
Chapter 10

Defining Classes

What Is a Class?

❑ A class is a data type whose variables are objects
❑ Some pre-defined data types you have used are

■ int
■ char

❑ You can define your own classes
■ define your own types
■ compare with pre-defined data types, define

new names for existing types, etc.

Class Definitions

❑ A class definition includes
■ A description of the kinds of values the

variable can hold
■ A description of the member functions 

❑ We will start by defining structures as a first  
step toward defining classes

Overview

10.1 Structures

10.2 Classes

10.3 Abstract Data Types

10.4 Introduction to Inheritance

10.1

Structures

Structures

❑ A structure can be viewed as an object
■ Contains no member functions  

(The structures used here have no member functions)  

■ Contains multiple values of possibly different types
■ The multiple values are logically related as a single item
■ Example: A bank Certificate of Deposit (CD)  

 has the following values:  
 a balance 
 an interest rate 
 a term (months to maturity)

The CD Definition
❑ The Certificate of Deposit structure can be 

defined as  
struct CDAccount  

 { 
 double balance; 

double interest_rate;  
 int term; //months to
maturity  

};
❑ Keyword struct begins a structure definition
❑ CDAccount is the structure tag
❑ Member names are identifiers declared in the braces

Remember this semicolon!

Using the Structure

❑ Structure definition is generally placed outside 
any function definition
■ This makes the structure type available to all code  

that follows the structure definition
❑ To declare two variables of type CDAccount: 

 
 CDAccount my_account, your_account;

■ My_account and your_account contain distinct  
member variables balance, interest_rate, and term

The Structure Value

❑ The Structure Value
■ Consists of the values of the member variables

of the structure 

❑ The value of an object of type CDAccount
■ Consists of the values of the member variables 
 balance  
 interest_rate  

term

Specifying Member Variables
❑ Member variables are specific to the  

structure variable in which they are declared  

■ Syntax to specify a member variable:  
 Structure_Variable_Name.Member_Variable_Name  

■ Given the declaration: 
 CDAccount my_account, your_account;  

■ Use the dot operator to specify a member variable 
my_account.balance  

 my_account.interest_rate 
my_account.term

Using Member Variables

❑ Member variables can be used just as any other  
variable of the same type
■ my_account.balance = 1000;  
your_account.balance = 2500;
■ Notice that my_account.balance and
your_account.balance  
 are different variables!

■ my_account.balance = my_account.balance +
interest;

Display 10.1 (1)
Display 10.1 (2)

Display 10.1
(1/2)

Display 10.1  
(2/2)

Display 10.2

Duplicate Names
❑ Member variable names duplicated between  

structure types are not a problem.  
 
 
 
 

 

❑ super_grow.quantity and apples.quantity are  
different variables stored in different locations

struct FertilizerStock  
{  
 double quantity;  
 double nitrogen_content;  
}; 
 
FertilizerStock super_grow;

struct CropYield 
{  
 int quantity;  
 double size;  
}; 
 
CropYield apples;

Structures as Arguments

❑ Structures can be arguments in function calls
■ The formal parameter can be call-by-value
■ The formal parameter can be call-by-reference

❑ Example:  
void get_data(CDAccount& the_account);
■ Uses the structure type CDAccount we saw

earlier as the type for a call-by-reference
parameter

Assignment and Structures

❑ The assignment operator can be used to assign  
values to structure types

❑ Using the CDAccount structure again: 
CDAccount my_account, your_account;  
my_account.balance = 1000.00;  
my_account.interest_rate = 5.1;  
my_account.term = 12;  
your_account = my_account;

■ Assigns all member variables in your_account the  
corresponding values in my_account

Structures as Return Types

❑ Structures can be the type of a value returned by 
a function

❑ Example:  
CDAccount shrink_wrap(double the_balance,  
 double the_rate,  
 int the_term)  
{  
 CDAccount temp;  
 temp.balance = the_balance;  
 temp.interest_rate = the_rate;  
 temp.term = the_term;  
 return temp;  
}

STOPPED HERE ON Feb 7.

Using Function shrink_wrap

❑ shrink_wrap builds a complete structure value 
in temp, which is returned by the function

❑ We can use shrink_wrap to give a variable of  
type CDAccount a value in this way:  

CDAccount new_account;
new_account = shrink_wrap(1000.00, 5.1,
11);

The above assignment operator copies the
whole structure content (given by the return
statement) into new_account.

Hierarchical Structures

❑ Structures can contain member variables that
are also structures 
 
 
 
 
 
 

❑ struct PersonInfo contains a Date structure

struct Date  
{  
 int month;
 int day;
 int year;  
};

struct PersonInfo 
{  
 double height;  
 int weight;  
 Date birthday;  
}; 

Using PersonInfo
❑ A variable of type PersonInfo is declared by
 

 PersonInfo person1;

❑ To display the birth year of person1, first access the 
 birthday member of person1  
 
 cout << person1.birthday…  

❑ But we want the year, so we now specify the  
year member of the birthday member  
 
 cout << person1.birthday.year;

Initializing Classes

❑ A structure can be initialized when declared
❑ Example:  
 struct Date 

{  
 int month; 
 int day; 
 int year; 

};

Can be initialized in this way  
 Date due_date = {12, 31,
2004};
Compare with array initialization

Section 10.1 Exercise

❑ Can you  

■ Write a definition for a structure type for
records consisting of a person’s wage rate,
accrued vacation (in whole days), and status
(hourly or salaried). Represent the status as
one of the two character values ‘H’ and ‘S’.
Call the type EmployeeRecord.

10.2

Classes

Classes

❑ A class is a data type whose variables are  
called objects
■ The definition of a class includes

■ Description of the kinds of values of the member  
variables

■ Description of the member functions
■ A class description is somewhat like a
structure definition plus the member
functions

A Class Example

❑ To create a new type named DayOfYear as  
a class definition
■ Decide on the values to represent
■ This example’s values are dates such as July 4  

using an integer for the number of the month
■ Member variable month is an int (Jan = 1, Feb = 2, etc.)
■ Member variable day is an int

■ Decide on the member functions needed
■ We use just one member function named output

Class DayOfYear Definition

 class DayOfYear  
{  

 public:  
 void output();  
 int month;  
 int day;  

};
Member Function Declaration

Public or Private Members

❑ The keyword public identifies the members of  
a class that can be accessed from outside the  
class
■ Members that follow the keyword public are public  

members of the class
❑ The keyword private identifies the members of  

a class that can be accessed only by member  
functions of the class
■ Members that follow the keyword private are  

private members of the class

Defining a Member Function

❑ Member functions are declared in the class 
declaration

❑ Member function definitions identify the class 
in which the function is a member
 void DayOfYear::output()  

{  
 cout << “month = “ << month  
 << “, day = “ << day  

<< endl;  
 }

Member Function Definition

❑ Member function definition syntax: 
Returned_Type
Class_Name::Function_Name(Parameter_List)  
{  
 Function Body Statements  
}

■ Example:
void DayOfYear::output()
{  
 cout << “month = “ << month  
 << “, day = “ << day << endl;

}

The ‘::’ Operator

❑ ‘::’ is the scope resolution operator
■ Tells the class a member function is a member

of  

■ void DayOfYear::output() indicates
that function output is a member of the
DayOfYear class 

■ The class name that precedes ‘::’ is a type
qualifier

‘::’ and ‘.’

:: used with classes to identify a member  
 void DayOfYear::output()  
 {  
 // function body  
 }  

. used with variables (or objects) to identify a member 
 DayOfYear birthday; 

birthday.output();

Calling Member Functions

❑ Calling the DayOfYear member function
output  
is done in this way:  

DayOfYear today, birthday;  
today.output();  
birthday.output();

■ Note that today and birthday have their
own versions of the month and day variables
for use by the output functionDisplay 10.3 (1)

Display 10.3 (2)

Display 10.3 (1/2)

Display 10.3  
(2/2)

Encapsulation

❑ Encapsulation is
■ Combining a number of items, such as

variables and functions, into a single package
such as an object of a class

Problems With DayOfYear

❑ Changing how the month is stored in the class 
DayOfYear requires changes to the main program

❑ If we decide to store the month as three  
characters (JAN, FEB, etc.) instead of an int
■ cin >> today.month will no longer work because 

we now have three character variables to read
■ if(today.month == birthday.month) will no

longer work to compare months
■ The member function “output” no longer works

Ideal Class Definitions

❑ Changing the implementation of DayOfYear  
requires changes to the program that uses  
DayOfYear

❑ An ideal class definition of DayOfYear could  
be changed without requiring changes to 
the program that uses DayOfYear

Fixing DayOfYear

❑ To fix DayOfYear
■ We need to add member functions to use when  

changing or accessing the member variables
■ If the program (that uses DayOfYear) never
directly references the member variables
of DayOfYear, changing how the variables are
stored will not require changing the program

■ We need to be sure that the program does not ever  
directly reference the member variables

Public Or Private?

❑ C++ helps us restrict the program from directly
referencing member variables
■ Private members of a class can only be

referenced within the definitions of member
functions
■ If the program (other than through member

functions) tries to access a private member, the
compiler gives an error message

■ Private members can be variables or functions

Private Variables

❑ Private variables cannot be accessed directly by the
program
■ Changing their values requires the use of public 

member functions of the class
■ To set the private month and day variables in a new  
DayOfYear class use a member function such as 

void DayOfYear::set(int new_month, int new_day)
{  
month = new_month;  
day = new_day;

}

Public or Private Members

❑ The keyword private identifies the members of  
a class that can be accessed only by member  
functions of the class
■ Members that follow the keyword private are  

private members of the class
❑ The keyword public identifies the members of  

a class that can be accessed from outside the  
class
■ Members that follow the keyword public are public  

members of the class

A New DayOfYear

❑ The new DayOfYear class demonstrated in  
Display 10.4…
■ All member variables are private
■ Uses member functions to do all manipulation

of the private member variables
■ Private member variables and member

function definitions can be 
changed without changes to the 
program that uses DayOfYear

Display 10.4 (1)

Display 10.4 (2)

Display 10.4 (1/2)  

Display 10.4 (2/2)  

Using Private Variables

❑ It is normal to make all member variables private
❑ Private variables require member functions to  

perform all changing and retrieving of values
■ Accessor functions allow you to obtain the  

values of member variables
■ Example: get_day in class DayOfYear

■ Mutator functions allow you to change the values  
of member variables
■ Example: set in class DayOfYear

General Class Definitions

❑ The syntax for a class definition is
 class Class_Name  
{  
 public:  
 Member_Specification_1  
 Member_Specification_2  

…  
Member_Specification_3  

private:  
Member_Specification_n+1  
Member_Specification_n+2  
…  

};

Declaring an Object

❑ Once a class is defined, an object of the class is  
declared just as variables of any other type
■ Example:
To create two objects of type Bicycle:

class Bicycle  
{  
 // class definition lines  
};  
 
 Bicycle my_bike, your_bike;

The Assignment Operator

❑ Objects and structures can be assigned values 
with the assignment operator (=)
■ Example:  

DayOfYear due_date, tomorrow;  

tomorrow.set(11, 19);  

due_date = tomorrow;

Program Example:  
BankAccount Class

❑ This bank account class allows
■ Withdrawal of money at any time
■ All operations normally expected of a bank

account (implemented with member
functions)

■ Storing an account balance
■ Storing the account’s interest rateDisplay 10.5 (1)

Display 10.5 (2)
Display 10.5 (3)
Display 10.5 (4)

Display 10.5  
(1/4)  

Display 10.5 (2/4)  

Display 10.5  
(3/4)

Display 10.5  
(4/4)

Calling Public Members

❑ Recall that if calling a member function from
the main function of a program, you must
include the object name:

 
 account1.update();

Calling Private Members

❑ When a member function calls a private  
member function, an object name is not used
■ fraction (double percent);  

is a private member of the BankAccount class
■ fraction is called by member function update  
void BankAccount::update()  
{  
 balance = balance +  

fraction(interest_rate)* balance;  
}

❑ Objects of classes can be used as formal
parameters of a function

void update(BankAccount& old)
{

old.update();
}

//Uses iostream:
void BankAccount::output(ostream& outs)
{
 outs.setf(ios::fixed);
 outs.setf(ios::showpoint);
 outs.precision(2);
 outs << "Account balance $" << balance << endl;
 outs << "Interest rate " << interest_rate << "%" << endl;
}
int main()
{
 BankAccount account1(100, 2.3), account2;

 account1.output(cout);
}

Another example from Display 10.5

Another example from Lab04_template.cpp
void CDAccount::input(istream& inStream)
{

inStream >> balance;
inStream >> interestRate;
inStream >> term;

}
int main()
{

double balance, intRate, int term;
CDAccount account = CDAccount(100.0, 10.0, 6);
account.output(cout);
cout << "Enter CD initial balance, interest rate, " << " and
term: " << endl;
account.input(cin);

❑ A function may return an object, i.e., the return type of a function
can be a class

BankAccout new_account(BankAccount old)
{

BankAccount temp;
temp.set(0, old.get_rate());
return temp;

}

BankAccount a;
a = new_account(old_account);

Constructors
❑ A constructor can be used to initialize member  

variables when an object is declared
■ A constructor is a member function that is usually  

public
■ A constructor is automatically called when an object  

of the class is declared
■ A constructor’s name must be the name of the class
■ A constructor cannot return a value

No return type, not even void, is used in declaring or
defining a constructor

Constructor Declaration
❑ A constructor for the BankAccount class could  

be declared as:  
 
 class BankAccount  

{  
 public: 
 BankAccount(int dollars, int cents, double
rate);  

 //initializes the balance to $dollars.cents  
 //initializes the interest rate to rate

percent  
 
 …//The rest of the BankAccount definition 
 };

Constructor Definition
❑ The constructor for the BankAccount class could be defined as
 

BankAccount::BankAccount(int dollars, int cents,double
rate)  
 {  
 if ((dollars < 0) || (cents < 0) || (rate < 0))  
 {  
 cout << “Illegal values for money or rate\n”;  
 exit(1);  
 }  
 balance = dollars + 0.01 * cents;  
 interest_rate = rate;  
}  

■ Note that the class name and function name are the same

Overloading Constructors

❑ Constructors can be overloaded by defining 
constructors with different parameter lists
■ Other possible constructors for the BankAccount  

class might be 

BankAccount (double balance, double interest_rate);  

BankAccount (double balance);  

BankAccount (double interest_rate);  

BankAccount ();

Calling A Constructor (1)

❑ A constructor is not called like a normal member  
function: 
 
 BankAccount account1;  
 
 account1.BankAccount(10, 50, 2.0);

Calling A Constructor (2)
❑ A constructor is called in the object declaration
BankAccount account1(10, 50, 2.0);

■ Creates a BankAccount object and calls the  
constructor to initialize the member variables

Or...
BankAccount account1;
account1 = BankAccount(999, 99, 5.5);
//another object is created.
// For another example, see demo code.
//This is like an ordinary function call learned in CS1.

Or...
BankAccount * account1Ptr;
account1Ptr = new BankAccount(999, 99, 5.5);
// For another example, see demo code.

The Default Constructor

❑ A default constructor uses no parameters
❑ A default constructor for the BankAccount class 

could be declared in this way 
class BankAccount  

 {  
 public:  
 BankAccount(); 
 // initializes balance to $0.00  
 // initializes rate to 0.0% 
 … // The rest of the class
definition  

};

Default Constructor Definition

❑ The default constructor for the BankAccount  
class could be defined as 

BankAccount::BankAccount()  
 { 
 balance = 0; 
 rate = 0.0; 
 }

❑ It is a good idea to always include a default constructor
even if you do not want to initialize variables

Calling the Default Constructor
❑ The default constructor is called during declaration of an object
❑ An argument list is NOT used  

BankAccount account1;  
//Correct.
//Uses the default BankAccount constructor  
//when declaring an object.

 BankAccount account1;
acount1 = BankAccount();  
//Correct.

 //Uses the default BankAccount constructor explicitly,
 //when doing an assignment. For another example, see demo code.
 

BankAccount account1();  
//Does not correctly use the default constructor.

 //In fact, the compiler thinks that this is a
 //function declaration!

Default Constructors

❑ If your program does not provide any constructor
for a class defined by you, C++ generates a
default one for you that does nothing.

❑ If your program does provide some constructor
(maybe only one), but no default constructor, C++
does NOT generate a default one.

See the demo program...

Initialization Sections

❑ An initialization section in a function definition  
provides an alternative way to initialize  
member variables
 BankAccount::BankAccount(): balance(0),  
 interest_rate(0.0); 
 
{  
 // No code needed in this example  
}

■ The values in parenthesis are the initial values for
the member variables listed

Parameters and Initialization
❑ Member functions with parameters can use  

initialization sections  
 
BankAccount::BankAccount(int dollars, int cents, double
rate)  

 : balance (dollars + 0.01 * cents),  
 interest_rate(rate) 
{  
 if ((dollars < 0) || (cents < 0) || (rate < 0))  
 {  
 cout << “Illegal values for money or rate\n”;  
 exit(1);  
 }  
}

■ Notice that the parameters can be arguments in the
initialization

Section 10.2 Exercises

❑ Can you
■ Describe the difference between a class and 

 a structure? 

■ Explain why member variables are usually private? 

■ Describe the purpose and usage of a constructor?  

■ Use an initialization section in a function definition?

10.3

Abstract Data Types

Abstract Data Types

❑ A data type consists of a collection of values 
together with a set of basic operations  
defined on the values
■ example: int type and its associated valid

operations
❑ A data type is an Abstract Data Type (ADT)  

if programmers using the type do not have 
access to the details of how the values and  
operations are implemented
■ example: int, double

Classes To Produce ADTs

❑ To define a class so it is an ADT
■ Separate the specification of how the type is used  

by a programmer from the details of how the type 
is implemented

■ Make all member variables private members
■ Helper functions should be private members
■ Basic operations a programmer needs should be  

public member functions
■ Fully specify how to use each public function

ADT Interface

❑ The ADT interface tells how to use the ADT in  
a program
■ The interface consists of

■ The public member functions’ declarations or
prototypes

■ The comments that explain how to use those
functions

■ The interface should be all that is needed to
know how to use the ADT in a program

ADT Implementation

❑ The ADT implementation tells how the interface is
realized in C++
■ The implementation consists of

■ The private members of the class
■ The definitions of public and private member

functions
■ The implementation of a class’s interface is needed

to run a program that uses the class.
■ The implementation is not needed to write the  

main part of a program or any non-member functions

ADT Benefits

❑ Changing an ADT implementation does not
require changing a program that uses the ADT

❑ ADT’s make it easier to divide work among  
different programmers
■ One or more can write the ADT
■ One or more can write code that uses the

ADT
❑ Writing and using ADTs breaks the larger  

programming task into smaller tasks

Program Example  
The BankAccount ADT

❑ In the version of the BankAccount ADT shown in
Display 10.7.
■ Data is stored as three member variables

■ The dollars part of the account balance
■ The cents part of the account balance
■ The interest rate

■ This version stores the interest rate as a fraction
■ The public portion of the class definition remains 

unchanged from the version of Display 10.6

Display 10.7Display 10.6
Same interface, different implementation

Display 10.6  
(1/3)

Display 10.6 (2/3)  

Display 10.6  
(3/3)

Display 10.7 (1/3)  

Display 10.7 (2/3)  

Display 10.7 (3/3)  

Interface Preservation

❑ To preserve the interface of an ADT so that  
programs using it do not need to be changed
■ Public member declarations cannot be changed
■ Public member definitions (i.e., implementation

or realization) can be changed
■ Private member functions can be added,

deleted, or changed

Information Hiding

❑ Information hiding was referred to earlier as  
writing functions so they can be used like  
black boxes

❑ ADT’s does information hiding because
■ The interface is all that is needed to use the ADT
■ Implementation details of the ADT are not needed  

to know how to use the ADT
■ Implementation details of the data values are not  

needed to know how to use the ADT

Section 10.3 Exercises

❑ Can you
■ Describe an ADT? 

■ Describe how to implement an ADT in C++? 

■ Define the interface of an ADT? 

■ Define the implementation of an ADT?

10.4

Introduction to Inheritance

Inheritance

❑ Inheritance refers to derived classes
■ Derived classes are obtained from another class  

by adding features
■ A derived class inherits the member functions and

variables from its parent class without having to re-
write them

Inheritance Example
❑ Natural hierarchy of bank

accounts
❑ Most general: A Bank

Account stores a balance
❑ A Checking Account “IS

A” Bank Account that
allows customers to write
checks

❑ A Savings Account “IS A”
Bank Account without
checks but higher interest

Accounts are more
specific as we go down
the hierarchy

Each box can be a class

Display 10.8

Inheritance Relationships
❑ The more specific class is a derived or child class
❑ The more general class is the base, super, or parent

class
❑ If class B is derived from class A

■ Class B is a derived class of class A
■ Class B is a child of class A
■ Class A is the parent of class B
■ Class B inherits the member functions and

variables of class A

Define Derived Classes

❑ Give the class name as normal, but add a colon and then
the name of the base class

❑ Objects of type SavingsAccount can access member
functions defined in SavingsAccount or
BankAccount

class SavingsAccount : public BankAccount
{
 …
}

Display 10.9 (1-3)

Display 10.9
(1/3)

Display 10.9 (2/3)

For more information on type casting,
http://www.cplusplus.com/doc/tutorial/typecasting/

Display 10.9(3/3)

Section 10.4 Exercises

❑ Can you
■ Define object?
■ Define class?
■ Describe the relationship between parent and child 

classes?
■ Describe the benefit of inheritance?

