
Functions

 Programmer-Defined Functions

 Local Variables in Functions

 Overloading Function Names

 void Functions,

 Call-By-Reference Parameters in Functions

Programmer-Defined
Functions

function declaration

function

header

function

body
function

definition

function call

Programmer-Defined Functions
 Two components

 Function declaration (or function prototype)
 Shows how the function is called
 Must appear in the code before the function can be called
 Syntax:
Type_returned Function_Name(Parameter_List);

//Comment describing what function does

 Function definition
 Describes how the function does its task
 Can appear before or after the function is called
 Syntax:
Type_returned Function_Name(Parameter_List)

{

 //code to make the function work

}

;

Function Declaration

 Tells the return type
 Tells the name of the function
 Tells how many arguments are needed
 Tells the types of the arguments
 Tells the formal parameter names

 Formal parameters are like placeholders for the
actual arguments used when the function is called

 Formal parameter names can be any valid identifier
 Example:

double total_cost(int number_par, double price_par);

// Compute total cost including 5% sales tax on

// number_par items at cost of price_par each

Function Definition

 Provides the same information as the declaration
 Describes how the function does its task

 Example:

double total_cost(int number_par, double price_par)

{

 const double TAX_RATE = 0.05; //5% tax

 double subtotal;

 subtotal = price_par * number_par;

 return (subtotal + subtotal * TAX_RATE);

}

function body

The return Statement

 Ends the function call

 Returns the value calculated by the function

 Syntax:
 return expression;

 expression performs the calculation
 or

 expression is a variable containing the
calculated value

 Example:
 return subtotal + subtotal * TAX_RATE;

Function Call Details

 The values of the arguments are plugged into
the formal parameters (Call-by-Value mechanism
with call-by-value parameters)

 The first argument is used for the first formal
parameter, the second argument for the second
formal parameter, and so forth.

 The value plugged into the formal parameter is used
in all instances of the formal parameter in the
function body

1. Before the function is

called, values of the variable

number and price are set to

2 and 10, by cin statements.

2. The function call executes

and the value of number

(which is 2) plugged in for

number_par and value of

price (which is 10.10)

plugged in for price_par.

As for this function call,

number and price are

arguments

3. The body of the function

executes with number_par

set to 2 and price_par set

to 10.10, producing the

value 20.20 in subtotal.

4. When the return statement

is executed, the value of the

expression after return is

evaluated and returned by the

function in this case.

(subtotal + subtotal *

TAX_RATE) is

(20.20+20.20*0.05) or 21.21.

5. The value 21.21 is returned

to where the function was

invoked or called. The result is

that total_cost (number, price)

is replaced by the return value

of 21.21. The value of bill is set

equal to 21.21 when the

statement

bill=total_cost(number,price);

ends.

Function Call

 Tells the name of the function to use

 Lists the arguments

 Is used in a statement where the returned value
makes sense

 Example:

double bill = total_cost(number, price);

Automatic Type Conversion

 Given the definition
 double mpg(double miles, double gallons)
 {
 return (miles / gallons);
 }
 what will happen if mpg is called in this way?

 cout << mpg(45, 2) << “ miles per gallon”;

 The values of the arguments will automatically be
converted to type double (45.0 and 2.0)

14

Function Declarations

 Two forms for function declarations
 List formal parameter names
 List types of formal parameters, but not names
 Description of the function in comments

 Examples:

 double total_cost(int number_par, double price_par);

double total_cost(int, double);

 But in definition, function headers must always list formal
parameter names!

Order of Arguments
 Compiler checks that the types of the arguments

are correct and in the correct order!
 Compiler cannot check that arguments are in the

correct logical order
 Example: Given the function declaration:

char grade(int received_par, int min_score_par);

int received = 95, min_score = 60;

cout << grade(min_score, received);

 Produces a faulty result because the arguments are not in

the correct logical order. The compiler will not catch this!

Function Definition Syntax

within a function definition …
 Variables must be declared before they are used

 Variables are typically declared before the
executable statements begin

 double total_cost(int number_par, double price_par)

{

 const double TAX_RATE = 0.05; //5% tax

 double subtotal;

 subtotal = price_par * number_par;

 return (subtotal + subtotal * TAX_RATE);

}

 At least one return statement must end the function

 Each branch of an if-else statement or a switch statement
might have its own return statement

Example: char grade(int received_par, int min_score_par)

Placing Definitions

 A function call must be preceded by either
 The function’s declaration

 or
 The function’s definition

 If the function’s definition precedes the call, a
declaration is not needed

 Placing the function declaration prior to the
main function and the function definition
after the main function leads naturally to
building your own libraries in the future.

Formal Parameter Names

 Functions are designed as self-contained modules
 Programmers choose meaningful names for

formal parameters
 Formal parameter names may or may not match

variable names used in the main part of the program
 It does not matter if formal parameter names

match other variable names in the program
 Remember that only the value of the argument is

plugged into the formal parameter

20

Example next

Recall the memory

structure of a program.

21

Program Testing
 Programs that compile and run can still produce errors
 Testing increases confidence that the program

works correctly
 Run the program with data that has known output

 You may have determined this output with pencil and paper
or a calculator

 Run the program on several different sets of data
 Your first set of data may produce correct results in

spite of a logical error in the code
 Remember the integer division problem? If there is no fractional

remainder, integer division will give apparently correct results

22

Use Pseudocode

 Pseudocode is a mixture of English and the
programming language in use

 Pseudocode simplifies algorithm design by
allowing you to ignore the specific syntax of
the programming language as you work out
the details of the algorithm

 If the step is obvious, use C++

 If the step is difficult to express in C++,
use English

23

Local Variables in Functions

Local variables in a function

 Variables declared in a function:

 Are local to that function, i.e., they cannot be used
from outside the function

 Have the function as their scope

 Variables declared in the main part of a program:

 Are local to the main part of the program, they
cannot be used from outside the main part

 Have the main part as their scope

25

26

27

Global Constants

 Global Named Constant
 declared outside any function body
 declared outside the main function body
 declared before any function that uses it
 available to more than one function as well as the

main part of the program
 Example:
 const double PI = 3.14159;

 double area(double);
 int main()
 {…}

 PI is available to the main function and to function
volume

28

29

30

Global Variables

 Global Variable -- rarely used when more
than one function must use a common
variable

 Declared just like a global constant except
keyword const is not used

 Generally make programs more difficult to
understand and maintain

31

Formal Parameters are Local Variables

 Formal Parameters are variables that are local to the
function definition
 They are used just as if they were declared in the

function body
 Do NOT re-declare the formal parameters in the

function body, as they are declared in the function
declaration

 The call-by-value mechanism

 When a function is called the formal parameters
are initialized to the values of the arguments in the
function call

32

33

Another

example

34

Block Scope

 Local and global variables conform to the rules
of Block Scope

 The code block, generally specified by the { },

 where an identifier like a variable is declared.

 It determines the scope of the identifier.

 Blocks can be nested

35

36
A variable can be directly accessed only within its scope.

Local and Global scopes are examples of Block Scope.

Namespaces Revisited

 The start of a file is not always the best place for
 using namespace std;

 Different functions may use different namespaces

 Placing using namespace std;

 inside the starting brace of a function
 Allows the use of different namespaces in different functions

 Makes the “using” directive local to the function

37

38

39

Overloading Function Names

Overloading Function Names

 Overloading a function name means

 providing more than one declaration and definition
using the same function name

 C++ allows more than one definition for the
same function name

 Very convenient for situations in which the “same”
function is needed for different numbers or types
of arguments

41

42

Overloading Examples

 double ave(double n1, double n2)
{
 return ((n1 + n2) / 2);
}

 double ave(double n1, double n2, double n3)
{
 return ((n1 + n2 + n3) / 3);
}

 Compiler checks the number and types of arguments

in the function call to decide which function to use

 cout << ave(10, 20, 30);

uses the second definition

43

Overloading Details

 Overloaded functions

 must return a value of the same type

in addition, they ...

 must have different numbers of formal
parameters
 AND / OR

 must have at least one different type of
parameter

44

Overloading Example

 Revising the Pizza Buying program

 Rectangular pizzas are now offered!

 Change the input and add a function to compute
the unit price of a rectangular pizza

 The new function could be named unitprice_rectangular
 Or, the new function could be a new (overloaded) version of the

unitprice function that is already used
 Example:

double unitprice(int length, int width, double price)

{
 double area = length * width;
 return (price / area);

}

45

46

47

48

void Functions

Function regarded as code to do some
subtask

 A subtask might produce

 No value (e.g., input or output) to be used by a calling function.

 One value to be used by the calling function.

 Multiple values to be used by the calling function.

 We have seen how to implement functions that
return one value, through a return statement

 A void-function implements a subtask that ...

 either does not give back any value to the calling function
 no return statement

 or use return;
 or gives back multiple values to the calling function, via the

call-by-reference parameters

50

void-Function Definition
 Differences between void-function definitions and the definitions

of functions that return one value thru return statement.
 Keyword void replaces the type of the value returned

 void means that no value is returned by the function thru return
statement

 The return statement does not include and expression, or can be
removed in some situations.

 Example:
void show_results(double f_degrees, double c_degrees)
 {
 using namespace std;
 cout << f_degrees
 <<“ degrees Fahrenheit is euivalent to “

 << endl
 << c_degrees << “ degrees Celsius.” << endl;
 return;
}

51

52

Calling a void-Function

 A void-function call

 does not need to be part of another statement
 it ends with a semi-colon

 Example:
 show_results(32.5, 0.3);

 NOT: cout << show_results(32.5, 0.3);

53

void-Function Calls

 Mechanism is nearly the same as the function
calls we have seen

 Argument values are substituted for (or plugged in)
the formal parameters
 It is fairly common to have no parameters in void-functions

 In this case there will be no arguments in the function call

 Statements in function body are executed

 Optional return statement ends the function
 Return statement does not include a value to return

 Return statement is implicit if it is not included

54

55

56

void-Functions: Why use a return?

 Is a return statement ever needed in a
void-function since no value is returned?

 Yes for some scenarios, e.g.
 a branch of an if-else statement requires

that the function ends to avoid producing more
output, or creating a mathematical error.

 void-function in the example on next page (Display 5.3),
avoids division by zero with a return statement

57

58

The Main Function

 The main function in a program is used like a
void function…do you have to end the program
with a return-statement?

 Because the main function is defined to return a
value of type int, the return is needed

 C++ standard says the return 0 can be omitted, but
many compilers still require it

59

Call-By-Reference
Parameters in Functions

Call-by-Reference Parameters
 Call-by-value

 A call-by-value parameter of a function receives the values of
the corresponding argument during the execution of the
function call

 Any change made to the value of the parameter in the function
body dose not affect the value of the argument

 Call-by-reference
 A call-by-reference parameter of a function is just another

name of the corresponding argument during the execution of the
function call
 The call-by-reference parameter and the argument refers to the

same memory bock.

 Any change made on the value of the parameter in the function
body is essentially the change made on the value of the
argument

 Arguments for call-by-reference parameters must be

variables, not numbers 61

62

63

Example: swap_values
 void swap(int& variable1, int& variable2)

{
 int temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

 & symbol (ampersand) identifies variable1 and variable2 as call-by-
reference parameters

 used in both declaration and definition!
 If called with statement ...
 swap(first_num, second_num);

 first_num is substituted for variable1 in the parameter list
 first_num and variable1 are two names for the same variable
 second_num is substituted for variable2 in the parameter list
 second_num and variable2 are two names for the same variable
 temp is assigned the value of variable1 (or first_num)
 variable1 (or first_num) is assigned the value in variable2 (or

second_num)
 variable2 (or second_num) is assigned the original value of

variable1 (or first_num) which was stored in temp 64

Call-By-Reference Details

 Call-by-reference works almost as if the
argument variable is substituted for the formal
parameter, not the argument’s value

 In reality, the memory location of the argument
variable is given to the formal parameter

 Whatever is done to a formal parameter in the
function body, is actually done to the value at the
memory location of the argument variable

65

Mixed Parameter Lists

 Call-by-value and call-by-reference parameters
can be mixed in the same function

 Example, consider the following function declaration
void good_stuff(int& par1, int par2, double& par3);

 par1 and par3 are call-by-reference formal
parameters
 Changes in par1 and par3 are the changes made on the

corresponding argument variables during function call.

 par2 is a call-by-value formal parameter
 Changes in par2 do not change the argument variable

during function call

66

Choosing Parameter Types

 How do you decide whether a call-by-reference
or call-by-value formal parameter is needed?

 Does the function need to change the value of the
variable used as an argument?

 Yes? Use a call-by-reference formal parameter

 No? Use a call-by-value formal parameter

67

68

Inadvertent Local Variables

 If a function is to change the value of a variable
the corresponding formal parameter must be a
call-by-reference parameter with an ampersand
(&) attached

 Forgetting the ampersand (&) creates a
call-by-value parameter

 The value of the variable will not be changed

 The formal parameter is a local variable that has no
effect outside the function

 Hard error to find…it looks right!

69

70

