Review and Warmup
CISC4080
CIS, Fordham Univ.

Instructor: X. Zhang

Goal

Be comfortable with writing bubble sort, selection sort

Practice basic building blocks (coding patterns)
Step-wise refinement:
- Write ideas as comments for a block of code
- Be specific/accurate about what you are doing
- Pay attention to boundary condition

- Code: do what you need to do, exactly

Next class: bubble sort, selection sort recursively,
recursive thinking

List

- a list: a data structure (ADT) that stores a collection of
elements (of same type), in which accessing a]i] (i-th
element) takes constant amount of time (i.e.,
accessing a[1], a[2], ...a[1000] takes same amount of
time)

o can be a C++ array, C++ STL vector

- asublist ai...j] where i>=0, j<=n-1, is a

contiguous part of a list a[0...n-1]

o e.g., a[1...8]is a sublist of a[0...9]
o a[1...1] is a sublist of a[0...9] of length 1

o a[3...2] is a null list (length is 0)

Can you complete this?

/* Search for a target value in list a
@param a: the list
@param n: length of list a
@param v: the value to search for
@return the first position where v appears in a; -1 if not found
*/
LinearSearch (a, n, V)
{
loc = -1 //not found yet
fori=n-1downto 0

If (a[i]==V)
loc=i

return loc

Find largest element

/* Find largest element in a sublist

@param a: a list

@param first, last: specify the sublist
@return largest value stored in a[first...last]
*/

FindLargest (a[], first, last)

{

largest=a[first] //store the largest value seen so far

for i=first+1 to last
//scan through the rest of the list, for each new value seen (a]i])
// update largest if a[i] is larger than “largest seen so far"
If (a[i] > largest)
largest = a[i]

return largest;

Pattern 1:

Scan through the list:
From lower end to higher end
Or from higher end to lower end

Index

A

for i=0; i<=n-1; i++

access/processing Ali]

11

for i=n-1; i<=0; i—

access/processing A[i]

Is a list sorted?

* |dea: to check if a list is sorted or not, we need to
compare all adjacent pairs of element, to see if
they are in order

« All adjacent pairs are in order, then list is sorted
* One pair in wrong order, then list is not sorted
IsSorted (a, n)
{
for i=0 to n-2 //iterate through all possible |
If (a[i] > a[i+1]) //compare adjacent pair
return false
return true;

Pattern 2: all adjacent pairs

Scan through the list:
From lower end to higher end
// Or from higher end to lower end
Process adjacent pair: a[i] with the following element a[i+1]

A 3 5 2 11 42
Index 0 1 2 3 n-2 n-1
Pair A[0], A[1] PairA[1],A[2] Pair A[2], A[3] Pair A[n-2], A[n-1]

for i=0; i<=n-2; i++ for i=n-2; i<=0; i—

access/processing A[i], Afi+1] access/processing A[i], Afi+1]

Does a list contain duplicates?

» To check if a list contains duplicate values or not
» For each element in the list, check if it appears in other place in the

list
ContainDuplicate (a,n)
{
For (int i=0; i<=n-1; i++) //for each element in list
{
/l[does a[i] appears elsewhere in the list?
for (int j=0; j<=n-1; j++)
{
If (a[i]==alj] && i!=)) //a[i] appears somewhere else (pos j)
return true;
}
}
return false;
}

« Pattern: enumerate all pairs in a list

Does a list contain duplicates?

» To check if a list contains duplicate values or not

 For each element in the list, check if it appears in other place in the
list In previous sol, every pair is checked twice.

. . a[2] with checked against a[4]:
ContainDuplicate (a,n) =2, i=4: and then i4.j=2

{ . .
For (int i=0; i<=n-1; i++) /ffor each ¢RI Shamr b i
{ i.e., j iterates through i+1... n-1
/l[does a[i] appears elsewhere in the list?
for (int j=i+1; j<=n-1; j++)
{
If (a[i]==alj] &&+=}) //a[i] appears at pos j, somewhere else
return true;
}
}
return false;
}

« Pattern: enumerate all pairs in a list

Pattern 3: all pairs

Scan through the list:
From lower end to higher end
Pair current element a[i] with each of elements goes after it

A 3 5 2 11 42
Index 0 1 2 3 n-2 n-1
Pair A[0] with A[1],

With A[2], ...A[n-1]

for i=0; i<=n-2; i++
// pair a[i] with each element in a[i+1...n-1]

for j=i+1; j<=n-1; j++
processing Ali], A[j] //e.g., if (A[i]==A[j]) ...

Reverse a list

/* Reverse elements stored in the list
@param list:

@param n: length of list */
Reverse (list, n)

{
intleft=0, int right=n-1 |GARSRe
while (| eft<ri ght) { one step, until meeting in the middle
swap (list[left], list[right])
left+=1
right-=1
}

Pattern 4: two indices from two ends

A 3 5 2 11 42
Index 0 1 2 3 n-2 n-1
Left —> <— right

//Set left, right to points to two ends
left=0, right=n-1

/I both walk to the middle; until meeting or passing

each other
while (left<right) {
Swap (A[left], A[right]) // or other operations...

}

bubble sort

* First round: scan list from left to right, compare
each adjacent pair of elements, swap them if
they are in wrong order

7 2 6 3 1 l«Unsorted List

P 2 6 3 1 7>2, Swap

2 7 6 3 1 7>6, Swap

- 6 7 3 1 7>3, Swap 1) Define bubble sort function
2) Write comment for first round

2 6 3 7 1 7>1, Swap 3) Implement round 1

2 6 3 1 / | <4— End Of Round 1

one bubbling rounde

/*Bubble largest element to right as in bubble sort
@param a: the list
@param n: length of a

*/

bubbleRound (a, n)

{

//scan list from left to right, compare each
adjacent pair of elements, swap them if they are in
wrong order

}

one bubbling rounde

/*Bubble largest element to right as in bubble sort
@param a: the list
@pcjr(:im n. |engTh Of a Check boundary condition:

*/ Look at boundary value for |, and see what'’s
happens at these boundary condition:
i=0 => compare a[0] with a[1]
bUbbleROUﬂd (O, n) i=n-1 => compare a[n-1] with

{

//scan list from left to right, compare each adjacent pair
of elements, swap them if they are in wrong order

for (int iI=0; i<=n-1;i++)
It (a[i] > ali+1])
swap (ali], a[i+1])

bubble sort

 We can then repeat n-1 rounds to sort whole list
e or repeat until there is no swap in prev round

7 2 6 3 1 l<Unsorted List

7 2 6 3 1 7>2, Swap 2 6 3 i |

2: 7 6 3 1 7>6, Swap 2 6 3 1 - 6>3, Swap

2<6, No Swap

6>1, Swap

2 6 77 3 1 7>3, Swap » 2 3 6 1
2 6 3 7 7>1, Swap 2 3 1 -

2 6 3 1 .4— End Of Round 1 ‘

. . . 2>1, Swap 2 3 1 - - 2<3, No Swap
EEEEE o O OEEEE
Final Answer 2 1 . . - <—End Of Round 3

<4— End Of Round 2

BubbleUp

* From Idea to Code ...

BubbleSort: v1

Bubblesort (a,n)
{
for (int j=0;j<n-1;j++) {
//[performing a bubble round for a[0...n-1]
for (int i=0;i<=n-2;i++)
if (a[i]>a[i+1])
swap (a[i], a[i+1]);

b u b b | e SO rt 4 Add outer-loop to repeat for n-1 rounds

* ignore gray elements..

We can then repeat n-1 rounds to sort whole list
e or repeat until there is no swap in prev round

7 2 6 3 1 l<Unsorted List

7 2 6 3 1 7>2, Swap 2 6 3 i |

2: 7 6 3 1 7>6, Swap 2 6 3 1 - 6>3, Swap

2<6, No Swap

6>1, Swap

2 6 77 3 1 7>3, Swap » 2 3 6 1
2 6 3 7 7>1, Swap 2 3 1 -

2 6 3 1 .4— End Of Round 1 ‘

- . . 2>1, Swap 2 3 1 - - 2<3, No Swap
EEEEE o O OEEEE
Final Answer 2 1 . . - <—End Of Round 3

<4— End Of Round 2

BubbleSort: v2

//the range of bubbleup round shrinks ...
Bubb|eSOFt (a,n) Check outerloop:

{ When j=0, range is a[0...n-1]
When j=n-2, range is a[0...1]

for (int j]=0;j<n-1;j++) { //}: which round
//[performing a bubble round for a[0...n-1-|]
for (int i=0;i<n-1-j;i++)
if (a[i]>a[i+1]) -0, (0] 4[1) a0 compared

i=n-1-j-1, a[n-2-j] and a[n-1-j] are compared

swap (a[i], a[i+1]);

BubbleSort: v3

/lthe range of bubbleup round shrinks ...

/I if there is no swap in a particular round, then the list
/I is sorted!

Bubblesort (a,n)
{
hasSwap;
for (int j=0;j<n-1;j++) { //j: which round
hasSwap = false;
//performing a bubble round for a[0...n-1-j]
for (int i=0;i<n-1-;i++)
if (a[i]>al[i+1]) {
swap (a[i], a[i+1]);
hasSwap=true;
}
If (lhasSwap)
Return true; //finish a round, in which there is no swap

Selection Sort

W W W W W W W)
3
8
g |
il

13| 29| 36 | 51 |52 (66 |72 |87 |98

")
3
&
2
4
4
N
S
S

13 is smaliest

29 is smaliest

36 is smaliest

51 is smaliest

52 is smaliest

66 is smallest
no swapping

72 is smallest

87 Is smaliest
no swapping

sorting completed

SelectionSort

From Idea to Code ...

