Chapter 10

Defining Classes

What Is a Class?

2 A class is a data type whose variables are objects
2 Some pre-defined data types you have used are

= int

= char
2 You can define your own classes

* define your own types

* compare with pre-defined data types, define
new names for existing types, efc.

Class Definitions

2 A class definition includes

* A description of the kinds of values the
variable can hold

* A description of the member functions

2 We will start by defining structures as a first
step toward defining classes

Overview

10.1 Structures

10.2 Classes

10.3 Abstract Data Types

10.4 Introduction to Inheritance

10.1

Structures

Structures

2 A structure can be viewed as an object

- Contains no member functions
(The structures used here have no member functions)

- Contains multiple values of possibly different types
* The multiple values are logically related as a single item

* Example: A bank Certificate of Deposit (CD)
has the following values:
a balance
an interest rate
a ferm (months to maturity)

The CD Definition

2 The Certificate of Deposit structure can be

defined as
struct CDAccount
{
double balance;
double interest rate;
int term; //months to
maturity < Remember this semicolon!
}i

2 Keyword struct begins a structure definition
9 CDAccount is the structure tag

2 Member names are identifiers declared in the braces

Using the Structure

2 Structure definition is generally placed outside
any function definition

* This makes the structure type available to all code
that follows the structure definition

2 To declare two variables of type CDAccount:

CDAccount my account, your account;

= My account and your account contain distinct
member variables balance, interest rate, and term

The Structure Value

2 The Structure Value

» Consists of the values of the member variables
of the structure

2 The value of an object of type CDAccount

 Consists of the values of the member variables
balance
interest rate
term

Specifying Member Variables

2 Member variables are specific to the
structure variable in which they are declared

- Syntax to specify a member variable:
Structure Variable Name.Member Variable Name

- Given the declaration:
CDAccount my account, your account;

- Use the dot operator to specify a member variable
my account.balance
my account.interest rate
my account.term

Using Member Variables

2 Member variables can be used just as any other

variable of the same type Display 10.1 (1)
- my account.balance = 1000; p=:
your account.balance = 2500 Plsplay 10.1 (2)

- Notice that my account.balance and
your account.balance

are different variablesl!

- my account.balance = my account.balance +
interest;

A Structure Definition (part 1 of 2)

//Program to demonstrate the (DAccount structure type.
#include <iostream>
using namespace std;

//Structure for a bank certificate of deposit:

:u'urr CDAccount Display 10.1

double balance;

double interest_rate; 1/2
int term;//months until maturity

void get_data((DAccount& the_account);
//Postcondition: the_account.balance and the_account.interest_rate
//have been given values that the user entered at the keyboard.

int main()

{
CDAccount account;
get_data(account);

double rate_fraction, interest;

rate_fraction = account.interest rate/100.0;

interest = account.balance*rate_fraction*(account.term/12.0);
account.balance = account.balance + interest;

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << "When your CD matures in
<< account,term << " months,\n"
<< "it will have a balance of $"
<< account.balance << endl;

return 0;

Display 10.1
(2/2)

A Structure Definition (part 2 of 2)

//Uses iostream:
void get_data(CDAccount& the account)
{
cout << "Enter account balance: §";
cin >> the_account.balance;
cout << "Enter account interest rate: ";
cin >> the_account.interest_rate;
cout << "Enter the number of months until maturity\n"
<< "(must be 12 or fewer months): ";
cin >> the_account.term;

}
Sample Dialogue

Enter account balance: $100.00

Enter account interest rate: 10.0

Enter the number of months until maturity
(must be 12 or fewer months): 6

When your CD matures in 6 months,

it will have a balance of $105.00

Display 10.2

Member Values

struct CDAccount

{

}s

int main()

{

double balance;
double interest_rate;
int term;//months until maturity

CDAccount account;

account.balance = 1000.00;

\\\\5“‘-————-—

\\“-——-

account.interest_rate =

\\“‘——-a—

account.term = 11;

\\\\5““————->

balance
interest_rate
term

balance
interest_rate
term

' balance
interest_rate
term

balance
interest_rate
term

?

?

?

1000.00

?

?

1000.00

4.7

?

1000.00

4.7

11

> account

» account

» account

> account

Duplicate Names

2 Member variable names duplicated between
structure types are not a problem.

struct FertilizerStock struct CropYield

{ {
double quantity; int quantity;
double nitrogen_content; double size;

}; };

FertilizerStock super_grow; CropYield apples;

2 super grow.quantity and apples.quantity are
different variables stored in different locations

Structures as Arguments

2 Structures can be arguments in function calls
 The formal parameter can be call-by-value
 The formal parameter can be call-by-reference

2 Example:

volid get data(CDAccount& the account);

- Uses the structure type CDAccount we saw
earlier as the type for a call-by-reference
parameter

Assignment and Structures

2 The assignment operator can be used to assign
values to structure types

2 Using the CDAccount structure again:
CDAccount my account, your account;
my account.balance = 1000.00;
my account.interest rate = 5.1;
my account.term = 12;
your account = my account;

- Assigns all member variables in your account the
corresponding values in my account

Structures as Return Types

2 Structures can be the type of a value returned by
a function

2 Example:
CDAccount shrink wrap(double the balance,
double the rate,
int the term)

{
CDAccount temp;
temp.balance = the balance;
temp.interest rate = the rate;
temp.term = the term;
return temp;

t

STOPPED HERE ON Feb 7.

Using Function shrink_wrap

2 shrink wrap builds a complete structure value
in temp, which is returned by the function

2 We can use shrink wrap to give a variable of
type CDAccount a value in this way:

CDAccount new account;
new account = shrink wrap(1000.00, 5.1,
11);

The above assignment operator copies the
whole structure content (given by the return
statement) into new_account.

Hierarchical Structures

2 Structures can contain member variables that
are also structures

struct Personinfo
struct Date {
{ double height;
int month; int weight;
int day; Date birthday;
int year; 1
};

J struct PersonInfo contains a Date structure

Using PersonInfo

U

A variable of type PersonInfo is declared by

PersonInfo personl;

U

To display the birth year of personl, first access the
birthday member of personl

cout << personl.birthday..

2 But we want the year, so we now specify the
year member of the birthday member

cout << personl.birthday.year;

Initializing Classes

2 A structure can be initialized when declared

2 Example:
struct Date

{
int month ;<
int day; <
int year; <
i

Can be initialized in this way

Date due date = {12, 31,
2004}%;

Compare with array initialization

Section 10.1 Exercise

2 Can you

* Write a definition for a structure type for
records consisting of a person's wage rate,
accrued vacation (in whole days), and status
(hourly or salaried). Represent the status as
one of the two character values 'H and 'S’
Call the type EmployeeRecord.

10.2

Classes

Classes

2 A class is a data type whose variables are
called objects

- The definition of a class includes

- Description of the kinds of values of the member
variables

- Description of the member functions

* A class description is somewhat like a
structure definition plus the member
functions

A Class Example

2 To create a new type named DayOfYear as
a class definition

- Decide on the values to represent

- This example's values are dates such as July 4
using an integer for the number of the month
- Member variable month is an int (Jan =1, Feb = 2, etc.)
- Member variable day is an int

- Decide on the member functions needed
- We use just one member function named output

Class DayOfYear Definition

class DayOfYear

{
public:
void output();
int montiy
int day;
i

Member Function Declaration

Public or Private Members

2 The keyword public identifies the members of
a class that can be accessed from outside the
class

= Members that follow the keyword public are public
members of the class

2 The keyword private identifies the members of
a class that can be accessed only by member
functions of the class

- Members that follow the keyword private are
private members of the class

Defining a Member Function

U

Member functions are declared in the class
declaration

U

Member function definitions identify the class
in which the function is a member
void DayOfYear::output()

{
cout << “month = “” << month
<< V7 , day /| << day
<< endl;

Member Function Definition

2 Member function definition syntax:
Returned Type
Class Name::Function Name(Parameter List)

{
Function Body Statements

}

- Example:

volid DayOfYear::output()
{

cout << “month = “ << month
<< ", day = ” << day << endl;

The ': :" Operator

3

' is the scope resolution operator

- Tells the class a member function is a member

of

* void DayOfYear::output() indicates

that function output is a member of the
DayOfYear class

* The class name that precedes ": :" is a type

qualifier

.. and

.+ used with classes to identify a member
void DayOfYear::output()

{
// function body

}

. used with variables (or objects) to identify a member

DayOfYear birthday;
birthday.output();

Calling Member Functions

2 Calling the DayofYear member function
output

is done in this way:
DayOfYear today, birthday;
today.output();
birthday.output();

- Note that today and birthday have their
own versions of the month and day variables

for use by the output funct/Display 10.3 (1)

Display 10.3 (2)

DISPLAY 10.3 Class with a Member Function (part | of 2)

WO NOWV bW

32
i3

34
35

//Progrom to demonstrate a very simple example of a class.

//A better version of the closs DayOfYear will be given in Disploy 10.4.
finclude <tostream»
using nawespace std;

class DayOfYear

{

public:

| H

void output() ;e——o— Mambar function de

int month;
int day;

int main()

{

}

DayOfYear today, birthday;

cout << "Enter today's date:\n";

cout << "Enter month as a number: "“;
cin >> today.month;

cout << "Enter the doy of the month: *;
cin >> today.day;

cout << "Enter your birthday:\n";
cout << "Enter month as a number: ";
cin >> birthday.month;

cout << "Enter the day of the month: *;
cin >> birthday.day;

cout << "Today's date is “;
today.output(); - '
cout << "Your birthday is “;
birthday.output(); - -

if (today.month == birthday.month
&& today.doy == birthday.day)
cout << "Hoppy Birthday!\n";
else
cout << “"Hoppy Unbirthday!\n";

return ©;

36 //Uses iostream:
void DayOfYear: :output()

37
38
39
40
41

{

}

cout << "month = ¥ << month
<< ", day = " << day << endl;

» pramb

Lion output

~

(continued)

Display 10.3 (1/2)

Display 10.3
(2/2)

DISPLAY 10.3 Class with a Member Function (part 2 of 2)

Sample Dialogue

Enter today's date:

Enter month as a number: 10
Enter the day of the month: 15
Enter your birthday:

Enter month as a number: 2
Enter the day of the month: 21
Today's date is month = 10, day
Your birthday is month = 2, day
Happy Unbirthday!

15
21

Encapsulation

2 Encapsulation is

= Combining a number of items, such as
variables and functions, into a single package
such as an object of a class

Problems With DayOfYear

2 Changing how the month is stored in the class
DayOfYear requires changes to the main program

2 If we decide to store the month as three
characters (JAN, FEB, etc.) instead of an int

= cin >> today.month will no longer work because
we now have three character variables to read

- if(today.month == birthday.month) will no
longer work to compare months

- The member function "output” no longer works

Ideal Class Definitions

2 Changing the implementation of DayOfYear
requires changes to the program that uses
DayOfYear

2 An ideal class definition of DayofYear could
be changed without requiring changes to
the program that uses DayOfYear

Fixing DayOfYear

2 To fix DayOfYear

- We need to add member functions to use when
changing or accessing the member variables

+ If the program (that uses DayOfYear) never
directly references the member variables
of DayOfYear, changing how the variables are
stored will not require changing the program

- We need to be sure that the program does not ever
directly reference the member variables

Public Or Private?

2 C++ helps us restrict the program from directly
referencing member variables

* Private members of a class can only be
referenced within the definitions of member
functions

« If the program (other than through member
functions) tries to access a private member, the
compiler gives an error message

- Private members can be variables or functions

Private Variables

2 Private variables cannot be accessed directly by the
program
- Changing their values requires the use of public
member functions of the class

- To set the private month and day variables in a new
DayOfYear class use a member function such as

volid DayOfYear::set(int new month, int new day)

{

month = new month;
day = new day;

Public or Private Members

2 The keyword private identifies the members of
a class that can be accessed only by member
functions of the class

- Members that follow the keyword private are
private members of the class

2 The keyword public identifies the members of
a class that can be accessed from outside the
class

- Members that follow the keyword public are public
members of the class

A New DayOfYear

1 The new DayOfYear class demonstrated in
Display 10.4...

- All member variables are private

- Uses member functions to do all manipulation
of the private member variables
» Private member variables and member

function definitions can be Display 10.4 (1)

changed without changes to the

program that uses DayOfYear Display 10.4 (2)

DISPLAY 10.4 Class with Private Members (part | of 2)

Nl el el e T
DOBDNDONE W DO BN WE WN

//Progrom to demonstrate the class myon'eor
finclude <iostream> 11 imoroved version
using namespoce std; DayOfYear that

class DayOfYear we aave In Displa
{
public:

void input();

void output();

void set(int new_month, int new_day);
//Precondition: new_month and new_day form a possible dote.
//Postcondition: The dote (s reset according to the arguments.

int get_month();
//Returns the month, 1 for Januwary, 2 for February, etc.

int get_doy();
J/Returns the day of the month.
privaote:
void check _date(); -
int month; - . taabaa
int day; - ‘ '

ki
int main()

{
DayOfYeor today, bach_birthday;
cout << “Enter today's dote:\n";
today . input();
cout << “Today's date is “;
today.output();

bach_birthday.set(3, 21);
cout << "). S. Bach's birthdoy is ~
bach_birthdoy.output();

if (today.get_month() == bach_birthday.get_month() &&
today.get_day() == bach_birthday.get_day())
cout << "Happy Birthday Johann Sebastian!\n";
else
cout << "Happy Unbirthday Johann Sebastian!\n™;
return ©;
}
//Uses iostream:
void DayOfYear::input()
{

cout << "Enter the month as o number: “;
(continued)

Display 10.4 (1/2)

DISPLAY 10.4 Class with Private Members (part 2 of 2)

42 cin > month; - -, Frvat v

43 cout << “Enter the day of the month: *; 7/ e used in member f

44 cin »» day; - “ thon aevinit

45 check_date(); - ¢

46 }

48 void DoyOfYear: :output() input would ask
<The rest of the definition of DayOfYear: :output is given in Display 10.3.> r Lo reenter t

49 {ate if The usar enter

50 void DoyOfYear::set(int new_month, int new_day) an incorvect date

1 {

52 month = new_month;

$3 day = new_day; The member function check date doe

54 check_date() ; not check for afl leaal dates, but it . l 10 4 2/2

56 plete by making It longer. Saa Self-Teot

57 wveoid DoyOfYear::check date() Exercise 14

8 {

59 if ((month < 1) || (month > 12) || (day < 1) || (day > 31))

60 {

61 cout << "Illegal date. Aborting progrom.\n";

62 exit(1); -

63 } The function exit is d

64 } f.~:<_ fy:v‘ ram

65

66 int DayOfYear::get_month()

67 {

68 return month;

69 }

70

71 int DayOfYear::get_day()

72 {

73 return day;

74)

Sample Dialogue

Enter today's date:

Enter the month as a number: 3

Enter the doy of the month: 21

Today's date is month « 3, day = 21

J. S. Bach's birthday is month = 3, day = 21
Happy Birthday Johonn Sebostion!

Using Private Variables

2 It is normal to make all member variables private

2 Private variables require member functions to
perform all changing and retrieving of values

- Accessor functions allow you to obtain the
values of member variables
- Example: get day in class DayOfYear
- Mutator functions allow you to change the values
of member variables
- Example: set in class DayOfYear

General Class Definitions

2 The syntax for a class definition is

class Class Name
{
public:
Member Specification 1
Member Specification 2

Member Specification 3
private:

Member Specification n+l

Member Specification n+2

}i

Declaring an Object

2 Once a class is defined, an object of the class is
declared just as variables of any other type
- Example:
To create two objects of type Bicycle:

class Bicycle

{

// class definition lines

}i

Bicycle my bike, your bike;

The Assignment Operator

2 Objects and structures can be assigned values
with the assignment operator (=)

 Example:
DayOfYear due date, tomorrow;

tomorrow.set (11, 19);

due date = tomorrow;

Program Example:
BankAccount Class

2 This bank account class allows
* Withdrawal of money at any time

- All operations normally expected of a bank
account (implemented with member
functions)

- Storing an account balance

 StorinDisplay 10.5 (1)te Display 10.5 (3)

Display 10.5 (2)] Display 10.5 (4)

The BankAccount Class (part 1 of 4)

//Program to demonstrate the class BankAccount,
#include <iostream>
using namespace std;

//Class for a bank account:
class BankAccount

{ . The member function
pubhc: / set (s owerioaded
void set(int dollars, int cents, double rate):
//Postcondition: The account balance has been set to/$dollars.cents;
//The interest rate has been set to rate percent.
void set(int dollars, double rate);
//Postcondition: The account balance has been set to $dollars.00.
//The interest rate has been set to rate percent.
void update():
//Postcondition: One year of simple interest has been
//added to the account balance.
double get_balance();
//Returns the current account balance.
double get_rate();
//Returns the current account interest rate as a percentage.
voild output(ostreasd outs),;
//Precondition: If outs is a file output stream, then
//outs has already been connected to a file.
//Postcondition: Account balance and interest rate have been written to the
//stream outs.
private:
double balance;
double interest_rate;
double fraction(double percent);
//Converts a percentage to a fraction. For example, fraction(50.3) returns 0.503.
|
int main()
{

BankAccount accountl, account2;
cout << "Start of Test:\n";

Display 10.5
(1/4)

The BankAccount Class (part 2 of 4)

}

accountl.set(123, 99, 3.0):
cout << "accountl initial statement:\n";
accountl.output(cout);

Calls to the overioaded
member function set

accountl.set (100, 5.0);
cout << "accountl with new setup:\n";
accountl.output(cout);

accountl.update();
cout << "accountl after update:\n";
accountl.output(cout);

account?2 = accountl;
cout << "account2:\n";
account2.output(cout);
return 0;

void BankAccount::set(int dollars, int cents, double rate)

{

if ((dollars < 0) || (cents < 0) || (rate < 0))

{
cout << "Illegal values for money or interest rate.\n";
exit(l);

}

balance = dollars + 0.01*cents; Definitions of overloaded

interest rate = rate: member function set

void BankAccount::set(int dollars, double rate)

{

if ((dollars < 0) || (rate < 0))

{
cout << "Illegal values for money or interest rate.\n";
exit(l);

}

balance = dollars;
interest rate « rate;

Display 10.5 (2/4)

Display 10.5
(3/4)

The BankAccount Class (part 3 of 4)

void BankAccount::update()
{

balance « balance + fraction(interest rate)*balance:

\ In the J,'_Y'.‘ nition l',‘.f 2 member

double BankAccount::fraction(double percent_value)
{ member function like this

return (percent_value/100.0);

function, you call another

}
double BankAccount::get_balance()
{
return balance;
}
double BankAccount::get_rate()
{ ,
return interest_rate; HVkn parkmesey SNl can
} be replaced with either cout
or with a file output stream
//Uses iostream: ‘,///
void BankAccount::output(ostreamd outs)
{

outs.setf(ios::fixed);

outs.setf(ios: :showpoint);

outs.precision(2);

outs << "Account balance $" << balance << endl;

outs << "Interest rate " << interest_rate << "¥" << endl;

Display 10.5
(4/4)

The BankAccount Class (part 4 of 4)

Sample Dialogue

Start of Test:

accountl initial statement:
Account balance $123.99
Interest rate 3.00%
accountl with new setup:
Account balance $100.00
Interest rate 5.00%
accountl after update:
Account balance $105.00
Interest rate 5.00%
account2:

Account balance $105.00
Interest rate 5.00%

Calling Public Members

2 Recall that if calling a member function from
the main function of a program, you must
include the object name:

accountl.update();

Calling Private Members

2 When a member function calls a private
member function, an object name is not used

- fraction (double percent);
IS a private member of the BankAccount class

- fraction is called by member function update
volid BankAccount::update()

{

balance = balance +
fraction(interest rate)* balance;

2 Objects of classes can be used as formal
parameters of a function

volid update(BankAccounté& old)

{
old.update();

Another example from Display 10.5

//Uses iostream:
void BankAccount::output(ostream& outs)

{
outs.setf(ios::fixed);
outs.setf(ios: :showpoint);
outs.precision(2);
outs << "Account balance $" << balance << endl;
outs << "Interest rate " << interest rate << "%" << endl;
}
int main()
{

BankAccount accountl (100, 2.3), account2;
accountl.output(cout);

Another example from Lab0O4_template.cpp

void CDAccount::input(istream& inStream)

{

}

inStream >> balance;
inStream >> interestRate;
inStream >> term;

int main()

{

double balance, intRate, int term;

CDAccount account = CDAccount(100.

account.output(cout);

cout << "Enter CD initial balance,
term: " << endl;

account.input(cin);

0, 10.0, 6);

interest rate,

<<

and

2 A function may refurn an object, i.e., the return type of a function
can be a class

BankAccout new account(BankAccount old)

{
BankAccount temp;
temp.set (0, old.get rate());
return temp;

}

BankAccount a;

a = new account(old account);

Constructors

2 A constructor can be used to initialize member
variables when an object is declared

- A constructor is a member function that is usually
public

- A constructor is automatically called when an object
of the class is declared

- A constructor's name must be the name of the class
- A constructor cannot return a value

No return type, not even void, is used in declaring or
defining a constructor

Constructor Declaration

QA constructor for the BankAccount class could
be declared as:

class BankAccount

{
public:
BankAccount (int dollars, int cents, double
rate);
//initializes the balance to S$dollars.cents
//initializes the interest rate to rate
percent

..//The rest of the BankAccount definition

Constructor Definition

2 The constructor for the BankAccount class could be defined as

> : :
BankAccount: :BankAccount (i1nt dollars, int cents,double
rate)

{
if ((dollars < 0) || (cents < 0) || (rate < 0))

{

cout << “Illegal values for money or rate\n”;
exit(1l);
}
balance = dollars + 0.01 * cents;
interest rate = rate;

Note that the class name and function name are the same

Overloading Constructors

2 Constructors can be overloaded by defining
constructors with different parameter lists

* Other possible constructors for the BankAccount
class might be

BankAccount (double balance, double interest rate);
BankAccount (double balance);
BankAccount (double interest rate);

BankAccount ();

Calling A Constructor (1)

2 A constructor is not called like a hormal member
function:

Calling A Constructor (2)

2 A constructor is called in the object declaration
BankAccount accountl (10, 50, 2.0);

Creates a BankAccount object and calls the
constructor to initialize the member variables

Or...

BankAccount accountl;

accountl = BankAccount (999, 99, 5.5);

//another object is created.

// For another example, see demo code.

//This is like an ordinary function call learned in CSl.

Or...

BankAccount * accountlPtr;

accountlPtr = new BankAccount(999, 99, 5.5);
// For another example, see demo code.

The Default Constructor

2 A default constructor uses no parameters

a2 A default constructor for the BankAccount class

could be declared in this way
class BankAccount

{
public:
BankAccount();
// initializes balance to $0.00
// initializes rate to 0.0%
.. // The rest of the class
definition

}i

Default Constructor Definition

(I

(I

The default constructor for the BankAccount

class could be defined as
BankAccount: :BankAccount()

{

balance = 0;
rate = 0.0;

}
It is a good idea to always include a default constructor
even if you do not want to initialize variables

Calling the Default Constructor

2 The default constructor is called during declaration of an object
2 An argument list is NOT used

BankAccount accountl;
//Correct.

//Uses the default BankAccount constructor
//when declaring an object.

BankAccount accountl;

acountl = BankAccount();
//Correct.

//Uses the default BankAccount constructor explicitly,
//when doing an assignment. For another example, see demo code.

BankAccount accountl();
//Does not correctly use the default constructor.

//In fact, the compiler thinks that this is a
//function declaration!

Default Constructors

2 If your program does not provide any constructor
for a class defined by you, C++ generates a
default one for you that does nothing.

2 If your program does provide some constructor
(maybe only one), but no default constructor, C++
does NOT generate a default one.

See the demo program...

Initialization Sections

a2 An initialization section in a function definition
provides an alternative way to initialize
member variables

BankAccount: :BankAccount(): balance(0),
interest rate(0.0);

{

// No code needed in this example

}
* The values in parenthesis are the initial values for

the member variables listed

Parameters and Initialization

2 Member functions with parameters can use
initialization sections

BankAccount: :BankAccount (int dollars, int cents, double
rate)
: balance (dollars + 0.01 * cents),
interest rate(rate)

{
if ((dollars < 0) || (cents < 0) || (rate < 0))
{
cout << “Illegal values for money or rate\n”;
exit(1l);
}
}

* Notice that the parameters can be arguments in the
initialization

Section 10.2 Exercises
2 Can you
- Describe the difference between a class and
a structure?
- Explain why member variables are usually private?

- Describe the purpose and usage of a constructor?

- Use an initialization section in a function definition?

10.3
Abstract Data Types

Abstract Data Types

2 A data type consists of a collection of values
together with a set of basic operations
defined on the values

- example: int type and its associated valid
operations

2 A data type is an Abstract Data Type (ADT)
if programmers using the type do not have
access to the details of how the values and
operations are implemented

- example: int, double

Classes To Produce ADTs

2 To define a class so it isan ADT

- Separate the specification of how the type is used
by a programmer from the details of how the type
is implemented

- Make all member variables private members
- Helper functions should be private members

- Basic operations a programmer needs should be
public member functions

- Fully specify how to use each public function

ADT Interface

2 The ADT interface tells how to use the ADT in
a program
- The interface consists of

» The public member functions’ declarations or
prototypes

- The comments that explain how to use those
functions

- The interface should be all that is heeded to
know how to use the ADT in a program

ADT Implementation

2 The ADT implementation tells how the interface is
realized in C++

- The implementation consists of
» The private members of the class

- The definitions of public and private member
functions

- The implementation of a class's interface is needed
to run a program that uses the class.

- The implementation is not needed to write the
main part of a program or any non-member functions

ADT Benefits

2 Changing an ADT implementation does not
require changing a program that uses the ADT

2 ADT's make it easier to divide work among
dif ferent programmers

* One or more can write the ADT

- One or more can write code that uses the
ADT

2 Writing and using ADTs breaks the larger
programming task into smaller tasks

Program Example
The BankAccount ADT

2 In the version of the BankAccount ADT shown in
Display 10.7.

- Data is stored as three member variables
+ The dollars part of the account balance
* The cents part of the account balance
* The interest rate

- This version stores the interest rate as a fraction
- The public portion of the class definition remains

sariibshengss fram the yepsianaf-Risplay 10.6
Display 10.6| |Display 10.7

Display 10.6
(1/3)

DISPLAY 10.6 Class with Constructors (part 1 of 3)

s
D LWoOoONOTWVE WN M

el el
W N

b
v B

//Program to demonstrate the class BankAccount.
#include <iostream>
using namespace std;

is an improved ve

BankAccount

//Class for a bank account:

class BankAccount

{

public:
BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

BankAccount(int dollars, double rate);
//Initializes the account balance to $dollars.00 and
//initializes the interest rate to rate percent.

BankAccount(); -«—————— Default constructor

//Initializes the account balance to $0.00 and the interest rate to 0.0%.

of BankAccount
":;:'.l"-""" :1" :F'.." (..‘f.-:J 55

cn n viepiay 1.2,

(continued)

DISPLAY 10.6 Class with Constructors (part 2 of 3)

16
17
18

19
20

21
22

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38

39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55

void update();
//Postcondition: One year of simple interest has been added to the account
//balance.

double get_balance();
//Returns the current account balance.

double get_rate();
//Returns the current account interest rate as a percentage.

void output(ostream& outs);

//Precondition: If outs is a file output streom, then

//outs has already been connected to a file.

//Postcondition: Account balance and interest rate have been written to the
//stream outs.

private:

1

int

}

double balance;
double interest_rate;

double fraction(double percent);
//Converts a percentage to a fraction. For exomple, fraction(56.3)
//returns 0.503.

”in() .'-;:f ‘:r f. ;‘Aavr- :;
-
BankAccount accountl(100, 2.3), account?;

cout << "accountl initialized as follows:\n";

accountl.output(cout);

cout << "account? initialized as follows:\n";

account2.output(cout); An explicit call to the constructor
accountl = BankAccount(999, 99, §5.5) ,A BankAccount : :BankAccount
cout << "accountl reset to the following:\n";

accountl,output(cout);

return 0;

BankAccount: :BankAccount(int dollars, int cents, double rate)

{

if ((dollars < @) || (cents < @) || (rate < ©))
{

cout << "Illegal values for money or interest rate.\n";
exit(l);

(continued)

Display 10.6 (2/3)

Display 10.6
(3/3)

DISPLAY 10.6 Class with Constructors (part 3 of 3)

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

balance = dollars + 0.01*cents;
interest_rate = rate;

}
BankAccount: :BankAccount(int dollars, double rate)
{
if ((dollars < ©) || (rate < 0))
{
cout << "Illegal values for money or interest rate.\n";
exit(l);
}
balance = dollars;
interest_rate = rate;
}
BankAccount: :BankAccount() : balance(®), interest_rate(0.0)
{ <Definitions of the other member functions
//Body intentionally empty are the same as in Display 10.5.>
}

Screen Output

accountl initialized as follows:
Account balance $100.00
Interest rate 2.30%

account2 initialized as follows:
Account balance $0.00

Interest rate 0.60%

accountl reset to the following:
Account balance $999.99
Interest rate 5.50%

DISPLAY 10.7 Alternative BankAccount Class Implementation (part | of 3)

1 //Demonstrates an alternative implementation of the closs BankAccount.
2 #include <ilostreom>

3 #include <cmath> Notice that the public members of

4 wusing nomespace std; BankAccount look and behave

5 J/Class for a bank account: exactly the same ao in Dieplay 10.6

6 closs BankAccount

7 {

8 public:

9 BonkAccount(int dollars, int cents, double rate);

10 //Initializes the account balance to Sdollors.cents and

11 J/initializes the interest rote to rate percent.

12 BonkAccount(int dollars, double rate);

13 //Initializes the account balance to Sdollors.09 and

14 J/initializes the interest rote to rate percent.

15 BonkAccount();

16 //Initializes the account balance to $6.66 and the interest rate to 6.0%.
17 void update();

18 //Postcondition: One year of simple interest has been added to the account
19 //balance,

20 double get_balance();

21 //Returns the current account balance.

22 double get_rate();

23 //Returns the current account interest rate 0s a percentage.

24 void output(ostreant outs);

25 //Precondition: If outs is a file output streom, then

26 //outs has already been connected to o file.

27 J//Postcondition: Account balance and interest rate

28 //have been written to the stream outs.

29 private:

30 int dollars_part;

31 int cents_part;

32 double interest_rate;//expressed as a fraction, for exomple, 0.857 for 5.7
33 double froaction(dowble percent);

34 //Converts a percentage to a froction. For exomple, froction(50.3)
35 //returns 0.503.

36 douvble percent(double fraction_value) je— — o o o

37 //Converts a froction to a percentoge. For exomple, percent(6.563)
18 J/returns 50.3.

39

(continued)

Display 10.7 (1/3)

DISPLAY 10.7 Alternative BankAccount Class Implementation (part 2 of 3)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
7
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83

int main()

{
BonkAccount accountl(166, 2.3), account2;

cout << “accountl initialized as follows:\n";w
accountl.output(cout); ‘
cout << “account2 initialized as follows:\n";
account2.output(cout);

occountl = BankAccount(999, 99, 5.5);

cout << "accountl reset to the following:\n";
accountl.output(cout); the body of maln is identical {
return 9; e Pody « —h

} ient ptothatin i
BankAccount: :BankAccount(int dollars, int cents, dowble rate)

{
if ((dollars < ©) || (cents < ©) || (rate < 8))

{

cout << "Illegal values for money or interest rate.\n";

exit(l);
} n the old implementat
dollars_part = dollars; o l' . e
cents_part = cents; ,aid‘({" D
interest_rate =~ fraction(rate); orupdate. i | ¥

} fraction is instead used ir

{ofinir

BankAccount: :BankAccount(int dollars, double rate)

{
if ((dollars < ©) || (rate < 8))
{
cout << "Illegal values for money or interest rate.\n";
exit(l);
}
dollars_part = dollars;
cents_part = 0;
interest_rate = fraction(rate);
}

BankAccount: :BankAccount() : dollars_part(0), cents_part(0), interest_rate(0.0)
{

}

//Body intentionally empty.

(continued)

Display 10.7 (2/3)

DISPLAY 10.7 Alternative BankAccount Class Implementation (part 3 of 3)

84
85
86
87
88
89
90
22
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

double BankAccount::fraction(double percent_value)

{
}

return (percent_value/100.0);

//Uses cmath:

void BankAccount: :update()
{
double balance = get_balance();
balance « balance + interest_rate*balance;
dollars_part = floor(balance);
cents_part « floor((balance — dollars_part)*160);
}
double BankAccount::get_balance()
{
return (dollars_part + 0.81*cents_part);
}
double BankAccount::percent(double fraction_value)

{

return (fraction_value*100);

}
double BankAccount::get_rate()
{
return percent(interest_rate);
}

//Uses iostream:

void BankAccount: :output(ostreamd outs)

{
outs.setf(ios::fixed); E
outs.setf(ios::showpoint); ¥
outs.precision(2);

outs << "Account balance $" << get_balance() << endl;
<< get_rate() << "%" << endl;

outs << "Interest rate

1 of
W 4l y

get_balance and get_rate

Display 10.7 (3/3)

Interface Preservation

2 To preserve the interface of an ADT so that
programs using it do not need to be changed

* Public member declarations cannot be changed

* Public member definitions (i.e., implementation
or realization) can be changed

* Private member functions can be added,
deleted, or changed

Information Hiding

2 Information hiding was referred to earlier as
writing functions so they can be used like
black boxes

2 ADT's does information hiding because
- The interface is all that is needed to use the ADT

- Implementation details of the ADT are not needed
to know how to use the ADT

- Implementation details of the data values are not
needed to know how to use the ADT

Section 10.3 Exercises

2 Can you
- Describe an ADT?

* Describe how to implement an ADT in C++?
- Define the interface of an ADT?

* Define the implementation of an ADT?

10.4

Introduction to Inheritance

Inheritance

2 Inheritance refers to derived classes
- Derived classes are obtained from another class
by adding features
- A derived class inherits the member functions and
variables from its parent class without having to re-
write them

Inheritance Example

2 Natural hierarchy of bank
accounts

2 Most general: A Bank
Account stores a balance

2 A Checking Account "IS
A" Bank Account that
allows customers to write
checks

2 A Savings Account "IS A"
Bank Account without
checks but higher interest

A Class Hierarchy

Bank Account

A

Checking Account Savings Account

Accounts are more
specific as we go down
the hierarchy

Each box can be a class

Display 10.8

A Class Hierarchy

Bank Account

L]

Checking Account Savings Account

T i
Money Market ‘ l CD Account
Account

Inheritance Relationships

2 The more specific class is a derived or child class

2 The more general class is the base, super, or parent
class

2 If class B is derived from class A
- Class B is a derived class of class A
- Class B is a child of class A
- Class A is the parent of class B

- Class B inherits the member functions and
variables of class A

Define Derived Classes

1d Give the class name as normal, but add a colon and then
the name of the base class

class SavingsAccount : public BankAccount

{
}

(I

Objects of type SavingsAccount can access member
functions defined in SavingsAccount or

BankAccou Display 10.9 (1 '3)

<Everything from Display 10.6 should be inserted here except for themain function.>

1 class SavingsAccount : public BankAccount Thec?fonindicatesthatthecb?%
p) { -— SavingsAccount is denved from
3 public: —— theclass BankAccount

4 SavingsAccount(int dollars, int cents, double rate);

5 //0ther constructors would go here ,
6 void deposit(int dollars, int cents); -« memmb”fumwnsor
7 //Adds $dollars.cents to the account balance pieanea ey
8 void withdraw(int dollars, int cents); :

9 //Subtracts $dollars.cents from the account balance
10 private:

11 K

12 int main()

13 {

14 SavingsAccount account(100, 50, 5.5);

15 account.output(cout); D . I 10 9
16 cout << endl; ISP GY .
17 cout << "Depositing $10.25." << endl;

18 account.deposit(10,25); 1/3

19 account.output(cout);
20 cout << endl;
21 cout << "Withdrawing $11.80." << endl;

22 account.withdraw(11,80);
23 account.output(cout);

24 cout << endl;

25 return 0;

27
28
29
30

31

32
33

34
35
36
37
38

—

-~
—

— Note the preceding colon.

. The SavingsAccount constructo
D IS p IGY 10 . 9 (2 / 3) _—Invokes the BankAccount co;:tru;tor.

-~

-
- -
-

-

i

SavingsAccount: :SavingsAccount(int dollars, int cents, double rate):

{

}

BankAccount(dollars, cents, rate)

//deliberately empty

vo1d SavingsAccount::deposit(int dollars, int cents)

{

The deposi t funiction adds the new
double balance = get_balance(); amount to the balance and changes the
balance += dollars: member variables via the set function

balance += (static_cast<double>(cents) / 100);
int new_dollars = static_cast<int>(balance);
int new_cents = static _cast<int>((balance - new dollars) * 100);

For more information on type casting,
http://www.cplusplus.com/doc/tutorial/typecasting/

39
40

41
42
43
44
45
46
47
48
49

set(new_dollars, new_cents, get_rate());

}
_ _ Thewithdraw
void SavingsAccount: :withdraw(int dollars, int cents) function subtracts
{ the amount from the
double balance = get_balance(); balance and changes
balance -= dollars; the member variables
balance -= (static_cast<double>(cents) / 100); via the set function
int new_dollars = static_cast<int>(balance);
int new_cents = static_cast<int>((balance - new_dollars) * 100);
set(new_dollars, new_cents, get_rate());

}

Screen Output

Account balance $100.50
Interest rate 5.50%
Depositing $10.25.
Account balance $110.75

erest rate o0 Display 10.9(3/3)

Account balance $98.95
Interest rate 5.50%

Section 10.4 Exercises

2 Can you
- Define object?
- Define class?

- Describe the relationship between parent and child
classes?

- Describe the benefit of inheritance?

