
11.2
Overloading Operators

Overloading Operators

■ In the Money class, function add was used to  
add two objects of type Money 

■ In this section we see how to use the '+' operator  
to make the following code legal: 
 
 Money total, cost, tax;  
 …  
 total = cost + tax;  
 // instead of total = add(cost, tax);

Operators As Functions

■ An operator is a function used differently than  
an ordinary function
■ An ordinary function call enclosed its arguments in  

parenthesis 
 add(cost, tax) 

■ With a binary operator, the arguments are on either  
side of the operator 
 cost + tax

Operator Overloading

■ Operators can be overloaded
■ The definition of operator + for the Money  

class is nearly the same as member function add
■ To overload the + operator for the Money class

■ Use the name + in place of the name add
■ Use keyword operator in front of the +
■ Example:
friend Money operator + (const Money& amount1,
 const Money&

amount2)

Operator Overloading Rules

■ At least one argument of an overloaded operator  
must be of a class type

■ An overloaded operator can be a friend of a class
■ The number of arguments for an operator cannot  

be changed
■ The precedence of an operator cannot be changed

■ ., ::, *, and ? cannot be overloaded

Program Example:  
Overloading Operators

!

!
■ The Money class with overloaded operators 

+ and == is demonstrated in

Display 11.5 (1)
Display 11.5 (2)

Display 11.5  
(1/2)

Display 11.5 (2/2)  

Automatic Type Conversion

■ With the right constructors, the system can do 
type conversions for your classes
■ The following code (from Display 11.5) actually works 

 Money base_amount(100, 60), full_amount; 
 full_amount = base_amount + 25; 

■ The integer 25 is converted to type Money so it  
can be added to base_amount!

■ How does that happen?

Type Conversion Event 1

■ When the compiler sees base_amount + 25,  
it first looks for an overloaded + operator to  
perform 
 Money_object + some-integer  

■ If it exists, it might look like this 
friend Money operator +(const Money& amount1, 
 const int& amount2);

Type Conversion Event 2

■ When the appropriate version of + is not found,  
the compiler looks for a constructor that takes  
a single integer 

■ The Money constructor that takes a single
parameter of type long will work  

■ The constructor Money(long dollars) converts 25  
to a Money object so the two values can be added!

Type Conversion Again

■ Although the compiler was able to find a  
way to add  
 base_amount + 25  
 
this addition will cause an error  
 base_amount + 25.67  

■ There is no constructor in the Money class
that takes a single argument of type double

A Constructor For double

■ To permit base_amount + 25.67, the following  
constructor should be declared and defined  
 
class Money  
{  
 public: 
 …  
 Money(double amount);  
 // Initialize object so its value is $amount  
 …

Overloading Unary Operators

■ Unary operators take a single argument
■ The unary – operator is used to negate a value 

 x = -y 

■ ++ and - - are also unary operators
■ Unary operators can be overloaded

■ The Money class of Display 11.6 can include
■ A binary – operator
■ A unary – operator

Overloading -

■ Overloading the – operator with two parameters 
allows us to subtract Money objects as in  
 Money amount1, amount2, amount2; 
 …  
 amount3 = amount1 – amount2;

■ Overloading the – operator with one parameter 
allows us to negate a money value like this 
 amount3 = - amount1;

Display 11.6

Display  
11.6  

Overloading << and >>

■ The insertion operator << is a binary operator
■ The first operand is the output stream
■ The second operand is the value following <<  
 
 cout << "Hello out there.\n";

Operand 1

Operator

Operand 2

Replacing Function output

■ Overloading the << operator allows us to  
use << instead of Money's output function
■ Given the declaration: Money amount(100);  

  
 amount.output(cout); 

 can become 

 cout << amount;

What Does << Return?

■ Because << is a binary operator  
 cout << "I have " << amount << " in my purse.";  
 
seems as if it could be grouped as 
((cout << "I have") << amount) << "in my purse.";  

■ To provide cout as an argument for << amount, 
(cout << "I have") must return cout

Display 11.7

Display 11.7  

Overloaded << Declaration
■ Based on the previous example, << should return  

its first argument, the output stream
■ This leads to a declaration of the overloaded  

<< operator for the Money class: 
  
class Money  
{  
 public: 
 …  
 friend ostream& operator << (ostream& outs,  
 const Money& amount);  
 …

Overloaded << Definition

■ The following defines the << operator
ostream operator <<(ostream& outs, 

 const Money& amount)  
{  
 <Same as the body of Money::output in  
 Display 11.3 (except all_cents is replaced  
 with amount.all_cents) >  
  
 return outs; 
 }

Return ostream& ?

■ The & means a reference is returned
■ So far all our functions have returned values

■ The value of a stream object is not so simple to  
 return
■ The value of a stream might be an entire file, the  

keyboard, or the screen!
■ We want to return a reference to the stream , not the

value of the stream
■ The & means that we want to return a reference to the

stream, not its value

Overloading >>

■ Overloading the extraction >> operator for input is very
similar to overloading the << for output

■ >> could be defined this way for the Money class 

! istream& operator >>(istream& ins, Money& amount)  
{  
 <This part is the same as the body of  
! Money::input in Display 11.3 (except that 
 all_cents is replaced with amount.all_cents)>  
 ! !

! ! return ins; 
}

Display 11.8 (1-4)

Display 11.8  
(1/4)

Display 11.8(2/4)  

Display 11.8 (3/4)  

Display 11.8 (4/4)  

File input and
output will be
discussed soon.

Section 11.2 Exercises

■ Can you  

■ Describe the purpose of a making a function
a friend? 

■ Describe the use of constant parameters? 

■ Identify the return type of the overloaded
operators << and >>?

11.3
Arrays and Classes

Arrays and Classes

■ Arrays can use structures or classes as their  
base types
■ Example: struct WindInfo  

 {  
 double velocity; 
 char direction; 
 }  
 
 WindInfo data_point[10];

Accessing Members

■ When an array's base type is a structure or a  
class…
■ Use the dot operator to access the members of an indexed

variable
■ Example: for (i = 0; i < 10; i++)  

 {  
 cout << "Enter velocity: ";  
 cin >> data_point[i].velocity;  
 …  
 }

An Array of Money

■ The Money class of Chapter 11 can be the base 
type for an array
!

■ When an array of classes is declared
■ The default constructor is called to initialize

the indexed variables
■ An array of class Money is demonstrated in 

Display 11.9 (1-3)

Display 11.9 (1/3)  

Display 11.9 (2/3)  

Display 11.9  
(3/3)

Arrays as Structure Members

■ A structure can contain an array as a member
■ Example: struct Data 

 {  
 double time[10]; 
 int distance; 
 }  
 
 Data my_best;

■ my_best contains an array of type double

Accessing Array Elements

■ To access the array elements within a structure
■ Use the dot operator to identify the array

within the structure
■ Use the []'s to identify the indexed variable

desired
■ Example: my_best.time[i]  

references the i-th indexed variable of the
variable time in the structure my_best

Arrays as Class Members
■ Class TemperatureList includes an array

■ The array, named list, contains temperatures
■ Member variable size is the number of items stored
 class TemperatureList  

{  
public: 
 TemperatureList();  
 //Member functions 
private: 
 double list [MAX_LIST_SIZE];

 // the allocated memory??  
 int size; 
}

Overview of TemperatureList

■ To create an object of type TemperatureList:
TemperatureList my_data;

■ To add a temperature to the list:
My_data.add_temperature(77);

■ A check is made to see if the array is full
■ << is overloaded so output of the list is

cout << my_data; Display 11.10 (1-2)

Display 11.10 (1/2)  

size is also used for
next potentially
available position in
the array.

Display 11.10  
(2/2)

Section 11.3 Conclusion

■ Can you  

■ Declare an array as a member of a class?
■ Declare an array of objects of a class?
■ Write code to call a member function of an

element in an array of objects of a class?
■ Write code to access an element of an array

of integers that is a member of a class?

