
Introduction

CISC4080: Computer Algorithms

CIS, Fordham Univ.

Instructor: X. Zhang

What is an algorithm?

• All algorithms solve some well-defined problem
• Problem: specified by the input, and what’s the desired output

• e.g., what’s the input, desired output of sorting problem?
• An algorithm is correct if it always generates desired output

• Algorithm is a term coined to honor Muḥammad ibn Mūsā al-Khwārizmī
(Arabized as al-Khwarizmi and formerly Latinized as Algorithmi), 9th
century Persian polymath who laid out basic methods for
• adding, multiplying and dividing decimal numbers
• extracting square roots
• calculating digits of pi

 2

https://en.wikipedia.org/wiki/Arabization
https://en.wikipedia.org/wiki/Latinisation_of_names
https://en.wikipedia.org/wiki/Persians
https://en.wikipedia.org/wiki/Polymath

Algorithms that you’ve seen

• Linear Search: search for an item with a
matching key in an array (unsorted)

• Binary Search

• Bubble Sort, Insertion Sort, Selection Sort
• Search in a binary search tree: algorithm + data

structure

• Graph algorithms: traversal, shortest path, …

 3

Case study: Linear Search

• What’s the problem? i.e., what’s the input and the
desired output?
• Input:

• Output:

 4

Case study: Linear Search

• What’s the problem? i.e., what’s the input and the
desired output?
• Input: a list of elements, L[0…n-1], and a value t

• L[0…n-1] refers to a ADT list made up of n elements: L[0],
L[1], … L[n-1]

• assumption: t is of same type as L[i]
• Output:

• if t appears in L, returns the index of its first
appearance

• if t does not appear in L, returns -1

 5

C++ code
/* linear search
 @param: L an array of integer
 @param: n size of array (or vector L)
 @param t: the target value to search for in L
 @pre-condition: ??
 @post-condition: if t appears in L, returns the index of its first appearance

• if t does not appear in L, returns -1
*/
int LinearSearch (int L[], int n, int t)
{

 int loc=-1;

 // iterates through list, compare each element with t,
 for (int i=0;i<=n-1; i++)

 if (L[i]==t)
 loc=i;

 return loc;
}
 6

Question 1: Is this correct? i.e., does it
return the desired output?

Question 2: How many comparison operations is
carried out?

Pseudocode
/* linear search
 @param: L a list of elements of size n
 @param t: the target value to search for in L
 @pre-condition: ??
 @post-condition: ???
*/
LinearSearch (L[0…n-1], t) //omit the return type

{

 // iterates through list, compare each element with t
 for i=0 to n-1 //default increment is 1

 if L[i]==t //omit () around condition

 return i //when matches, return right away!

 return -1
}

 7

Usually not a good idea
to use a break or return

inside a loop

Pseudocode:
language-neutral,
data type neural

 8

Why study algorithms?
• Computers system: circuit layout, scheduling algorithms for

OS or data center, compiler (code optimization), ...
• Internet: web search, packet routing… => graph algorithms
• Security:

• encryption algorithms (such as RSA public/private key
algorithms, among many algorithms)

• cryptographic hash function: generate checksum to verify the
authenticity of data

• Multimedia, Computer Graphics
• Compression algorithms used in MP3, JPEG technology
• One component in MP3 is Huffman method (a greedy algorithm)

 9

Why study algorithms?

• Biology: Bioinformatics combines mathematics, statistics and
computer science to study biological molecules, such as DNA,
RNA, and protein structures…
• Edit distance (6.3) for suggesting correction in spell checker

==> sequence alignment (DNA, RNA, protein)
• Social networks analysis

• Community detection
• Link prediction: predict whether there will be links between two

nodes ==> Graph problem
• Algorithms in ML and AI

• Traditional AI: A* search, Maze Solving
• K-mean clustering algorithms, linear regression
• Reinforcement Learning: Bellman algorithm, Q-learning

algorithm…

Introduction to algorithm analysis

• Consider calculation of Fibonacci sequence, in
particular, the n-th number in sequence:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

 10

Fibonacci Sequence

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Formally,

• Fibonacci Seq. Calculation Problem:
• Input: an natural number n
• Output: value of n-th term of Fibonacci sequence

• Can you write a recursive algorithm to solve this
problem?

 11

A recursive algorithm
Algorithm: Fib (n)

{

 //base cases: when do we know the answers right away?

 // n is 0 or 1

 //general case: when we need to use previous terms to calculate current one?

}

Discussion: Three questions:
• Is it correct?
• How long does it take to calculate 5th term, 50th term?
• Can we do better? (faster?) 12

How long does it take…

• you to finish a homework assignment?

• Right before I started to work on the homework, I checked
the clock, and it’s Wednesday, Sept 9, 10:15:00 am

• I then worked on the homework (without taking any break).

• Right after I finished it, I checked the clock again and it’s
Wednesday, Sept 9, 1:20:00pm

• How long did it take me to finish the homework?

• Let’s see how to apply same idea to measure algorithm running
time! 13

System Time
• All computer systems maintain a system time/clock.

• It keeps track number of seconds and nanoseconds
(10-9 second) passed since some starting time, called
the epoch.
• Unix and POSIX-compliant systems use Jan 1st, 1970

00:00:00 as the epoch

• System clock tells you how many seconds and
nanoseconds has passed since the epoch

 14

https://en.wikipedia.org/wiki/Epoch_(computing)
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/POSIX

clock_gettime()
A library function, clock_gettime retrieves the time of a system
clock
Usage example

 #include <time.h>
 /* where the following type is defined
 timespec type:
 struct timespec {

 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 }; */

 struct timespec t; // declare a variable t of type timespec

 clock_gettime(CLOCK_REALTIME, &t);
 // Retrieve the time of specified clock, CLOCK_REALTIME 15

Measuring running time
 #include <time.h>
 …
 struct timespec t1, t2; //t1, t2 are two variables of type timeval
 …
 clock_gettime(CLOCK_REALTIME, &t1);
 result = Fib(n); // or any other algorithm we want to measure

running time of …
 clock_gettime (CLOCK_REALTIME, &t2);

 // calculate how many seconds have passed between t1 and t2
 double timeInSeconds = (t2.tv_sec-t1.tv_sec) +
 (t2.tv_nsec-t2.tv_nsec)/1e9;

* Live demo
* Question: How the running time of Fib() grows when with n? 16

Example (Fib1: recursive)
Recursive Fib calculator
n F(n) T(n)ofFib1 (s)
1 1 2.72e-07
2 1 1.67e-07
3 2 2.49e-07
4 3 3e-07
5 5 3.95e-07
6 8 3.98e-07
7 13 5.46e-07
8 21 7.25e-07
…
13 233 4.256e-06
14 377 6.848e-06
15 610 1.0964e-05
16 987 1.7656e-05
17 1597 2.8207e-05
18 2584 4.5365e-05
19 4181 7.3375e-05
…
33 3524578 0.0195626
34 5702887 0.0318968
35 9227465 0.0516566
36 14930352 0.0839258
…
40 102334155 0.605248
41 165580141 0.932493
42 267914296 1.51373
43 433494437 2.40282
44 701408733 3.89735
45 1134903170 6.31143
46 1836311903 10.2351
47 -1323752223 16.5711
48 512559680 26.8665
49 -811192543 43.6285

 17

n

Time (in seconds)

Running time seems to grows
exponentially as n increases

How long does it take to Calculate F(100)?

Why?
• Draw recursive function call tree for fib1(5)

• Observation: wasteful repeated calculation

 18

Can we do better?

• Idea: Store solutions to subproblems in array (key of Dynamic
Programming)

 19

Example (Fib2: iterative)
Iterative Fib calculator
n F(n) T(n)ofFib2 (s)
1 1 2.8e-07
2 1 6.5e-08
3 2 1.76e-07
4 3 2.06e-07
5 5 1.92e-07
6 8 2.18e-07
7 13 1.88e-07
8 21 2.14e-07
9 34 1.67e-07
10 55 2.11e-07
11 89 2.92e-07
12 144 1.61e-07
13 233 1.71e-07
14 377 2.41e-07
15 610 2.71e-07
…
46 1836311903 3.78e-07
47 -1323752223 3.69e-07
48 512559680 3.9e-07
49 -811192543 3.96e-07
50 -298632863 4.11e-07
51 -1109825406 4.54e-07
52 -1408458269 4.43e-07
53 1776683621 4.37e-07
54 368225352 4.43e-07
55 2144908973 4.31e-07
56 -1781832971 4.38e-07
57 363076002 5.32e-07
58 -1418756969 4.62e-07
59 -1055680967 4.63e-07
60 1820529360 4.77e-07 20

n

Time (in seconds)

Increase very slowly as n increases

Analytic approach
• Is it possible to find out how running time grows

when input size grows, analytically?
• Does running time stay constant, increase linearly,

logarithmically, quadratically, … exponentially?
• Yes: analyze pseudocode/code, calculate total

number of steps in terms of input size, and study its
order of growth
• results are general: not specific to language, run time

system, caching effect, other processes sharing computer
• shed light on effects of larger problem size, faster CPU, …

 21

Course Overview (1)

• Today: overview, introduction
• Sorting, Recursion, Data Structure review

• vector, queue, stack, heap (priority queue), hash table
• Algorithm analysis (running time and space), Big-O notations

• How does running time grows when problem size grows?
• constant, linear, quadratic, cubic, … exponential?

• Divide-and-conquer paradigm, master theorem
• n logn sorting algorithms
• solving problem divide-and-conquer way

 22

Course Overview (2)
• Backtracking and Recursion

• How to enumerate all subsets?
• How to solve maze?

• Graph Algorithms (or, for relational data)
• Review BFS, DFS traversal
• Dijkstra algorithm
• Minimum Spanning Tree algorithms
• Travel Salesman Problem, and more

• Dynamic Programming
• optimized recursive algorithm where we use table to

remember subproblems solutions…

 23

Summary
• Basic concepts: algorithm, problem, input,

output, input instance, correctness
• Case study: selection sort

• Pseudocode convention
• Tracing an algorithm
• Correctness and efficiency

• Importance of efficient algorithm: Fibonacci
example

• Roadmap of the course

Case study: Selection Sort
• Idea: select smallest element and swap it to first entry,

and then select second smallest element and swap it with
second entry, and continue until the list is sorted

 25

0 1 2 3 4 5

4 3 1 7 6 2

Index

L[0…5]

Case study: Selection Sort

 26

0 1 2 3 4 5

4 3 1 7 6 2

Index

L[0…5] Find smallest element, L[2]

Case study: Selection Sort

 27

0 1 2 3 4 5

4 3 1 7 6 2

1 3 4 7 6 2 Swap L[2] with L[0]

Index

L[0…5]

Passes

Case study: Selection Sort

 28

0 1 2 3 4 5

4 3 1 7 6 2

1 3 4 7 6 2 L[0] now stores smallest element
No need to work on it any more

Index

L[0…5]

Case study: Selection Sort

 29

0 1 2 3 4 5

4 3 1 7 6 2

1 3 4 7 6 2 Find second smallest element,
L[5], or smallest in L[1…5]

Index

L[0…5]

Case study: Selection Sort

 30

0 1 2 3 4 5

4 3 1 7 6 2

1 3 4 7 6 2

1 2 4 7 6 3 Swap L[5] with L[1],
L[0], L[1] are done!

Index

L[0…5]

Case study: Selection Sort

 31

0 1 2 3 4 5

4 3 1 7 6 2

1 3 4 7 6 2

1 2 4 7 6 3

1 2 3 7 6 4

1 2 3 4 6 7

1 2 3 4 6 7 Continue until we have one
Element left!

List is sorted…

Index

L[0…5]

Selection Sort: n=6

 32

0 1 2 3 4 5

4 3 1 7 6 2

1 3 4 7 6 2

1 2 4 7 6 3

1 2 3 7 6 4

1 2 3 4 6 7

1 2 3 4 6 7

Question and observations:

1.A pass: is the operations of finding smallest element in remaining list, and swap it to front.
How many passes have we carried out here?

2. How many swap operations are carried out by selection sort on this list?

Index

L[0…5]

SelectionSort (L[0…n-1])
{
 for s=0 to n-1 //pass #

 // find index of smallest
 // element in L[s…n-1]

 //swap smallest element
 // with L[s] if it’s not at front
 if (minIndex!=s)
 swap (L[s], L[minIndex]);

}
 33

0 1 2 3 4 5

4 3 1 7 6 2

1 3 4 7 6 2

1 2 4 7 6 3

1 2 3 7 6 4

1 2 3 4 6 7

1 2 3 4 6 7

Index

L[]

Selection Sort (L[0…n-1])
{
 for s=0 to n-2 {
 // find index of smallest element in L[s…n-1]
 minIndex = s;
 for k=s+1 to n-1
 if L[k]<L[minIndex]: minIndex=k

 //swap it with first element in the sublist
 if (minIndex!=s)
 swap (L[s], L[minIndex]);
 }
}

 34

Tracing: with input a[0…5]={4,3,1,7,6}, n=6
SelectionSort (L[0…n-1])
{

 for s=0 to n-2 {
 // find index of smallest element in L[s…n-1]
 minIndex = s;
 for k=s+1 to n-1
 if L[k]<L[minIndex]
 minIndex=k

 //swap it with first element in the sublist
 if (minIndex!=s)
 swap (L[s], L[minIndex]);
}

}

 35

S minIndex 0 1 2 3 4 5

Before 4 3 1 7 6 2

0 2 4 3 1 7 6 2

1 5 1 3 4 7 6 2

2 5 1 2 4 7 6 3

3 5 1 2 3 7 6 4

4 4 1 2 3 4 6 7

5 5 1 2 3 4 6 7

sorted part (colored in
gray, L[0…s-1]) grows

unsorted part (colored in black,
L[s…n-1]) shrinks

Selection Sort (L[0…n-1]) on
Input a[0…5]={3,4,1,2,5,6}, n=6

{
 for s=0 to n-2 {
 // find index of smallest element in L[s…n-1]
 minIndex = s;
 for k=s+1 to n-1
 if L[k]<L[minIndex] //Comparison operations
 minIndex=k

 //swap it with first element in the sublist
 if (minIndex!=s)
 swap (L[s], L[minIndex]);
 }
}

 36

Outer
loop

control s

Inner loop
header

Comp op# minIndex
after inner

lop

L[] after swap

0 for k=1 to 5 5 2 {1,4,3,2,5,6}

1 for k=2 to 5 4

2 For k=3 to 5 3

3 For k=4 to 5 2

4 For k=5 to 5 1

Is it correct?
• Testing with a few test cases
• How to reason about correctness of algorithm (i.e., for all inputs, it

generates correct outputs)?
• One extreme: Your program should be like a proof.
• At least document your algorithm/code.
SelectionSort (L[0…n-1])

 {
 for s=0 to n-2 {

 // find index of smallest element in L[s…n-1] <= We think this is self-evident!
 minIndex = s;
 for k=s+1 to n-1
 if L[k]<L[minIndex]
 minIndex=k

 //swap it with first element in the sublist
 if (minIndex!=s)
 swap (L[s], L[minIndex]);
 //at this point: L[s] stores (0+1)-th smallest element in the list
 }
}

Is it efficient?
• How much resources does it take … to sort a list of n elements?

• Especially when n is very very large.
• time (CPU resource) and space (main memory) ==> how many

operations/statements are executed, how much variables are used?
SelectionSort (L[0…n-1])

 {
 for s=0 to n-2 {

 minIndex = s;
 for k=s+1 to n-1
 if L[k]<L[minIndex]
 minIndex=k

 //swap it with first element in the sublist
 if (minIndex!=s)
 swap (L[s], L[minIndex]);

 }
}

Selection Sort recursively

• To sort list L[0…n-1] into ascending order
• Start by selecting smallest element in list L[0…n-1],

and swap it with L[0]
• Now we only need to sort L[1…n-1]

• Do it recursively, i.e., by calling the function itself,
but with smaller part of the list, L[1…n-1]

• In general, when solving a problem recursively, add
additional parameters to function
• allow passing starting and ending indices => to specify

a smaller instance of the problem

 39

SelectionSort (L[], left, right)
// arrange L[left… right] into ascending order
// precondition: left<=right
{

 // find index of smallest element in L[left…right]
 minIndex = left;
 for k=left+1 to right
 if L[k]<L[minIndex]
 minIndex=k

 //swap it with first element in the sublist
 if (minIndex!=left)
 swap (L[left], L[minIndex]);

 SelectionSort (L, left+1, right) //recursive call to sort the rest of the list
}

 40

Discussion:

What’s the base case?

What’s the recursive case?

What is the three-questions rule?

SelectionSort (L[], left, right)
// arrange L[left… right] into ascending order
// left<=right
{
 if (left==right)
 return;

 // find index of smallest element in L[left…right]
 minIndex = left;
 for k=left+1 to right
 if L[k]<L[minIndex]
 minIndex=k

 //swap it with first element in the sublist
 if (minIndex!=left)
 swap (L[left], L[minIndex]);

 SelectionSort (L, left+1, right) //recursive call to sort the rest of the list
}

 41

Discussion:

What’s the base case?

What’s the recursive case?

What is the three-questions rule?

Could you trace through its execution? e.g.,
input L[0…5]={3,4,1,2,5,6}, left=0, right=5?

