
Inheritance
Chapter 15  
& additional topics

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

Motivating Example: Employee Classes

❑ Design a record-keeping program with  
records for salaried and hourly employees
■ Salaried and hourly employees belong to a class of people

who share the property "employee"
■ Salaried employee

■ A subset of employees with a fixed wage
■ Hourly employees

■ Another subset of employees earn hourly wages
❑ All employees have a name and SSN

■ Functions to manipulate name and SSN are the same 
for hourly and salaried employees

❑ First define a class called Employee for all  
kinds of employees

❑ The Employee class will be used later to define  
classes for hourly and salaried employees 

employee.h

name

Employee()

get_name() get_net_pay()

Employee(string, string)

get_ssn()

Employee ssn

net_pay

set_name() set_net_pay()set_ssn()

print_check()

see book
Display 15.3

hourlyemployee.h

❑ HourlyEmployee is derived from Class Employee
❑ HourlyEmployee inherits all member functions

and member variables of Employee
■ NOT SHOWN explicitly in

HourlyEmployee’s defn
❑ The class definition begins 

class HourlyEmployee : public Employee
■ note that :public Employee shows that

HourlyEmployee is derived from class Employee
❑ HourlyEmployee declares additional member  

variables wage_rate and hours

name

Employee()

get_name() get_net_pay()

Employee(string, string)

get_ssn()

Employee ssn

net_pay

set_name() set_net_pay()set_ssn()

print_check()

name

Employee()

get_name() get_net_pay()

Employee(string, string)

get_ssn()

HourlyEmployee ssn

net_pay

set_name() set_net_pay()set_ssn()

print_check()

wage_rate hours

set_rate() get_rate()

set_hours () get_hours ()

is

❑ Inheritance：
a new class, called a derived class, is
created from another class (i.e., the
base class)
❑ A derived class automatically has

all the member variables and
functions of the base class

❑ A derived class can have additional
member variables and/or member
functions

A derived class automatically has all the
member variables and functions of the base
class.
But, the derived class might not have the same
access rights as the base class when accessing
those inherited members! (To be discussed
soon…)

Inherited Members

❑ A derived class inherits all the members (data
members, functions) of the parent class

❑ The derived class should not re-declare or re-define a
member function inherited from the parent unless …
■ The derived class wants to use the inherited member function

for doing something different
❑ The derived class can add member variables & member

functions

Display 15.3  

hourlyemployee.h

Only list the declaration of
an inherited member
function if you want to
change the defn of the
function.

Why re-define print_check() ?

A practical concern here…
❑ print_check will have different  

definitions to print different checks for each
type of employee
■ An Employee object lacks sufficient

information to print a check
■ Each derived class will have sufficient

information to print a check

employee.cpp

employee.cpp

Implementing a Derived Class

❑ Any member function added in the derived  
class are defined in the implementation file for 
the derived class
■ Definitions are not given for inherited functions

that are not to be changed

❑ The HourlyEmployee class is implemented in  
HourlyEmployee.cpp

Textbook Display 15.5

Display 15.5 (1/2)   Display 15.5 (2/2)  

Class SalariedEmployee

❑ The class SalariedEmployee is also
derived from Employee
■ Function print_check is redefined to have a

meaning specific to salaried employees
■ SalariedEmployee adds a member variable
salary

salariedemployee.h
Display 15.6 (1/2)  

salariedemployee.cpp

Display 15.6  
(2/2)

Parent and Child Classes

❑ Recall that a child class automatically has all the members of the parent class
❑ The parent class is an ancestor of the child class
❑ The child class is a descendent of the parent class
❑ The parent class (Employee) contains all the  

code common to the child classes
■ You do not have to re-write the code for each child

Employee

HourlyEmployee SalariedEmployee

Parent and Child Classes (cont’d)
❑ An hourly employee is an

employee
■ An object of type
HourlyEmployee can be used
wherever an object of type
Employee can be used

■ An object of a class type can be
used wherever any of its
ancestors can be used

■ An ancestor cannot be used in a
place where one of its
descendents is expected

void fun1(Employee x);
void fun2(HourlyEmployee
y);
int main()
{
 Employee a;
 HourlyEmployee b;
 fun1(a); //correct
 fun1(b); //correct
 fun2(a); //incorrect
 fun2(b); //correct
}
public inheritance is an
is-a relationship

Derived Class’s Constructors
❑ A base class’s constructor is not inherited in a  

derived class
❑ base class constructor can be invoked by the  

constructor of the derived class
❑ constructor of a derived class begins by invoking 

constructor of base class in the initialization  
section: 

HourlyEmployee::HourlyEmployee : Employee(), wage_rate(
0), hours(0)  
{ //no code needed } Call a constructor for Employee

Default Initialization
❑ If a derived class constructor does not invoke a

base class constructor explicitly, base class’s no-
paremeter constructor will be used automatically

❑ If class B is derived from class A and class C  
is derived from class B
■ When a object of class C is created

■ The base class A's constructor is the first invoked
■ Class B's constructor is invoked next
■ C's constructor completes execution

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

Private is Private
❑ A member variable (or function) that is private 

in parent class is not directly accessible by member
functions in the child class

❑ This code is illegal as net_pay is a private member of
Employee! 
 void HourlyEmployee::print_check()  
 {  
 net_pay = hours * wage_rage;

 }
❑ The parent class member functions must be used to

access the private members of the parent

protected Qualifier

❑ protected members of a class appear to be  
private outside the class, but are directly
accessible within a derived classes

❑ If member variables name, net_pay, is listed
as protected (not private) in Employee class,
this code becomes legal: 
HourlyEmployee::print_check()  
{  
 net_pay = hours * wage_rage;

access_specifiers_demo.cpp

Using protected or not?

❑ Using protected members of a class is a  
convenience to facilitate writing code of  
derived classes.

❑ Protected members are not necessary
■ Derived classes can use public methods of their

ancestor classes to access private members
❑ Many programming authorities consider it  

bad style to use protected member variables

Three different ways for classes to inherit from other classes: public,
private, and protected.

// Inherit from Base publicly
class D1: public Base
{ };
// Inherit from Base privately
class D2: private Base
{ };
// Inherit from Base protectedly
class D3: protected Base
{ };
class D4: Base // Defaults to private inheritance
{ };

If you do not choose an
inheritance type, C++ defaults to
private inheritance (just like
members default to private
access if you do not specify
otherwise).

Public inheritance
// Inherit from Base publicly
class D1: public Base
{ };
❑ All inherited members keep their original access

specifications.

public inheritance

Base class
access specifier

Derived class access specifiier
(implicitly given)

Directly accessible in member
functions of derived class?

Directly accessible in any
other code?

public public yes yes

private private no no

protected protected yes no

Private inheritance

class D2: private Base // Inherit from Base privately
{ };
❑ All inherited members are private in derived class:

■ private members stay private, and protected and public
members become private.

private inheritance

Base class
access specifier

Derived class access specifiier
(implicitly given)

Directly accessible in member
functions of derived class?

Directly accessible in any
other code?

public private yes no

private private no no

protected private yes no

Protected inheritance
class D3: protected Base// Inherit from Base protectedly
{ };
❑ Rarely used. public and protected members become

protected, and private members stay private.

protected inheritance

Base class
access specifier

Derived class access specifiier
(implicitly given)

Directly accessible in member
functions of derived class?

Directly accessible in any other
code?

public protected yes no

private private no no

protected protected yes no

❑ Member functions of a derived classes have access to its inherited
members based ONLY on access specifiers of its immediate parent,
not affected by inheritance method used!

protected inheritance

public protected yes no

private private no no

protected protected yes no

private inheritance

public private yes no

private private no no

protected private yes no

Base class
access specifier
for members

Derived class access specifiier
(implicitly given for inherited
members)

Directly accessible in member
functions of derived class?

Directly accessible in any other
code?

public inheritance

public public yes yes

private private no no

protected protected yes no

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

Redefinition of Member Functions

❑ When defining a derived class, list  
the inherited functions that you wish to change
for the derived class
■ The function is declared in the class definition
■ HourlyEmployee and SalariedEmployee each have

their own definitions of print_check
❑ Next page demonstrates the use of  

the derived classes defined in
HourlyEmployee.h and SalariedEmployee.h.

Functions defined in Employee class
set_name()
set_ssn()
print_check()
Functions defined in HourlyEmployee class
set_rate()
set_hours()
print_check()

Redefining vs. Overloading
❑ A function redefined in a derived class has parameters as

that in base class
■ its prototype (return value, function name, and parameters) must

be identical to that in base class.
❑ An overloaded function has a different number  

and/or type of parameters than that in base class
■ derived class has two functions with same name as that in base

class: one is overloading, one is redefining.
void set_name(string first_name, string last_name);//
overloading
void set_name(string new_name); //redefine

Access to a Redefined Base Function

❑ When a function of a base class is redefined in a
derived class, base class function can still be used
■ To specify that you want to use the base class version

of the redefined function:

int main()

{

HourlyEmployee sally_h;  
sally_h.Employee::print_check();

}

A side note: function signatures
❑ An overloaded function has multiple signatures

■ A function signature is the function's name  
with the sequence of types in the parameter 
list, not including any const or ‘&'

■ Compiler uses function signature to decide which
version of overloaded function to be called

■ Some compilers allow overloading based on  
including const or not including const

Change access specifier for an inherited member

❑ When re-define a function in a derived class,
■ it does not inherit access specifier from parent class
■ can specify its own access specifier

❑ In derived class, one can:
■ hide an inherited member: public in base class => private
■ expose an inherited member: protected in base class => public

■ In derived class, one cannot:
■ change from private to protected or public

■ because derived classes do not have access to private
members of the base class.

Hide functionality of an inherited member function
Two ways to do this:
❑ Give it a new access specifier private when re-defining

it in derived class.
❑ Or, simply list it in private section:
class Circle : public Shape()
{
private:
 Shape::display; //display() is a function defined as
public in Shape, it’s now a private member of Circle

 without even re-defining it.

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

❑ Some special functions are not inherited by a
derived class. They include

■ The assignment operator
■ Copy constructors
■ Destructors

The Assignment Operator

❑ In implementing an assignment operator
(operator=) in a derived class
■ It is normal to use the assignment operator from

the base class in the definition of the derived
class's assignment operator

■ Recall that the assignment operator is written as a
member function of a class

The Operator = Implementation
❑ This code segment shows how to begin the implementation of the =

operator for a derived  
class:  
Derived& Derived::operator= (const Derived& rhs)  
 {  
 Base::operator=(rhs);

/*
Base is the name of the parent class
This line handles the assignment of the inherited member variables by
calling the base class assignment operator
The remaining code would assign the member variables introduced in
the derived class
*/

Operator = and Derived Classes

❑ If a base class has a defined assignment  
operator = but the derived class does not,
then
■ When assigning an object of the derived class

to another object of the derived class, C++ will
use a default operator that will have nothing to
do with the base class assignment operator!

Copy Constructors and Derived Classes

❑ If a copy constructor is not defined in a
derived class, C++ will generate a default copy  
constructor
■ This copy constructor copies only the

contents of member variables and will not
work with pointers and dynamic variables

■ The base class copy constructor will not be
used (even if it is defined)

The Copy Constructor

❑ Implementation of the derived class copy  
constructor is much like that of the assignment  
operator: 
Derived::Derived(const Derived& object)  
 :Base(object), <other initializing>  
{…}

■ Invoking the base class copy constructor sets up the
inherited member variables
■ Since object is of type Derived it is also of type Base

Destructors and Derived Classes

❑ A destructor is not inherited by a derived class
❑ The derived class should define its own  

destructor

Destructors in Derived Classes

❑ If base class has a programmer-defined
destructor, then defining the destructor for
the derived class is relatively easy
■ When the destructor for a derived class is called,

the destructor for the base class is automatically
called

■ The derived class destructor only need to release
memory for the dynamic variables added in the
derived class

Destruction Sequence

❑ If class B is derived from class A
 and class C is derived from class B…

■ When an object of class C goes out of scope
■ The destructor of class C is called
■ Then the destructor of class B
■ Then the destructor of class A

■ Notice that destructors are called in the
reverse order of constructor calls

Overview

❑ Inheritance Introduction

❑ Three different kinds of inheritance

❑ Changing an inherited member function

❑ More Inheritance Details

❑ Polymorphism

Polymorphism

❑ Polymorphism refers to the ability to associate 
multiple definitions with one function
declaration using a mechanism called late
binding

❑ Polymorphism is a key component of the  
philosophy of object oriented programming

Binding & Early binding
❑ Binding
The process to convert identifiers (such as variable and function names) into
machine language addresses.

❑ Early binding (or static binding)
An C++ compiler directly associates an identifier name (such as a function or
variable name) with a machine address during compilation process.
Note that all functions have a unique machine address.
When the compiler encounters a function call, it replaces the function call with
an instruction that tells the CPU to jump to the address of the function.

❑ Late binding (or dynamic binding)
■ To be discussed very soon…

A motivating example

❑ Imagine a graphics program with several types  
of figures

❑ Each figure may be an object of a different class,
such as a circle, oval, rectangle, etc.

❑ Each is a descendant of a class Figure
❑ Each has a function draw() implemented with

code specific to each shape
❑ Class Figure has functions common to all figures

class Figure
public:
 center()
{ …
 draw()
 …
}
draw()

Circle
public:
 draw()//re-defined
 //center() is inherited

Traingle
public:
 draw()//re-defined
 //center() is inherited

int man()
{
 Circle c;
 c.draw(); //which draw() is called?
 c.center(); //which draw() is called inside center()?
}

Look at : figure_demo.cpp

c.center();
When a member function is called with a
derived class object, compiler first looks to see if
that member exists in the derived class. If not, it
begins walking up the inheritance chain and
checking whether the member has been defined
in any of the inherited classes or the top base
class. It uses the first one it finds.

 Early-binding

A Problem
❑ Class Figure has a function center that

■ moves a figure to center of the screen by erasing the
figure and redrawing it in the center of the screen

❑ Function center is inherited by each of the derived
classes
■ Function center SHOULD use each derived object's
draw function to draw the figure

■ But, Figure class does not know about its derived
classes, so how can it know how to invoke a derived
object's draw function?

Virtual Functions to the rescue

❑ Making a function virtual tells compiler that ...
■ When defining base class, the programmer doesn't know how it

should be implemented
■ wait until the function of an object is called in a program at

running time. Only at that time, the implementation of the
function is clear, i.e., it is given by the class type of the object.
■ if it’s object of rectangle, draw a rectangle; if it’s …

❑ This is called late binding
❑ in contrast to early binding (compile-time binding)

How to use virtual functions?
❑ Add keyword virtual to a function’s declaration in base

class
❑ virtual is not added to the function definition

❑ Define the function differently in a derived class
■ This is the intention of introducing virtual function

❑ virtual is not needed for the function declaration in the
derived class, but is often included

❑ Note that, virtual functions require considerable
overhead so excessive use reduces program efficiency

figure_demo_virtual.cpp

class Figure
void center()
{ …
 draw()
 …
}
virtual void draw()

Circle
virtual void draw()//re-defined
//center() is inherited

Traingle
virtual void draw()//re-defined
//center() is inherited

int main()
{
 Circle c;
 c.draw() //which draw() is called?
 c.center() //which draw() is called inside center()?
}

Look at :
figure_demo_virtual.cpp

More benefits of virtual functions
❑ Code that works for a base class will also work

for all of its derived class if virtual functions are
used.
■ Examples: PrintPayChecks (Employee* all[], int

len)
❑ Write a newly derived class that will

automatically (without modification) work with
existing code that works for the base class.

Animal
virtual getClassName()

Pet
virtual getClassName()

Dog
virtual getClassName()

Dog d ;
Animal &animal_ref = d;
cout <<
animal_ref.GetClassName();

C++ will check every inherited
class between Animal and Dog
(including Animal and Dog) and
use the most-derived version of
the function that it finds.

inheritance hierarchy

More than two classes in a chain of inheritance hierarchy Pure virtual function
❑ Consider this situation:
We have a function that we want to put in the base class,
but we know that only the derived classes know what the
function should do.
Then, make the function pure virtual

Pure virtual function

❑ If a class has a pure virtual function, then the class
cannot be instantiated, and the derived classes of the
class have to define these function before they can be
instantiated.
■ This ensures the derived classes NOT forget to

redefine those pure virtual functions (which is what
the base class hopes)

Revisit Employee class

❑ print_check() function should be a pure virtual
function in the defn of Employee class.
■ the original implementation in Employee

class’s print_check() prints out an error msg
is not a good design, as it leaves the problem
checking to the run time, not compile time.

❑ Simple virtual function
■ Inheriting it implies ! inherit both interface and a

default implementation.
■ In your derive class, you need to support this

function, but if you don’t want to write your own, you
can fall back on the default version in base class.

■ Danger: if a derived class might not want to use the
default implementation from the base class, but
forget to define its own, then it will use the
inherited one (which is not what it wants!)

Design suggestions Another Example of Virtual Functions

❑ As another example, let's design a record-  
keeping program for an auto parts store

❑ We want to introduce a bill function, and we want a
versatile program, but we do not know all the possible
types of sales we might have to account for
■ Later we may add mail-order and discount sales
■ Functions to compute bills will have to be added

later when we know what type of sales to add
■ To accommodate the future possibilities, we will

make the bill function a virtual function

The Sale Class

❑ All sales will be derived from the base class  
Sale

❑ The bill function of the Sale class is virtual
❑ The Sale class interface and implementation 

are shown in

Display 15.8 Display 15.9

Display 15.8

Sale, DiscountSale
DiscountSale::bill

❑ Class DiscountSale has its own version of  
virtual function bill
■ Even though class Sale is already compiled,  
Sale::savings() and Sale::operator< can still
use function bill from the DiscountSale class

■ The keyword virtual tells C++ to wait until bill is  
used in a program to get the implementation of bill
from the calling object

Display 15.9  
❑ Because function bill is virtual in

class Sale, function savings and
operator<, defined only in the
base class, can in turn use a
version of bill found in a derived
class
■ When a DiscountSale object

calls its savings function,
defined only in the base
class, function savings calls
function bill

■ Because bill is a virtual
function in class Sale, C++
uses the version of bill
defined in the object that
called savings

Sale
virtual bill()
savings()

DiscountSale
virtual bill()
//no re-defined savings()

Sale simple(10.00);
DiscountSale d1(11.0, 10);
DiscountSale d2(11.0, 10);
if (d1 < simple)
{
 cout << “Saving is $” <<
simple.savings(d1);
}
if (d1 < d2)
{
 cout << “Saving is $” <<
d2.savings(d1);
}

Q:
Since bill() is a virtual function,
what will happen in the following
code?

If bill() is not a virtual function,
what will happen in the following
code?

Display 15.11  

A potential slicing problem  
if we do not use virtual functions.  

Preliminary: C++’s Type Checking

❑ C++ carefully checks for type mismatches in  
the use of values and variables
■ This is referred to as strong type checking
■ Generally, the type of a value assigned to a variable

must match the type of the variable
■ E.g., double a = “Hello”; //incorrect.

■ Recall that some automatic type casting occurs
■ E.g., int a = 20.34; //correct

❑ Strong type checking interferes with the  
concepts of inheritance

Type Checking and Inheritance
❑ Consider  

class Pet  
{  
public:  
 virtual void print();  
 string name;  
}  
 

 class Dog : public Pet  
{  
public:  
 virtual void print();  
 string breed;  
}

Pet
print()
name

Dog
print() //overridden
name
breed

Slicing problem: A Sliced Dog is a Pet
❑ C++ allows the following assignments:  
vdog.name = "Tiny";  
vdog.breed = "Great Dane";  
vpet = vdog;

❑ However, vpet will lose breed member of  
vdog since an object of class Pet has no breed  
member
■ This code would be illegal:

cout << vpet.breed;

Pet
print()
name

Dog
print() //overridden
name
breed

vpet
vdog

The Slicing Problem

❑ It is legal to assign a derived class object into
a base class variable (not a reference),
however...
■ This slices off data in derived class that is

not also part of base class
■ Some member functions and member

variables are lost

Pet
print()
name

Dog
print() //overridden
name
breed

vpet
vdog

Extended Type Compatibility

❑ It is possible in C++ to avoid slicing  
problem
■ Using pointers to dynamic variables and

virtual functions, we can still access added
members of derived class object.

Dynamic Variables and Derived Classes
❑ Example:  

 
 
 
 
 
 
 
 

ppet->print(); is legal and produces:
name: Tiny
breed: Great Dane

void Dog::print()  
{  
 cout << "name: "  
 << name << endl;  
 cout << "breed: "  
 << breed << endl;  
}

Pet *ppet;  
Dog *pdog; 
pdog = new Dog;  
pdog->name = "Tiny";  
pdog->breed = "Great  
 Dane";  
ppet = pdog;

Display 15.12 (1-2)

Display 15.12 (1/2)

Display 15.12 (2/2)  

Use Virtual Functions
❑ The previous example: 

 ppet->print();  
worked because print was declared as a virtual 
function

❑ The following code would still produce an error:
cout << "name: " << ppet->name  
 << "breed: " << ppet->breed;

//name, breed are public member
//but we still cannot use a base class
//pointer to DIRECTLY access them
//but we can use virtual functions to access them

Why?
❑ ppet->breed is still illegal because ppet is a  

pointer to a Pet object that has no breed member
■ breed is just a data member, not a virtual function!

❑ Function print() was declared virtual by class
Pet
■ When computer sees ppet->print(), it checks the

virtual table for classes Pet and Dog and finds that
ppet points to an object of type Dog

■ Because ppet points to a Dog object, code for
Dog::print() is used

Remember Two Rules
❑ If the domain type of the pointer p_ancestor is a base class for the

domain type of pointer p_descendant,  
the following assignment of pointers is allowed 

 p_ancestor = p_descendant;  

and we can use p_ancestor and virtual functions to access those data
members added only by the derived class (i.e., no data members will be
inaccessible)

❑ Although all the fields of the p_descendant are there, virtual functions
are required to access them
■ You can NOT directly access an inherited member (even

though it is public)

A side note on reference (1/3)

❑ A reference has to be initialized at the time when declared
(except as a function parameter)

int x=10;
int& y = x;
//when & is used in between a type and a variable name,
// & specifies the name immediately after it as a reference.
// Similarly, double fun1(int & y)
cout << &x <<endl;
//& is an operator to get the address of variable x.
//Here, & does not specify x as a reference
cout << &y <<endl;

❑ A reference cannot be redirected to refer to something else.

Use references

Use reference as function
parameters

Recall this example
(from the textbook)

A side note on
reference (2/3)

C++
❑ reference to a variable (or object) ---- another name for a

variable, and it will never be changed to be a reference to a
different variable

❑ pointer to a variable (or object) ---- can be modified to point to
different variables
■ imagine it as an erasable address tag

Java
❑ reference to a variable---- can be modified to refer to

different variables
■ imagine it as an erasable name tag, or a named hat that can

be given to different persons to wear

A side note on reference (3/3):
Variable name, reference, pointer

❑ Pure virtual function
■ Inheriting it implies ! inherit interface only
■ In your derived class (that can be

instantiated), you must define it, but the
base class has not idea how you are going to
implement it.

■ The danger mentioned for the simple virtual
function does not exist.

Design suggestions
❑ Regular non-virutal

function
■ Don’t redefine an

inherited non-virtual
function (even
though allowed by
C++). Make sure the
“is-a” relationship
always true for
public inheritance.

Design suggestions
class B
{ public:

void fun1();
}
class D: public B
{public: void fun1(//different
implementation);}
//inconsistent, confusing behavior.
//same object D, but different fun1() is
called,
// when D is pointed to by different ptr types
// (also true if references used)
D d;
B *pB=&d;
pB ->fun1();// B::fun1() is called!!
D *pD=&d;
pD ->fun1();//D::fun1() is called!!

Interface Class
❑ An interface class is a class that …

■ has no members variables,
■ all of the functions are pure virtual!

❑ The class is only an interface definition, no actual
implementation.

❑ Why use interface?
■ When you want to define the functionality that derived

classes must implement, but leave the details of how the
derived class implements that functionality entirely up to
the derived class.

