find a[3]

Display 7.2

in this example, each int variable uses

2 bytes, but typically an int variable

uses 4 bytes.

Recall:
 Computer memory consists of numbered locations called bytes

 A byte's number is its address
 A simple variable is stored in consecutive bytes

 The number of bytes depends on the variable's type
 A variable's address is the address of its first byte

Display 7.2

Array Index Out of Range

 A common error is using a nonexistent index

 Index values for int a[6] are the values 0
through 5

 An index value not allowed by the array
declaration is out of range

 Using an out of range index value doe not
produce an error message!

Out of Range Problems

 If an array is declared as: int a[6];
and an integer is declared as: int i = 7;

 Executing the statement a[i] = 238; causes…
 The computer to calculate the address of the illegal a[7]

 (This address could be where some other variable is stored)

 The value 238 is stored at the address calculated for a[7]

 No warning is given!

Initializing Arrays

 To initialize an array when it is declared

 The values for the indexed variables are
enclosed in braces and separated by commas

 Example: int children[3] = { 2, 12, 1 };
is equivalent to:
 int children[3];
 children[0] = 2;
 children[1] = 12;
 children[2] = 1;

Default Values

 If too few values are listed in an initialization
statement

 The listed values are used to initialize the
first of the indexed variables

 The remaining indexed variables are
initialized to a zero of the base type

 Example: int a[10] = {5, 5};
 initializes a[0] and a[1] to 5 and
 a[2] through a[9] to 0

Un-initialized Arrays

 If no values are listed in the array declaration,
some compilers will initialize each variable to a
zero of the base type

 DO NOT DEPEND ON THIS!

Arrays in Functions

Arrays in Functions

 Indexed variables can be arguments to functions
 Example: If a program contains these declarations:
 int i, n, a[10];
 void my_function(int n);

 Variables a[0] through a[9] are of type int, making
these calls legal:
 my_function(a[0]);
 my_function(a[3]);

 my_function(a[i]);

Display 7.3

Display 7.3

Arrays as Function Arguments

 A formal parameter can be for an entire array

 Such a parameter is called

 an array parameter
 It is not a call-by-value parameter

 It is not a call-by-reference parameter

 Array parameters behave much like call-by-
reference parameters

Array Parameter Declaration

 An array parameter is indicated using empty
brackets in the parameter list such as

 void fill_up(int a[], int size);

Function Calls With Arrays

 If function fill_up is declared in this way:
 void fill_up(int a[] , int size);

 and array score is declared this way:
 int score[5], number_of_scores;

 fill_up is called in this way:
 fill_up(score, number_of_scores);

Display 7.4

Display 7.4

Function Call Details

 A formal parameter is identified as an array
parameter by the []'s with no index
expression

 void fill_up(int a[], int size);

 An array argument does not use the []'s

 fill_up(score, number_of_scores);

Array Formal Parameters

 An array formal parameter is a placeholder for
the argument
 When an array is an argument in a function call, an

action performed on the array parameter is
performed on the array argument

 The values of the indexed variables (i.e., the array
argument) can be changed by the function

Array Argument Details

 What does the computer know about an array
once it is declared?
 The base type

 The address of the first indexed variable

 The number of indexed variables

 What does a function know about an array
argument during a function call?
 The base type

 The address of the first indexed variable

Array Parameter Considerations

 Because a function does not know the size of
an array argument…
 The programmer should include a formal parameter

that specifies the size of the array

 The function can process arrays of various sizes
 Function fill_up from Display 7.4 can be used to fill

an array of any size:

int score[5];

int time[10];

fill_up(score, 5);

fill_up(time, 10);

const Modifier

 Recall: array parameters allow a function to
change the values stored in the array argument

 If a function should not change the values of
the array argument, use the modifier const

 An array parameter modified with const is a
constant array parameter

 Example:
void display_array(const int a[], int size);

Using const With Arrays

 If const is used to modify an array parameter:

 const is used in both the function
declaration and definition to modify the
array parameter

 The compiler will issue an error if you write
code that changes the values stored in the
array parameter

Function calls and const
 If a function with a constant array parameter

calls another function using the constant array
parameter as an argument…

 The called function must use a constant
 array parameter as a placeholder for the
array

 The compiler will issue an error if a function
is called that does not have a const array
parameter to accept the array argument

const Parameters Example

 double compute_average(int a[], int size);

 void show_difference(const int a[], int size)
 {
 double average = compute_average(a, size);
 …
 }

 compute_average has no constant array parameter

 This code generates an error message because
compute_average could change the array parameter

Returning An Array

 Recall that functions can return (via return-
statement) a value of type int, double, char, …

 Functions cannot return arrays

 We learn later how to return a pointer to an
array

Programming with Arrays

Programming With Arrays

 The size needed for an array is changeable
 Often varies from one run of a program to another

 Is often not known when the program is written

 A common solution to the size problem
 Declare the array size to be the largest that could

be needed

 Decide how to deal with partially filled arrays

Partially Filled Arrays
 When using arrays that are partially filled

 A parameter, number_used, may be sufficient to
ensure that referenced index values are legal

 Functions dealing with the array may not need to
know the declared size of the array, only how many
elements are stored in the array

 A function such as fill_array in Display 7.9 needs to
know the declared size of the array

Display 7.9 (1) Display 7.9 (2) Display 7.9 (3)

Display 7.9
(1/3)

Display 7.9
(2/3)

Display 7.9
(3/3)

Searching Arrays

 A sequential search is one way to search
an array for a given value

 Look at each element from first to last to
see if the target value is equal to any of the
array elements

 The index of the target value can be
returned to indicate where the value was
found in the array

 A value of -1 can be returned if the value
was not found

The search Function
 The search function of Display 7.10…

 Uses a while loop to compare array elements to the
target value

 Sets a variable of type bool to true if the target
value is found, ending the loop

 Checks the boolean variable when the loop ends to
see if the target value was found

 Returns the index of the target value if found,
otherwise returns -1

Display 7.10 (1) Display 7.10 (2)

Display 7.10
(1/2)

Display 7.10
(2/2)

Go over this page:

http://storm.cis.fordham.edu/~zhang/cs2000/grading.html

Also documentation for function declaration, definition.

http://storm.cis.fordham.edu/~honggang/cs2/grading.html
http://storm.cis.fordham.edu/~honggang/cs2/grading.html

Program Example:
Sorting an Array

 Sorting a list of values is very common task

 Create an alphabetical listing

 Create a list of values in ascending order

 Create a list of values in descending order

 Many sorting algorithms exist

 Some are very efficient

 Some are easier to understand

Program Example:
The Selection Sort Algorithm

 When the sort is complete, the elements of the
array are ordered such that

 a[0] < a[1] < … < a [number_used -1]

Outline of the algorithm

for (int index = 0; index < number_used; index++)
 place the index-th smallest element in a[index]

Program Example:
 Sort Algorithm Development

 One array is sufficient to do our sorting
 Search for the smallest value in the array

 Place this value in a[0], and place the value that was
in a[0] in the location where the smallest was found

 Starting at a[1], find the smallest remaining value
swap it with the value currently in a[1]

 Starting at a[2], continue the process until the
array is sorted

Display 7.11 Display 7.12 (1-2)

Display 7.11

go over the source code

http://storm.cis.fordham.edu/~zhang/cs2000/C
odeExample_Savitch/Chapter07/07-12.cpp

Display 7.12
(1/2)

Display 7.12
(2/2)

Exercise

 Write a program that will read up to 10 letters
into an array and write the letters back to the
screen in the reverse order?

abcd should be output as dcba

Use a period as a sentinel value to mark the
end of input

A side note:

Recall variables and memory

Computer Memory

 Computer memory consists of numbered
locations called bytes

 A byte's number is its address

 A simple variable is stored in consecutive bytes

 The number of bytes depends on the variable's type

 A variable's address is the address of its first byte

Recall ...

int a = 7;

char c = 'x';

string s = "qwerty";

Recall: types and Objects

 A type defines a set of possible values and a
set of operations

 A value is a sequence of bits in memory,
interpreted according to its type

 An object is a piece of memory that holds a
value of a given type

59

7

x

qwerty 6

a:

s:

c:
String object keeps the # of

chars in the string, and the chars ..

We will learn how to access each char,

s[0], s[1], …

More example

 What’s the difference?

double x=12;

string s2=“12”;

1. x stores the value of number 12

s2 stores the two characters, ‘1’,’2’

2. applicable operations are different

 x: arithmetic operations, numerical comparison,

 s2: string concatenation, string comparison

60

12

2

x:

s2: 12

value: a sequence of bits in memory

 interpreted according to a type

 E,g, int x=8;

represented in memory as a seq. of binary digits
(i.e., bits):

 An integer value is stored using the value’s binary
representation

 In everyday life, we use decimal representation

61

8 x:

0 1 0 0 0

value: a sequence of bits in memory
(cont’d)

 interpreted according to a type

 E,g, char x=‘8’;

 is represented in memory as a seq. of binary
digits (i.e., bits)

 A char value is stored using char’s ASCII code

(American Standard Code for Information
Interchange)

62

‘8’ x:

0 0 1 1 1 0 0 0

ASCII Code

63

Interpretation of a bit sequence

 Given a bit sequence in memory

 If it’s interpreted as integer, then it
represents value 8

 1*23=8

 If interpreted as char, there are two chars, a
NULL char, and a BACKSPACE char

64

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

A technical detail
 In computer memory, everything is just bits; type is what

gives meaning to the bits
char c = 'a';

cout << c; // print the value of character variable c, which is a

int i = c;

cout << i; // print the integer value of the character c, which is 97

 int i = c;

 Assign a char value to a int type variable ?!
 A safe type conversion.

65

Right-hand-side (RHS) is

a value of char type

Left-hand-side (LHS)

is an int type variable

Sizeof operator

 cout <<"sizeof bool is " << sizeof (bool) << "\n"

 <<"sizeof char is " << sizeof (char) << "\n"

 <<"sizeof int is " << sizeof (int) << "\n"

 <<"sizeof short is " << sizeof (short) << "\n"

 <<"sizeof long is " << sizeof (long) << "\n"

 <<"sizeof double is " << sizeof (double) << "\n"

 <<"sizeof float is " << sizeof (float) << "\n";

66

Yields size of its operand

Measured by the size of

type char, i.e., a byte

sizeof bool is 1

sizeof char is 1

sizeof int is 4

sizeof short is 2

sizeof long is 8

sizeof double is 8

sizeof float is 4

Char-to-int conversion

char c = 'a';

cout << c; // print the value of character variable c, which is a

int i = c;

cout << i; // print the integer value of the character c, which is 97

 No information is lost in the conversion
 char c2=i; //c2 has same value as c

 Can convert int back to char type, and get the original value
 Safe conversion:

 bool to char, int, double
 char to int, double
 int to double

67

01100001 c:

0000000000000000000000001100001 i:

#include <iostream>

using namespace std;

int main()

{

 int pennies = 8; //what if change 8 to "eight"?

 int dimes = 4;

 int quarters = 3;

 double total = pennies * 0.01 + dimes * 0.10

 + quarters * 0.25; // Total value of the coins

 cout << "Total value = " << total << "\n";

 return 0;

}

68

Implicit type conversion

 int to double

A type-safety violation (“implicit narrowing”)

Beware: C++ does not prevent you from trying to put a
large value into a small variable (though a compiler
may warn)

int main()

{

 int a = 20000;

 char c = a;

 int b = c;

 if (a != b) // != means “not equal”

 cout << "oops!: " << a << "!=" << b << '\n';

 else

 cout << "Wow! We have large characters\n";

}

69

20000 a

??? c:

?? b

“narrowing” conversion
int main()

{

 double d =0;

 while (cin>>d) { // repeat the statements below
 // as long as we type in numbers

 int i = d; // try to squeeze a double into an int

 char c = i; // try to squeeze an int into a char

 int i2 = c; // get the integer value of the character

 cout << "d==" << d // the original double

 << " i=="<< i // converted to int

 << " i2==" << i2 // int value of char

 << " char(" << c << ")\n"; // the char

 }

70

A type-safety violation
(Uninitialized variables)

// Beware: C++ does not prevent you from trying to
use a variable before you have initialized it (though
a compiler typically warns)

int main()

{

 int x; // x gets a “random” initial value

 char c; // c gets a “random” initial value

 double d; // d gets a “random” initial value

 // – not every bit pattern is a valid floating-point value

 double dd = d; // potential error: some implementations

 // can’t copy invalid floating-point values

 cout << " x: " << x << " c: " << c << " d: " << d << '\n';

}

 Always initialize your variables
 valid exception to this rule: input variable 71

Multi-dimensional Array

Read Section 7.4

Multi-Dimensional Arrays

 C++ allows arrays with multiple index values

 char page [30] [100];
declares an array of characters named page
 page has two index values:

 The first ranges from 0 to 29
 The second ranges from 0 to 99

 Each index in enclosed in its own brackets

 Page can be visualized as an array of
30 rows and 100 columns

Index Values of page

 The indexed variables for array page are
page[0][0], page[0][1], …, page[0][99]
page[1][0], page[1][1], …, page[1][99]

 …
page[29][0], page[29][1], … , page[29][99]

 page is actually an array of size 30

 page's base type is an array of 100
characters

Multidimensional Array Parameters

 Recall that the size of an array is not needed
when declaring a formal parameter:
 void display_line(const char a[], int size);

 The base type of a multi-dimensional array
must be completely specified in the parameter
declaration

 C++ treats a as an array of arrays

 void display_page(const char page[] [100],
 int size_dimension_1);

Program Example: Grading Program

 Grade records for a class can be stored in a
two-dimensional array

 For a class with 4 students and 3 quizzes
the array could be declared as

 int grade[4][3];
 The first array index refers to the number of a

student

 The second array index refers to a quiz number

 Since student and quiz numbers start with one,
we subtract one to obtain the correct index

Grading Program: average scores

 The grading program uses one-dimensional
arrays to store…

 Each student's average score

 Each quiz's average score

 The functions that calculate these averages
use global constants for the size of the arrays

 This was done because the functions seem
to be particular to this program

Display 7.13 (1-3)

Display 7.13 (1/3)

Display 7.13
(2/3)

Display 7.13
(3/3)

Display 7.14

Display 7.15

Showing Decimal Places

 To specify fixed point notation
 setf(ios::fixed)

 To specify that the decimal point will always be shown
 setf(ios::showpoint)

 To specify that two decimal places will always be shown
 precision(2)

 Example: cout.setf(ios::fixed);

 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << "The price is "
 << price << endl;

