11.2

Overloading Operators

Overloading Operators

= In the Money class, function add was used to
add two objects of type Money

= In this section we see how to use the "+' operator
to make the following code legal:

Money total, cost, tax;

total = cost + tax;
// instead of total = add(cost, tax);

Operators As Functions

= An operator is a function used differently than
an ordinary function

- An ordinary function call enclosed its arguments in
parenthesis
add(cost, tax)

- With a binary operator, the arguments are on either
side of the operator
cost + Tax

Operator Overloading

* Operators can be overloaded

* The definition of operator + for the Money
class is nearly the same as member function add

* To overload the + operator for the Money class
- Use the name + in place of the name add
- Use keyword operator in front of the +
- Example:
friend Money operator + (const Moneyd& amountl,

const Moneyd&
amount2)

Operator Overloading Rules

= At least one argument of an overloaded operator
must be of a class type

= An overloaded operator can be a friend of a class

* The number of arguments for an operator cannot
be changed

- The precedence of an operator cannot be changed

" ., e, *, and ? cannot be overloaded

Program Example:
Overloading Operators

The Money class with overloaded operators

+ and

IS demonstrated in

Display 11.5 (1)

Display 11.5 (2)

DISPLAY 11.5 Overloading Operators (part | of 2)

LONDOWEWN -

25
26
27

28
29

31

32
33
34

//Program to demonstrate the class Money. (This is an improved version of
//the class Money that we gave in Display 11.3 and rewrote in Display 11.4.)
ginclude <iostream>

#include <cstdlib>

#include <cctype>

using nomespace std;

J/Class for amounts of money in U.S. currency.
class Money

{

public:
friend Money operator s(const Money& amountl, const Money& amount?);
//Precondition: amountl and amount? have been given values.
//Returns the sum of the values of amountl and amount?2.

friend bool operator =-(const Money& amountl, const Money& amount?);
//Precondition: amountl and amount? have been given values.
//Returns true if amountl and amount2 have the same value;
//otherwise, returns false.

Money(long dollars, int cents);
Money(long dollars);

Money();

double get_value() const;

void input(istreom& ins);

void output(ostream& outs) const; & reail program
private:

- long all_cents; Display 11.5

<Any extra function declarations from Display 11.3 go here.> (1 / 2)

int main()

{
Money cost(l, 58), tax(®, 15), total;
total =« cost + tax;

cout << "cost = ";
cost.output(cout);
cout << endl:

DISPLAY 11.5 Owerloading Operators (part 2 of 2)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

cout << "tax = ";
tax.output(cout);

cout << endl;

cout << "total bill « ";

total .output(cout); o
cout << endl: D|Sp|ay 11.5
IFf (Cost «= tax)

cout << "Move to another state.\n";
else

cout << "Things seem normal.\n";
return 9;

}
Money operator «(const Money& amountl, const Money& amountl)
{
Money temp;
temp.all_cents -« amountl.all_cents + amountZ.all_cents:
refturn temp;
}
bool operator =-=(const Money& amountl, const Money& amountl?)
{
return (omountl.all_cents == amountZ2.all_cents);
}

<The definitions of the member functions are the same as in
Display 11.3 except that const is added to the function headings
in various places so that the function headings match the function
declarations in the preceding class definition. No other changes
are needed in the member function definitions. The bodies of the
member function definitions are identical to those in Display 11.3.>

Output

cost = §$1.50©
tax = $6.15
total bill -« $1.65
Things seem normal.

(2/2)

Automatic Type Conversion

= With the right constructors, the system can do
type conversions for your classes

- The following code (from Display 11.5) actually works
Money base_amount(100, 60), full_amount;
full_amount = base_amount + 25;

- The integer 25 is converted to type Money so it
can be added to base_amount!

- How does that happen?

Type Conversion Event 1

= When the compiler sees base_amount + 25,
it first looks for an overloaded + operator to
perform

Money_object + some-integer

- If it exists, it might look like this
friend Money operator +(const Money& amountl,
const int& amount?2);

Type Conversion Event 2

* When the appropriate version of + is not found,
the compiler looks for a constructor that takes
a single integer

- The Money constructor that takes a single
parameter of type long will work

- The constructor Money(long dollars) converts 25
to a Money object so the two values can be added!

Type Conversion Again

- Although the compiler was able to find a
way to add
base _amount + 25

this addition will cause an error
base_amount + 25.67

* There is no constructor in the Money class
that takes a single argument of type double

A Constructor For double

- To permit base_amount + 25.67, the following
constructor should be declared and defined

class Money

{
public:

Money(double amount);
// Initialize object so its value is $amount

Overloading Unary Operators

= Unary operators take a single argument
= The unary - operator is used to negate a value

X = -y

= ++and - - are also unary operators
= Unary operators can be overloaded
 The Money class of Display 11.6 can include
* A binary - operator

* A unary - operator

Overloading -

Overloading the - operator with two parameters
allows us to subtract Money objects as in
Money amountl, amount2, amount?2;

amount3 = amountl - amount?;

Overloading the - operator with one parameter
allows us to negate a money value like this
amount3 = - amountl;

Display 11.6

DISPLAY 11.6 Overloading a Unary Operator

[
HOW LGNGO VbwWwNE

> o 5 O R

NN
YR\

22
23
24
25
26
27

28
29
30
31
32
33

//Class for omounts of money in U.S. currency. [hio s an improved version
class Money f the class Money given in
{ Digplay 1.5

public:

friend Money operator +(const Money& amountl, const Money& amount2);

friend Money operator —(const Moneyd& amountl, const Money& amount2);
J//Precondition: amountl and amount? have been given values.
//Returns amount 1 minus amount?2.

friend Money operator —(const Money& amount);
J//Precondition: amount has been given a value.
//Returns the negative of the value of amount.

friend bool operator ==(const Money& amountl, const Money& amount2);
Money(long dollars, int cents); We have omitted the include

s and some of the

Money(long dollars);

3
)
3
"
)

Money(); W I YOUF programs
double get_value() const;

void input(istream& ins);

void output(ostream& outs) const;
private:

long all_cents;
};

<Any additional function declarations as well as the main part of the program go here.>

Money operator — (const Money& amountl, const Money& amount2)
{
Money temp;
temp.all_cents = amountl.all_cents - amount2.all_cents;
return temp;
}

Money operator —{const Money& amount)

{
Money temp;
temp.all_cents = -amount.all_cents;
return temp;

<The other function definitions are the same as in Display 11.5>

Display
11.6

Overloading << and »>

* The insertion operator << is a binary operator
 The first operand is the output stream
 The second operand is the value following <<

coT’r «<4'Hello out ‘rftere.\n":
Operand 1 Operand 2

Operator

Replacing Function output

* Overloading the << operator allows us to
use << instead of Money's output function

* Given the declaration: Money amount(100);

amount.output(cout);
can become

cout << amount;

What Does << Return?

 Because << is a binary operator
cout << "I have " << amount <« " in my purse.";

seems as if it could be grouped as
((cout <« "I have") << amount) << "in my purse.";

- To provide cout as an argument for << amount,
(cout <« "I have") must return cout

Display 11.7

<< as an Operator

cout << "I have " << amount << " 1in my purse.\n";

means the same as
((cout << "I have ") << amount) << " in my purse.\n";
and is evaluated as follows:

First evaluate (cout << "I have "), which returns cout:
(Ccout << "I have ") << amount) << " in my purse.\n";

“~ e

/ and the string "1 have” is output.

(cout << amount) << " in my purse.\n";

Then evaluate (cout << amount), which returns cout:

(cout << amount) <<

-~ >

/ and the value of amount is output.

cout << " in my purse.\n";

in my purse.\n";

Then evaluate cout << " in my purse.\n"”, which returns cout:

cout << " in my purse.\n";
ﬁ the string " in my purse.n” is output.
cout;

Since there are no more <<
operators, the process ends.

Display 11.7

Overloaded << Declaration

Based on the previous example, << should return
its first argument, the output stream

- This leads to a declaration of the overloaded
<< operator for the Money class:

class Money

{
public:

friend ostreamé operator <« (ostreamd& outs,
const Money& amount);

Overloaded << Definition

= The following defines the << operator

ostream operator <<(ostream& outs,
const Money& amount)
{
<Same as the body of Money::output in
Display 11.3 (except all_cents is replaced
with amount.all_cents) »

return outs;

Return ostreamé& ?

The & means a reference is returned
- So far all our functions have returned values

The value of a stream object is not so simple to
return

- The value of a stream might be an entire file, the
keyboard, or the screen!

We want to return a reference to the stream , not the
value of the stream

The & means that we want to return a reference to the
stream, not its value

Overloading >>

Overloading the extraction >> operator for input is very
similar to overloading the << for output

>> could be defined this way for the Money class

istream& operator >>(istream& ins, Money& amount)

{

<This part is the same as the body of
Money::input in Display 11.3 (except that
all cents is replaced with amount.all cents)>

return ins;

Display 11.8 (1-4)

Display 11.8
(1/4)

DISPLAY 11.8 Overloading <<and >> (part |

of 4)

1 //Program to demonstrate the class Money.

2 #include <iostream> lass Money that

3 #include <fstream> a Display 11.6

4 #include <cstdlib>

5 #include <cctype> o

6 wusing namespace std; ' o

7 ’ e

8 //Class for amounts of money in U.S. currency. e

9 class Money

10 {

11 public:

12 friend Money operator +(const Money& amountl, const Money& amount2);
13 friend Money operator — (const Money& amountl, const Money& amount2);
14 friend Money operator — (const Money& amount);

15 friend bool operator ==(const Money& amountl, const Money& amount2);

(continued)

DISPLAY 11.8 Overloading << and >> (part 2 of 4)

16 Money(long dollers, int cents);

17 Money(long dollars);

18 Money();

19 double get_value() const;

20 friend istreomd operator >>(istreamd ins, Moneyd omount);

21 //Overloads the >> opeérotor so it con be used to input valuwes of type Money
22 //Notation for inmputting negotive amounts is as in -5100.608.

23 //Precondition: If ins is a file input streow, then ins has olready been
24 //conmnected to o file.

25 friend ostreami operotor <<(ostreomd ocuts, const Moneyd amount);

26 //O0verloads the << operator so it can be used to output values of type Money
27 //Precedes each output value of type Money with a dollar sign.

28 J/Precondition: If outs is a file output stream,

29 J/then outs has already been comnected to a file,

30 private:

31 long all_cents;

32 L

33 int digit_to_int(char ¢);

34 J/Used in the definition of the overloaded input operator >».

35 //Precondition: ¢ is one of the digits "8" through "9'.

36 //Returns the integer for the digit; for exomple, digit_to_int('3') returns 3.

38 int moin()

39 {

40 Money omount;

41 ifstreom in_streom;

42 ofstream out_stream;

43

44 in_stream.open("infile.dat");

45 if (in_stream,fail())

46 {

47 cout << “Input file opening foiled.\n";
48 exit(l);

49 }

50

S1 out_streom.open("outfile.dat");

$2 if (out_stream.fail())

53 {

54 cout << “Output file opening failed.\n";
55 exit(l);

56 }

57

(continued)

Display 11.8(2/4)

DISPLAY 11.8 Overloading << and >> (part 3 of 4)

58 in_stream >> amount;

59 out_streom << amount

60 << " copied from the file infile.dot.\n";
61 cout << omount

62 << " copied from the file infile.dat.\n";
63

64 in_stream.close();

65 out_stream.close();

66

67 return 9;

68 }

69 J/Uses iostream, cctype, cstdlib:

70 istream& operator >>(istreomd ins, Money& amount)

1 {

72 char one_char, decimal_point,

73 digitl, digit2; //digits for the amount of cents
74 long dollars;

75 int cents;

76 bool negative;//set to true if input is negaotive.
77 ins >> one_char;

78 if (one_char == '="')

79 {

86 negative = true;

81 ins >> one_char; //read 'S’

82 }

83 else

84 negative = folse;

85 J/if input is legal, then one_char == 'S’

86 ins >» dollars »> decimal_point »>> digitl »> digit2;
87 if (one_char !« '$' || decimol_point !« *.'

88 || tisdigit(digitl) || !isdigit(digit2))

89 {

% cout << "Error illegal form for money input\n";
9 exit(1l);

92 }

93 cents = digit_to_int(digitl)*10 + digit_to_int(digit2);
94 amount.all_cents = dollars*100 + cents;

a5 if (negative)

96 amount.all_cents = —omount.all_cents;

(continued)

Display 11.8 (3/4)

DISPLAY 11.8 Overloading <<and >> (part 4 of 4)

97 réturn ins;

98 }

99

100 int digit_to_int(char c)

101 {

102 return (static_cast<int»(c) — static_cost<int>('0"));
103 }

104 //Uses cstdlib and iostream:

105 ostreomd operotor <<(ostregm& outs, const Money& amount)
106 {

107 long positive_cents, dollars, cents;
108 positive_cents = lobs(amount.all_cents);
169 dollors = positive_cents/100;

110 cents = positive_cents¥168;

111

112 if (omount.all_cents < 8)

113 outs << "—§" << dollars << "."';

114 else

115 outs << "§$" << dollars << '.";

116

117 if (cents < 10)

118 outs << "9';

119 outs << cents;

120

121 return outs:

122 '}

123

<The definitions of the member functions and other overloaded operators go here.

See Display 11.3, 11.4, 11.5, and 11.6 for the definitions.>

infile.dat outfile.dat
(Not changed by program.) (After program is run.)
$1.11 s2.22 $1.11 copied from the file infile.dat.
§3.33

Screen OQutput
$1.11 copied from the file infile.dat.

Display 11.8 (4/4)

File input and
output will be
discussed soon.

Section 11.2 Exercises
- Can you

- Describe the purpose of a making a function
a friend?

* Describe the use of constant parameters?

- Identify the return type of the overloaded
operators << and >?

11.3

Arrays and Classes

Arrays and Classes

= Arrays can use structures or classes as their
base types

* Example: struct WindInfo
{

double velocity:;
char direction;

}

WindInfo data_point[10];

Accessing Members

When an array's base type is a structure or a
class...

- Use the dot operator to access the members of an indexed
variable
- Example: for (i = 0; i< 10; i++)
{

cout <« "Enter velocity: ;
cin >» data_point[i].velocity:;

An Array of Money

- The Money class of Chapter 11 can be the base
type for an array

* When an array of classes is declared

» The default constructor is called to initialize
the indexed variables

= An array of class Money is demonstrated in

Display 11.9 (1-3)

DISPLAY 11.9 Program Using an Array of Money Objects (part | of 3)

Do~V &we

[/This is the definition for the closs Money.

//Values of this type are amounts of money in U.S. currency.
#include <iostream>

using nomespace std;

class Money
{
public:

friend Money operator +(const Money& amountl, const Moneyd omountl);
//Returns the sum of the values of amountl and amount2.

friend Money operator —(const Noney& amountl, const Money& amount2);
//Returns amount 1 minus amount?2.

friend Money operator ~(const Money& amount);
//Returns the negative of the value of amount.

friend bool operator ==(const Money& aomountl, const Moneyd omount?2);
J/Returns true if amountl and amount2 have the same value; false otherwise.

friend bool operator < (const Money& amountl, const Money& amount2);
[/Returns true if amountl is less than amount2; false otherwise.

Money(long dollars, int cents);

//Initializes the object so its value represents on amount with
//the dollars and cents given by the arguwents, If the amount
//1is negative, then both dollors and cents should be negative.

Money(long dollars);
//Initializes the object so its value represents $dollars.68.

Money();
//Initializes the object so its value represents $6.60.

double get_value() const;
//Returns the amount of money recorded in the dota portion of the colling
//object.

friend istream® operator >>(istreomd ins, Moneyd amount);

//Overloads the >> operator so it can be used to input values of type
//Money. Notation for inputting negotive amounts is os in - $166.66.
//Precondition: If ins is o file input streowm, then ins has olready been
//connected to a file.

friend ostreand operator <<(ostreomd outs, const Money& amount);
//Overloads the << operator so it con be used to output vaolues of type
//Money. Precedes each output value of type Money with a dollar sign.
//Precondition: If outs is o file output stream, then outs has olready been
//connected to a file.

(continued)

Display 11.9 (1/3)

DISPLAY 11.9 Program Using an Array of Money Objects (part 2 of 3)

40 private:

41 long all_cents;
42 1

43

<The definitions of the member functions and the overloaded operators goes here.>

44 //Reads in 5 amounts of money and shows how much each
45 J/amount differs from the largest amount.

46 int main()

47 {

48 Money amount([5), max;

49 int i;

e cout << "Enter 5 amounts of money:\n";
51 cin >> amount([0];

52 max « amount[0):

53 for (1 = 1; 1 < 5; 1+4+)

54 {

sS cin >> amount([i];

56 if (max < omount[i])

57 max = amount([i];

58 //mox is the largest of amount[0),..., amount([i].
59 }

60 Money difference[5];

61 for (i = 0; 1 < 5; i++)

62 difference[i] =» max omount[i];
63 cout << “"The highest amount is ™ << max << endl;
64 cout << “The amounts and their\n"

65 << "differences from the

66 largest are:\n";

67 for (i = 08; 1 < 5; i++)

68 {

69 cout << amount[i] << " off by ”
70 << difference[i] << endl;

71 }

72 return 9;

73}

Sample Dialogue

Enter 5 omounts of money:

$5.00 $10.00 $19.99 $20.00 $12.79
The highest amount is $20.60

The amounts and their

(continued)

Display 11.9 (2/3)

Display 11.9
(3/3)

DISPLAY 11.9 Program Using an Array of Money Objects (part 3 of 3)

differences from the largest are:
$5.00 off by $15.00
$10.00 off by $10.00
$19.99 off by $0.01
$20.00 off by $0.00
$12.79 off by $7.21

Arrays as Structure Members

= A structure can contain an array as a member
- Example: struct Data

{
double time[10];

int distance;

}

Data my_best;
- my_best contains an array of type double

Accessing Array Elements

* To access the array elements within a structure

- Use the dot operator to identify the array
within the structure

- Use the []'s to identify the indexed variable
desired

* Example: my best.time[i]
references the i-th indexed variable of the
variable time in the structure my_best

Arrays as Class Members

* Class TemperaturelList includes an array

- The array, named list, contains temperatures
- Member variable size is the number of items stored
class TemperaturelList

{
public:
TemperatureList();
//Member functions
private:
double list [MAX_LIST_SIZE];
// the allocated memory??
int size;

}

Overview of Temperaturelist

= To create an object of type Temperaturelist:
TemperaturelList my_data;

* To add a temperature to the list:
My_data.add_temperature(77):;

- A check is made to see if the array is full
- <«< is overloaded so output of the list is

cout « my_data: Display 11.10 (1-2)

DISPLAY 11.10 Program for a Class with an Array Member (part | of 2)

—
DO OONDIWUVH WN -

[
—

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
36
31
32
33
34
35
36
37
38
39

//This is a definition for the class
//Temperaturelist. Values of this type are lists of Fahrenheit temperatures.

#include <iostream>
#include <cstdlib>
using namespace std;

const int MAX_LIST_SIZE = 50;

class Temperaturelist

{ D
public:

Temperaturelist();
//Initializes the object to an empty list.

void add_temperature(double temperature);
//Precondition: The list is not full.
//Postcondition: The temperature has been added to the list.

bool full() const;
J/Returns true if the list is full; false otherwise.

friend ostream& operator <<(ostream& outs,

const Temperaturelisté& the_object);
//Overloads the << operator so it can be used to output values of
//type Temperaturelist. Temperatures are output one per line.
//Precondition: If outs is a file output stream, then outs
//has already been connected to a file.

private:
double List[MAX_LIST_SIZE); //of temperatures in Fahrenheit
int size; //number of array positions filled

b
//This is the implementation for the class Temperaturelist.

TemperaturelList::Temperaturelist() : size(0)

{
}

//Body intentionally empty.

(continued)

isplay 11.10 (1/2)

size is also used for
next potentially
available position in
the array.

Display 11.10
(2/2)

DISPLAY 11.10 Program for a Class with an Array Member (part 2 of 2)

40 void Temperaturelist::add_temperature(double temperature)
41 {//Uses iostream and cstdlib:

42 if (fullC))

43 {

44 cout << "Error: adding to a full list.\n";
45 exit(l);

46 }

47 else

48 {

49 list[size] temperature;

50 size = size + 1;

51 }

52 }

53 bool TemperatureList::full() const
54 {

55 return (size == MAX_LIST_SIZE);
56 1}

57 //Uses iostream:
58 ostream& operator <<(ostream& outs, const TemperaturelList& the_object)

59 {

60 for (int i = 0; 1 < the_object.size; i++)
61 outs << the_object.list[i] << " F\n";
62 return outs;

63 1}

Section 11.3 Conclusion

- Can you

* Declare an array as a member of a class?
* Declare an array of objects of a class?

* Write code to call a member function of an
element in an array of objects of a class?

- Write code to access an element of an array
of integers that is a member of a class?

