Functions

Q Programmer-Defined Functions

Q Local Variables in Functions

Q Overloading Function Names

a void Functions,

Q Call-By-Reference Parameters in Functions

Programmer-Defined
Functions

/* calculate_price.cpp */

#include <iostream>
using namespace std;

—— function declaration

double total_cost (int number_par, double price_par);
/* Computes the total cost, including 5% sales tax
* on number_par items at a cost of price_par each.
e

int mainC)

{
double price, bill;
int number;
cout <<"Enter the number of items purchased: ";
cin >> number;
cout << "Enter the price per item 3$";
cin >> price;
bill = total_cost(number, price); funCtlon Ca”
cout << number << " items at "
<< "$" << price << " each.\n"
<< "Final bill, including tax, is $" << bill <<endl;
return 0;
}

function

double total_cost (int number_par, double price_par) é””}1
eader

{
const double TAX_RATE = ©.05;
double subtotal;

function

subtotal = price_par * number_par; t)
ody

return (subtotal + subtotal*TAX_RATE);

__function
definition

Programmer-Defined Functions

a Two components

= Function declaration (or function prototype)
= Shows how the function is called
= Must appear in the code before the function can be called

= Syntax:
Type returned Function Name (Parameter List);
//Comment describing what function does

= Function definition
=« Describes how the function does its task
= Can appear before or after the function is called

= Syntax:
Type returned Function Name (Parameter List)

{

//code to make the function work

}

Function Declaration

Q Tells the return type

a Tells the name of the function

Q Tells how many arguments are needed
Q Tells the types of the arguments

Q Tells the formal parameter names

» Formal parameters are like placeholders for the
actual arguments used when the function is called

= Formal parameter names can be any valid identifier
Q Example:

double total cost(int number par, double price par);
// Compute total cost including 5% sales tax on
// number par items at cost of price par each

Function Definition

QO Provides the same information as the declaration
Q Describes how the function does its task

Q Example:

double total cost(int number par, double price par)

{
(+ const double TAX RATE = 0.05; //5% tax

double subtotal;
subtotal = price par * number par;
return (subtotal + subtotal * TAX RATE) ;

}

function body

The return Statement

0 Ends the function call
Q Returns the value calculated by the function

Q Syntax:
return expression;

= expression performs the calculation
or

= expression is a variable containing the
calculated value

QO Example:
return subtotal + subtotal * TAX RATE;

Function Call Details

Q The values of the arguments are plugged into
the formal parameters (Call-by-Value mechanism
with call-by-value parameters)

= The first argument is used for the first formal
parameter, the second argument for the second
formal parameter, and so forth.

= The value plugged into the formal parameter is used
in all instances of the formal parameter in the
function body

/* calculate_price.cpp */

#include <iostream>
using namespace std;

double total_cost (int number_par, double price_par);
/* Computes the total cost, including 5% sales tax

* on number_par items at a cost of price_par each.

o 4

int mainC)

i . .
double price, bill; 1. Before the function is
e called, values of the variable
cout <<"Enter the number of items purchased: "; 1
St number and price are set to
cout << "Enter the price per item $"; 2 and 10, by cin statements.
cin >> price;
bill = total_cost(numbizr, pr'\ce); AS for thiS func_tion Ca”,
o A number and price are
cout << number << 1tFms at
<< "$" << price << " eacdN.\n" arguments
<< "Final billl including §ax, 1§ $" << bill <<endl;
return 0; I \
= \Y \ 2. The function call executes

double total_cost (int number_par, double price_pa

. and the value of number

(which is 2) plugged in for
. number_par and value of
subtotal = price_par * number_par; price (Wthh iS 1010)

; return (subtotal + subtotal*TAX_RATE); plugged in fOI’ pl‘ice_par.

const double TAX_RATE = ©.05;
double subtotal;

/* calculate_price.cpp */

#include <iostream>
using namespace std;

double total_cost (int number_par, double price_par);
/* Computes the total cost, including 5% sales tax

* on number_par items at a cost of price_par each.

o 4

R 5 3. The body of the function
{ _ _ executes with number_par
double price, bill; .
int number; set to 2 and price_par set
to 10.10, producing the
value 20.20 in subtotal.

cout <<"Enter the number of items purchased: ";
cin >> number;

cout << "Enter the price per item 3$";
cin >> price;

bill = total_cost(number, price);

cout << number << " items at "
<< "S" << price << " each.\n"
<< "Final bill, including tax, 1is
return 0;

4. \When the return statement
" << bil’ |5 executed, the value of the
expression after return is

~ice_pary €valuated and returned by the
function in this case.
(subtotal + subtotal *
TAX_RATE) is

return (subtotal + subtotal*TAX_RATE); (2020+2020*005) or 21.21.

}

double total_cost (int number_par, double

{
const double TAX_RATE = ©.05;
double subtotal;

subtotal = price_par * number_par;

/* calculate_price.cpp */

#include <iostream>
using namespace std;

double total_cost (int number_par, double price_par);
/* Computes the total cost, including 5% sales tax

* on number_par i1tems at a cost of price_par each.

int mainC)

f

}

double total_cost (int number_par, double price_par)

{

double price, bill;
int number;

cout <<"Enter the number of items purchased: ";
cin >> number;

cout << "Enter the price per item 3$";

cin >> price;

bill = total_cost(number, price);

cout << number << " items at "
<< "S" << price << " each.\n"
<< "Final bill, including tax, is 3" <
return 0;

const double TAX_RATE = ©.05;
double subtotal;

subtotal = price_par * number_par;

return (subtotal + subtotal*TAX_RATE);

5. The value 21.21 is returned
to where the function was
iInvoked or called. The result is
that total _cost (number, price)

. Is replaced by the return value

of 21.21. The value of bill is set
equal to 21.21 when the
statement

bill=total cost(humber,price);
ends.

A Function Definition (part 2 of 2)

Sample Dialogue

Enter the number of items purchased: 2
Enter the price per item: $10.10

2 items at $10.10 each.

Final bill, including tax, is $21.21

Function Call

2 Tells the name of the function to use
A Lists the arguments

a Is used in a statement where the returned value
makes sense

Q Example:

double bill = total cost(number, price);

Automatic Type Conversion

Q Given the definition
double mpg(double miles, double gallons)

{

}
what will happen if mpg is called in this way?

return (miles / gallons);

cout << mpg(45, 2) << “ miles per gallon”;

Q The values of the arguments will automatically be
converted to type double (45.0 and 2.0)

14

Function Declarations

QO Two forms for function declarations
= List formal parameter names
=« List types of formal parameters, but not names
= Description of the function in comments

QO Examples:

double total_cost(int number_par, double price_par):

double total_cost(int, double);

Q But in definition, function headers must always list formal
parameter names!

Order of Arguments

Q Compiler checks that the types of the arguments
are correct and in the correct order!

Q Compiler cannot check that arguments are in the
correct logical order

QO Example: Given the function declaration:
char grade(int received_par, int min_score_par);
int received = 95, min_score = 60;

cout << grade(min_score, received);

= Produces a faulty result because the arguments are not in
the correct logical order. The compiler will not catch this!

Function Definition Syntax

within a function definition ...
QO Variables must be declared before they are used

QO Variables are typically declared before the
executable statements begin
double total cost(int number par, double price par)

{
const double TAX RATE = 0.05; //5% tax

double subtotal;_
subtotal = price par * number par;
return (subtotal + subtotal * TAX RATE);

}
O At least one return statement must end the function

= Each branch of an if-else statement or a switch statement
might have its own return statement

Example: char grade(int received_par, int min_score_par)

Syntax for a Function That Returns a Value

Function Declaration

Type_Returned Function_Name (Parameter_List) ;
Function_Declaration_Comment

Function Definition

Type_Returned Function_Name (Parameter_List)—e— function header
{

Declaration_1

Declaration_2

body Declaration_Last
Executable_Statement 1
Executable_Statement 2

Must include
one or more
return statements.

Executable Statement Last

Placing Definitions

Q A function call must be preceded by either

= The function's declaration
or

= The function's definition
= If the function's definition precedes the call, a
declaration is not needed
Q Placing the function declaration prior to the
main function and the function definition
after the main function leads naturally to
building your own libraries in the future.

Formal Parameter Names

0 Functions are designed as self-contained modules

Q Programmers choose meaningful names for
formal parameters

= Formal parameter names may or may not match
variable names used in the main part of the program

» It does not matter if formal parameter names
match other variable names in the program

= Remember that only the value of the argument is
plugged into the formal parameter

Recall the memory
structure of a program. Example next

20

Simpler Formal Parameter Names

Function Declaration

double total_cost(int number, double price);
//Computes the total cost, including 5% sales tax, on
//number items at a cost of price each.

Function Definition

double total_cost(int number, double price)

{
const double TAX_RATE = 0.05; //5% sales tax

double subtotal;

subtotal = price * number;
return (subtotal + subtotal*TAX_RATE);

21

Program Testing

Q Programs that compile and run can still produce errors

Q Testing increases confidence that the program
works correctly

= Run the program with data that has known output
= You may have determined this output with pencil and paper
or a calculator
= Run the program on several different sets of data

= Your first set of data may produce correct results in
spite of a logical error in the code

= Remember the integer division problem? If there is no fractional
remainder, integer division will give apparently correct results

22

Use Pseudocode

0 Pseudocode is a mixture of English and the
programming language in use

Q Pseudocode simplifies algorithm design by
allowing you to ighore the specific syntax of

the programming language as you work out
the details of the algorithm

» If the step is obvious, use C++

» If the step is difficult o express in C++,
use English

23

Local Variables in Functions

Local variables in a function

Q Variables declared in a function:

= Are local to that function, i.e., they cannot be used
from outside the function

» Have the function as their scope
Q Variables declared in the main part of a program:

= Are local o the main part of the program, they
cannot be used from outside the main part

= Have the main part as their scope

25

Local Variables (part 1 of 2)

//Computes the average yield on an experimental pea growing patch.
#include <iostream>
using namespace std;

double est_total(int min_peas, int max_peas, int pod_count);
//Returns an estimate of the total number of peas harvested.
//The formal parameter pod_count is the number of pods.

//The formal parameters min_peas and max_peas are the minimum
//and maximum number of peas in a pod.

int main() This variable named
{ average_pea js local to the

. . main part of the program.
int max_count, min_count, pod_count;

double average pea, yield;

"

cout << "Enter minimum and maximum number of peas in a pod: ";
cin >> min_count >> max_count;

cout << "Enter the number of pods: ";
cin >> pod_count;

cout << "Enter the weight of an average pea (in ounces): ";
cin >> average_pea;

yield =

est_total(min_count, max_count, pod_count) * average pea;
cout << "Min number of peas per pod = " << min_count << end]l

<< "Max number of peas per pod = " << max_count << end]

<< "Pod count = " << pod_count << endl

"

<< "Average pea weight =
<< average_pea << " ounces" << end]
<< "Estimated average yield = " << yield << " ounces"

<< endl;

return 0;

Local Variables (part 2 of 2)

double est_total (int min_peas, int max_peas, int pod_count)

{ This variable named
double average pea; average_pea is local to
the function est_total.
average_pea = (max_peas + min_peas)/2.0;
return (pod_count * average pea);

}

Sample Dialogue

Enter minimum and maximum number of peas in a pod: 4 6
Enter the number of pods: 10

Enter the weight of an average pea (in ounces): 0.5
Min number of peas per pod = 4

Max number of peas per pod = 6

Pod count = 10

Average pea weight = 0.500 ounces

Estimated average yield = 25.000 ounces

27

Global Constants

Q Global Named Constant
» declared outside any function body
» declared outside the main function body
» declared before any function that uses it

= available to more than one function as well as the
main part of the program

QO Example:

const double PI = 3.14159;
double area(double);
int main()

(.}

= PI is available to the main function and to function
volume

28

A Global Named Constant (part 1 of 2)

//Computes the area of a circle and the volume of a sphere.

//Uses the same radius for both calculations.
#include <iostream>

#include <cmath>

using namespace std;

const double PI = 3.14159;

double area(double radius);
//Returns the area of a circle with the specified radius.

double volume(double radius);

//Returns the volume of a sphere with the specified radius.

int main()

{
double radius_of_both, area_of_circle, volume_of_sphere;
cout << "Enter a radius to use for both a circle\n"
<< "and a sphere (in inches): ";
cin >> radius_of_both;
area_of_circle = area(radius_of_both);
volume_of_sphere = volume(radius_of_both);
cout << "Radius = " << radius_of_both << " inches\n"
<< "Area of circle = " << area_of_circle
<< " square inches\n"
<< "Volume of sphere = " << volume_of_sphere
<< " cubic inches\n";
return 0;
}

29

A Global Named Constant (part 2 of 2)

double area(double radius)

{
return (PT * pow(radius, 2));
}
double volume(double radius)
{
return ((4.0/3.0) * PI * pow(radius, 3));
}

Sample Dialogue

Enter a radius to use for both a circle
and a sphere (in inches): 2

Radius = 2 inches

Area of circle = 12.5664 square inches
Volume of sphere = 33.5103 cubic inches

30

Global Variables

Q Global Variable -- rarely used when more
than one function must use a common
variable

» Declared just like a global constant except
keyword const is hot used

= Generally make programs more difficult o
understand and maintain

31

Formal Parameters are Local Variables

Q Formal Parameters are variables that are local to the
function definition

= They are used just as if they were declared in the
function body

= Do NOT re-declare the formal parameters in the
function body, as they are declared in the function
declaration

Q The call-by-value mechanism

= When a function is called the formal parameters
are initialized to the values of the arguments in the
function call

32

Formal Parameter Used as a Local Variable (part 1 of 2)

//Law office billing program.
#include <iostream>
using namespace std;

const double RATE = 150.00; //Dollars per quarter hour.

double fee(int hours_worked, 7nt minutes_worked);
//Returns the charges for hours_worked hours and
/sminutes_worked minutes of Tegal services.

int main()

Another
example

The value of minutes
is not changed by the

call to fee.

{
int hours, minutes;
double bill;
cout << "Welcome to the offices of\n"
<< "Dewey, Cheatham, and Howe.\n"
<< "The law office with a heart.\n"
<< "Enter the hours and minutes"
<< " of your consultation:\n";
cin >> hours >> minutes;
bill = feeChours, minutes);
cout << "For " << hours << " hours and " << minutes
<< " minutes, your bill is $" << bill << endl;
return 0;
}

double fee(int hours_worked,

{

int minutes_worked)

int quarter_hours;

minutes_worked = hours_worked*60 + minutes_worked;
quarter_hours = minutes_worked/15;
return (quarter_hours*RATE) ;

minutes_worked is
a local variable
initialized to the
value of minutes.

33

Formal Parameter Used as a Local Variable (part 2 of 2)

Sample Dialogue

Welcome to the offices of
Dewey, Cheatham, and Howe.
The law office with a heart.

Enter the hours and minutes of your consultation:
2 45

For 2 hours and 45 minutes, your bill is $1650.00

34

Block Scope

Local and global variables conform to the rules
of Block Scope

= The code block, generally specified by the { },

where an identifier like a variable is declared.
It determines the scope of the identifier.

= Blocks can be nested

35

Block Scope Revisited

#include <iostream>
using namespace std;

const double GLOBAL_CONST = 1.0;

int functionl (int param);

int main()
{ "
int x; 1 Local scope to
double d = GLOBAL_CONST; main: Variable
X has scope
for (int 1 =0; 1 < 10; 1++) E'rﬂ?kﬁa?m from lines
{ . Variable 1 has = 10-18 and
x = functionl(i); Efmpg from variable d has
} | lines 13-16 ‘ scope from
return 0: lines 11-18
}
int functionl (int param) Local scope to functionl:
{ Variable param
double y = GLOBAL_ CONST; = has scope from lines 20-25
. and variable y has scope
return 0; | Framﬁﬁﬂf‘rZZ-Eﬁ
)

A variable can be directly accessed only within its scope.
Local and Global scopes are examples of Block Scope.

Local and Global scope are examples of Block scope.
A variable can be directly accessed only within its scope.

Global scope:
The constant

GLOBAL_CONST
has scope from

— |ines 4-25 and

the function
functionl

has scope from
lines G-25

36

Namespaces Revisited

Q The start of a file is not always the best place for
using namespace std;

0 Different functions may use different namespaces
= Placing using namespace std;

inside the starting brace of a function
= Allows the use of different namespaces in different functions
= Makes the "using” directive local to the function

37

Using Namespaces (part T of 2)

/S /Computes the area of a circle and the volume of a sphere.
//Uses the same radius for both calculations.

#include <iostream>

#include <cmath>

const double PI = 3.14159;

double area(double radius);
/S /Returns the area of a circle with the specified radius.

double volume(double radius);
//Returns the volume of a sphere with the specified radius.

int mainC)

{
using namespace std;
double radius_of_both, area_of_circle, volume_of_sphere;
cout << "Enter a radius to use for both a circle\n"
<< "and a sphere (in inches): ";
cin >> radius_of_both;
area_of_circle = area(radius_of_both);
volume_of_sphere = volume(radius_of_both);
cout << "Radius = " << radius_of_both << " inches\n"
<< "Area of circle = " << area_of_circle
<< " square dinches\n"
<< "Volume of sphere = " << volume_of_sphere
<< " cubic inches\n";
return 0O;
3

38

Using Namespaces (part 2 of 2)

double area(double radius)

{
using namespace std;
return (PI * pow(radius, 2));
}
double volume(double radius)
{
using namespace std;
return ((4.0/3.0) * PI * pow(radius, 3));
}

39

Overloading Function Names

Overloading Function Names

Q Overloading a function name means

providing more than one declaration and definition
using the same function name

Q C++ allows more than one definition for the
same function name

= Very convenient for situations in which the "same”
function is needed for different numbers or types
of arguments

41

Overloading a Function Name

S/ITTlustrates overloading the function name ave.
#include <iostream>

double ave(double nl, double n2);
/S Returns the average of the two numbers nl and nZ2.

double ave(double nl, double n2, double n3);
S/ /Returns the average of the three numbers nl, nZ2, and n3.

int mainC)
{
using namespace std;
cout << "The average of 2.0, 2.5, and 3.0 1is "
<< ave(2.0, 2.5, 3.0) << endl;

cout << "The average of 4.5 and 5.5 1is "
<< ave(4.5, 5.5) << endl;

return 0;
} /
double ave(double nl, double n2)
{

two arguments

return ((nl + n2)/2.0);
¥ three arguments

“,/”’

double ave(double nl, double n2, double n3)

{
return ((nl + n2 + n3)/3.0);
17
Output

The average of 2.0, 2.5, and 3.0 1is 2.50000
The average of 4.5 and 5.5 is 5.00000

42

Overloading Examples

double ave(double nl, double n2) <
{

}
double ave(double nl, double n2, double n3)
{

}

return ((n1 + n2) / 2);

return ((n1 + n2 + n3) / 3);

= Compiler checks the number and types of arguments
in the function call to decide which function to use

cout << ave(10, 20, 30);

uses the second definition

43

Overloading Details

Q Overloaded functions
= must return a value of the same type

in addition, they ...

= must have different numbers of formal

parameters
AND / OR

= must have at least one different type of
parameter

44

Overloading Example

QO Revising the Pizza Buying program

Rectangular pizzas are now offered!
Change the input and add a function to compute
the unit price of a rectangular pizza

The new function could be named unitprice_ rectangular

Or, the new function could be a new (overloaded) version of the
unitprice function that is already used
= Example:

double unitprice(int length, int width, double price)

{
double area = length * width;

return (price / area);

45

Overloading a Function Name (part 1 of 3)

//Determines whether a round pizza or a rectangular pizza is the best buy.
#include <iostream>

double unitprice(int diameter, double price);

//Returns the price per square inch of a round pizza.

//The formal parameter named diameter 1is the diameter of the pizza

//in inches. The formal parameter named price is the price of the pizza.

double unitprice(int length, int width, double price);
//Returns the price per square inch of a rectangular pizza
//with dimensions length by width inches.

//The formal parameter price is the price of the pizza.

int main()
{
using namespace std;
int diameter, Tlength, width;
double price_round, unit_price_round,
price_rectangular, unitprice_rectangular;

cout << "Welcome to the Pizza Consumers Union.\n";
cout << "Enter the diameter in inches"
<< " of a round pizza: ";
cin >> diameter;
cout << "Enter the price of a round pizza: $";
cin >> price_round;
cout << "Enter length and width in inches\n"
<< "of a rectangular pizza: ";
cin >> length >> width;
cout << "Enter the price of a rectangular pizza: $";
cin >> price_rectangular;

unitprice_rectangular =
unitprice(length, width, price_rectangular);
unit_price_round = unitprice(diameter, price_round);

cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);

Overloading a Function Name (part 2 of 3)

cout << endl
<< "Round pizza: Diameter = "
<< diameter << " inches\n"
<< "Price = $" << price_round
<< " Per square inch = $" << unit_price_round
<< end]
<< "Rectangular pizza: Length ="
<< length << " inches\n"
<< "Rectangular pizza: Width = "
<< width << " inches\n"
<< "Price = $" << price_rectangular
<< " Per square inch = $" << unitprice_rectangular
<< endl;

if (unit_price_round < unitprice_rectangular)

cout << "The round one is the better buy.\n";
else

cout << "The rectangular one is the better buy.\n";
cout << "Buon Appetito!\n";

return 0;

double unitprice(int diameter, double price)

{

const double PI = 3.14159;
double radius, area;

radius = diameter/static_cast<double>(2);
area = PI * radius * radius;
return (price/area);

double unitprice(int length, int width, double price)

{

double area = length * width;
return (price/area);

47

Overloading a Function Name (part 3 of 3)

Sample Dialogue

Welcome to the Pizza Consumers Union.

Enter the diameter 1in inches of a round pizza: 10
Enter the price of a round pizza: $8.50

Enter Tength and width in inches

of a rectangular pizza: 6 4

Enter the price of a rectangular pizza: $7.55

Round pizza: Diameter = 10 inches
Price = $8.50 Per square inch = $0.11
Rectangular pizza: Length = 6 inches
Rectangular pizza: Width = 4 1inches
Price = $7.55 Per square inch = $0.31
The round one is the better buy.

Buon Appetito!

48

void Functions

Function regarded as code to do some
subtask

Q A subtask might produce
= No value (e.g., input or output) to be used by a calling function.
= One value to be used by the calling function.
= Multiple values to be used by the calling function.

O We have seen how to implement functions that
return one value, through a return statement

QO A void-function implements a subtask that ...
= either does not give back any value to the calling function
= ho refurn statement
or use return;

= or gives back multiple values to the calling function, via the
call-by-reference parameters

50

void-Function Definition

O Differences between void-function definitions and the definitions
of functions that return one value thru return statement.

= Keyword void replaces the type of the value returned
= void means that no value is returned by the function thru return
statement

= The return statement does not include and expression, or can be
removed in some situations.
Q Example:
void show_results(double f degrees, double c_degrees)

{

using namespace std;
cout << f_degrees
<< degrees Fahrenheit is euivalent to

<< endl

<< c_degrees << “ degrees Celsius.” << endl;
return;

51

Syntax for a void Function Definition

void Function Declaration

Function_Name (Parameter List
Function_Declaration_Comment

void Function Definition

Function_Name (Parameter_List

Declaration_1

~a—— function header

You may intermix the
declarations with the

Declaration_2 <

Declaration_Last
body Executable_Statement 1

Executable_Statement 2

Executable _Statement _Last

executable statements.

May (or may not)
include

one or more
return statements.

52

Calling a void-Function

Q A void-function call
= does not need to be part of another statement
= it ends with a semi-colon

O Example:
show results(32.5, 0.3);

NOT: cout << show_results(32.5, 0.3);

53

void-Function Calls

Q Mechanism is nearly the same as the function
calls we have seen

= Argument values are substituted for (or plugged in)
the formal parameters

= It is fairly common to have no parameters in void-functions
= In this case there will be no arguments in the function call

= Statements in function body are executed

= Optional return statement ends the function
= Return statement does not include a value to return
= Return statement is implicit if it is not included

54

void Functions (part 1 of 2)

//Program to convert a Fahrenheit temperature to a Celsius temperature.
#include <iostream>

void initialize_screen();
//Separates current output from
//the output of the previously run program.

double celsius(double fahrenheit);
//Converts a Fahrenheit temperature
//to a Celsius temperature.

void show_results(double f_degrees, double c_degrees);
//Displays output. Assumes that c_degrees
//Celsius is equivalent to f_degrees Fahrenheit.

int main()

{
using namespace std;
double f_temperature, c_temperature;
initialize_screen();
cout << "I will convert a Fahrenheit temperature"
<< " to Celsius.\n"
<< "Enter a temperature in Fahrenheit: ";
cin >> f_temperature;
c_temperature = celsius(f_temperature);
show_results(f_temperature, c_temperature);
return 0;
}

//Definition uses iostream:
void initialize_screen()

{

using namespace std;

cout << endl;

return; —a— This return is optional.
}

95

void Functions (part 2 of 2)

double celsius(double fahrenheit)
{

return ((5.0/9.0)*(fahrenheit - 32));
¥

//Definition uses iostream:
void show_results(double f_degrees, double c_degrees)

{

using namespace std;

- = -~ ™~

cout << f_degrees
<< " degrees Fahrenheit is equivalent to\n"
<< c_degrees << " degrees Celsius.\n";

return; <e—

This return is optional.

}

Sample Dialogue

I will convert a Fahrenheit temperature to Celsius.
Enter a temperature in Fahrenheit: 32.5

32.5 degrees Fahrenheit is equivalent to

0.3 degrees Celsius.

56

void-Functions: Why use a return?

Q Is a return statement ever needed in a
void-function since no value is returned?

= Yes for some scenarios, e.g.

= a branch of an if-else statement requires
that the function ends to avoid producing more
output, or creating a mathematical error.

= void-function in the example on next page (Display 5.3),
avoids division by zero with a return statement

57

Use of returnin a void Function

Function Declaration

void ice_cream_division(int number, double total_weight);
//0utputs instructions for dividing total_weight ounces of
//ice cream among number customers.

//If number is 0, nothing is done.

Function Definition

//Definition uses iostream:
void ice_cream_division(int number, double total_weight)

{

using namespace std;
double portion;

1f (number == 0) If number is 0, then the
return; '« function execution ends here.

portion = total_weight/number;

cout.setf(jos::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << "Each one receives
<< portion << " ounces of ice cream." << endl;

58

The Main Function

Q The main function in a program is used like a
void function...do you have to end the program
with a return-statement?

» Because the main function is defined to returna
value of type int, the return is needed

» C++ standard says the return O can be omitted, but
many compilers still require it

59

Call-By-Reference
Parameters in Functions

Call-by-Reference Parameters

Q Call-by-value

= A call-by-value parameter of a function receives the values of
the corresponding argument during the execution of the
function call

= Any change made to the value of the parameter in the function
body dose not affect the value of the argument

Q Call-by-reference

= A call-by-reference parameter of a function is just another
name of the corresponding argument during the execution of the
function call

= The call-by-reference parameter and the argument refers to the
same memory bock.

= Any change made on the value of the parameter in the function
body is essentially the change made on the value of the
argument

= Arguments for call-by-reference parameters must be
variables, not nhumbers 61

Call-by-Reference Parameters (part 1 of 2)

//Program to demonstrate call-by-reference parameters.
#include <iostream>

void get_numbers(int& inputl, 7nt& inputl);
//Reads two integers from the keyboard.

void swap_values(int& variablel, 7nt& variable2);
//Interchanges the values of variablel and variablel.

void show_results(int outputl, 7nt outputl);
//Shows the values of variablel and variableZ2, in that order.

int main()

{
int first_num, second_num;
get_numbers(first_num, second_num) ;
swap_values(first_num, second_num) ;
show_results(first_num, second_num) ;
return 0;

3

//Uses Tostream:
void get_numbers(int& inputl, 7nt& input2)

{
using namespace std;
cout << "Enter two integers: ";
cin >> inputl
>> input2;
}

void swap_values(int& variablel, 7nt& wvariable2)

{

int temp;

temp = variablel;
variablel = wvariable?2;
variable2 = temp;

Call-by-Reference Parameters (part 2 of 2)

//Uses iostream:
void show_results(int outputl, 7nt output2)

{

using namespace std;
cout << "In reverse order the numbers are:
<< outputl << " " << output2 << endl;

}
Sample Dialogue

Enter two integers: 5 10
In reverse order the numbers are: 10 5

63

Example: swap_values

void swap(int& variablel, int& variable2)

{
int temp = variablel;
variablel = variable2;
variable2 = temp;

}

O & symbol (ampersand) identifies variablel and variable2 as call-by-
reference parameters
= used in both declaration and definition!
O If called with statement ...
swap(first_num, second_num);
» first_num is substituted for variablel in the parameter list
first_num and variablel are two names for the same variable
= second_num is substituted for variable2 in the parameter list
second_num and variable2 are two names for the same variable
= temp is assigned the value of variablel (or first_num)

= variablel (or first_num) is assigned the value in variable2 (or
second_num)

= variable2 (or second_num) is assigned the original value of
variablel (or first_num) which was stored in temp 64

Call-By-Reference Details

Q Call-by-reference works almost as if the
argument variable is substituted for the formal
parameter, not the argument’s value

Q In reality, the memory location of the argument
variable is given to the formal parameter

= Whatever is done to a formal parameter in the
function body, is actually done to the value at the
memory location of the argument variable

65

Mixed Parameter Lists

Q Call-by-value and call-by-reference parameters
can be mixed in the same function

QO Example, consider the following function declaration
void good stuff(int& parl, int par2, double& par3);

= parl and par3 are call-by-reference formal
parameters

= Changes in parl and par3 are the changes made on the
corresponding argument variables during function call.

» par?2 is a call-by-value formal parameter

= Changes in par2 do not change the argument variable
during function call

66

Choosing Parameter Types

O How do you decide whether a call-by-reference
or call-by-value formal parameter is needed?

= Does the function need to change the value of the
variable used as an argument?
» Yes? Use a call-by-reference formal parameter

= No? Use a call-by-value formal parameter

67

Comparing Argument Mechanisms

//ITlustrates the difference between a call-by-value
//parameter and a call-by-reference parameter.
#include <iostream>

void do_stuff(int parl_value, int& par2_ref);
//parl_value is a call-by-value formal parameter and
//par2_ref is a call-by-reference formal parameter.

int main()

{
using namespace std;
int nl, n2;
nl = 1;
n2 = 2;
do_stuff(nl, n2);
cout << "nl after function call = " << nl << endl;
cout << "n2 after function call = " << n2 << endl;
return 0;
1

void do_stuff(int parl_value, int& par2_ref)
{
using namespace std;
parl_value = 111;
cout << "parl_value in function call = "
<< parl_value << endl;
par2_ref = 222;
cout << "par2_ref in function call ="
<< par2_ref << endl;

Sample Dialogue

parl_value in function call = 111

par2_ref in function call = 222

nl after function call = 1
= 2

n2 after function call 22

638

Inadvertent Local Variables

Q If afunction is o change the value of a variable
the corresponding formal parameter must be a
call-by-reference parameter with an ampersand
(&) attached

Q Forgetting the ampersand (&) creates a
call-by-value parameter

= The value of the variable will not be changed

= The formal parameter is a local variable that has no
effect outside the function

= Hard error to find...it looks right!

69

Inadvertent Local Variable

//Program to demonstrate call-by-reference parameters.
#include <iostream>

void get_numbers(int& inputl, 7nt& input2); forgot
//Reads two integers from the keyboard. the & here

void swap_values(int variablel, int variable2);
//Interchanges the values of variablel and variableZ.

void show_results(int outputl, int output2);
//Shows the values of variablel and variableZ, in that order.

int main()

{
using namespace std;
int first_num, second_num;
get_numbers(first_num, second_num);
swap_values(first_num, second_num);
show_results(first_num, second_num); forgot
return 0; the & here
}
void swap_values(int variablel, int variable2)
{
Tnt temp; inadvertent
temp = variablel; /Iocaivanables
variablel = variable2;
variable2 = temp;
}

<The definitions of get_numbers and
show_resuTts are the same as in Display 4.4.>

Sample Dialogue

Enter two integers: 5 10
In reverse order the numbers are: 5 10

70

