
Review and Warmup

CISC4080

CIS, Fordham Univ.

Instructor: X. Zhang

Goal
• Be comfortable with writing bubble sort, selection sort

• Practice basic building blocks (coding patterns)

• Step-wise refinement:

• Write ideas as comments for a block of code

• Be specific/accurate about what you are doing

• Pay attention to boundary condition

• Code: do what you need to do, exactly

• Next class: bubble sort, selection sort recursively,
recursive thinking

List
• a list: a data structure (ADT) that stores a collection of

elements (of same type), in which accessing a[i] (i-th
element) takes constant amount of time (i.e.,
accessing a[1], a[2], …a[1000] takes same amount of
time)

◦ can be a C++ array, C++ STL vector

• a sublist a[i…j] where i>=0, j<=n-1, is a
contiguous part of a list a[0…n-1]  

◦ e.g., a[1…8] is a sublist of a[0…9]

◦ a[1…1] is a sublist of a[0…9] of length 1

◦ a[3…2] is a null list (length is 0)  

Can you complete this?
/* Search for a target value in list a

@param a: the list

@param n: length of list a

@param v: the value to search for

@return the first position where v appears in a; -1 if not found

*/
LinearSearch (a, n, v)

{

 loc = -1 //not found yet

 for i = n-1 downto 0

 If (a[i]==v)

 loc=i

 return loc

}

Find largest element
/* Find largest element in a sublist

 @param a: a list

 @param first, last: specify the sublist

 @return largest value stored in a[first…last]

*/

FindLargest (a[], first, last)

{

 largest=a[first] //store the largest value seen so far

 for i=first+1 to last

 //scan through the rest of the list, for each new value seen (a[i])

 // update largest if a[i] is larger than “largest seen so far"

 If (a[i] > largest)

 largest = a[i]

 return largest;

}

Pattern 1:
Scan through the list:

 From lower end to higher end

 Or from higher end to lower end

0 1 2 3 n-1

3 5 2 11 … … 42
Index

A

for i=0; i<=n-1; i++

 access/processing A[i]

for i=n-1; i<=0; i—

 access/processing A[i]

Is a list sorted?

• Idea: to check if a list is sorted or not, we need to
compare all adjacent pairs of element, to see if
they are in order
• All adjacent pairs are in order, then list is sorted
• One pair in wrong order, then list is not sorted

IsSorted (a, n)
{
 for i=0 to n-2 //iterate through all possible I
 If (a[i] > a[i+1]) //compare adjacent pair
 return false
 return true;
}

Pattern 2: all adjacent pairs
Scan through the list:

 From lower end to higher end

 // Or from higher end to lower end

 Process adjacent pair: a[i] with the following element a[i+1]

3 5 2 11 … … 42

0 1 2 3 n-2 n-1

A

Index

for i=0; i<=n-2; i++

 access/processing A[i], A[i+1]

for i=n-2; i<=0; i—

 access/processing A[i], A[i+1]

Pair A[0], A[1] Pair A[1], A[2] Pair A[2], A[3] Pair A[n-2], A[n-1]

Does a list contain duplicates?
• To check if a list contains duplicate values or not

• For each element in the list, check if it appears in other place in the
list

ContainDuplicate (a,n)
{
 For (int i=0; i<=n-1; i++) //for each element in list
 {
 //does a[i] appears elsewhere in the list?
 for (int j=0; j<=n-1; j++)
 {
 If (a[i]==a[j] && i!=j) //a[i] appears somewhere else (pos j)
 return true;
 }
 }
 return false;
}
• Pattern: enumerate all pairs in a list

Does a list contain duplicates?
• To check if a list contains duplicate values or not

• For each element in the list, check if it appears in other place in the
list

ContainDuplicate (a,n)
{
 For (int i=0; i<=n-1; i++) //for each element in list
 {
 //does a[i] appears elsewhere in the list?
 for (int j=i+1; j<=n-1; j++)
 {
 If (a[i]==a[j] && i!=j) //a[i] appears at pos j, somewhere else
 return true;
 }
 }
 return false;
}
• Pattern: enumerate all pairs in a list

In previous sol, every pair is checked twice.
a[2] with checked against a[4]:

i=2, j=4; and then i=4,j=2

To check each pair only once: always check a[i] with
Elements appear after it

i.e., j iterates through i+1… n-1

Pattern 3: all pairs
Scan through the list:

 From lower end to higher end

 Pair current element a[i] with each of elements goes after it

3 5 2 11 … … 42

0 1 2 3 n-2 n-1

A

Index

for i=0; i<=n-2; i++
 // pair a[i] with each element in a[i+1…n-1]
 for j=i+1; j<=n-1; j++
 processing A[i], A[j] //e.g., if (A[i]==A[j]) …

Pair A[0] with A[1],
With A[2], …A[n-1]

Reverse a list

/* Reverse elements stored in the list
@param list:
@param n: length of list */
Reverse (list, n)
{
 int left=0, int right=n-1
 while (left<right) {
 swap (list[left], list[right])
 left+=1
 right-=1
 }
}

left, right starts from both ends
They move towards each other by

one step, until meeting in the middle

Pattern 4: two indices from two ends

3 5 2 11 … … 42

0 1 2 3 n-2 n-1

A

Index

//Set left, right to points to two ends
left=0, right=n-1

// both walk to the middle; until meeting or passing
each other
while (left<right) {
 Swap (A[left], A[right]) // or other operations…
}

Left —> <— right

bubble sort

• First round: scan list from left to right, compare
each adjacent pair of elements, swap them if
they are in wrong order

a 0 1 2 3 4

1) Define bubble sort function
2) Write comment for first round
3) Implement round 1

one bubbling round?
/*Bubble largest element to right as in bubble sort
 @param a: the list
 @param n: length of a
*/
bubbleRound (a, n)
{
 //scan list from left to right, compare each
adjacent pair of elements, swap them if they are in
wrong order
}

one bubbling round?
/*Bubble largest element to right as in bubble sort
 @param a: the list
 @param n: length of a
*/
bubbleRound (a, n)
{
 //scan list from left to right, compare each adjacent pair
of elements, swap them if they are in wrong order
 for (int i=0; i<=n-1;i++)
 If (a[i] > a[i+1])
 swap (a[i], a[i+1])
}

Check boundary condition:
Look at boundary value for I, and see what’s
happens at these boundary condition:
i=0 => compare a[0] with a[1]
i=n-1 => compare a[n-1] with a[n-1+1]

How to fix?

bubble sort

• We can then repeat n-1 rounds to sort whole list
• or repeat until there is no swap in prev round

BubbleUp

• From Idea to Code …

BubbleSort: v1

Bubblesort (a,n)
{
 for (int j=0;j<n-1;j++) {
 //performing a bubble round for a[0…n-1]
 for (int i=0;i<=n-2;i++)
 if (a[i]>a[i+1])
 swap (a[i], a[i+1]);
 }
}

bubble sort

• We can then repeat n-1 rounds to sort whole list
• or repeat until there is no swap in prev round

4) Add outer-loop to repeat for n-1 rounds
5)* ignore gray elements…

BubbleSort: v2

//the range of bubbleup round shrinks …
Bubblesort (a,n)
{
 for (int j=0;j<n-1;j++) { //j: which round
 //performing a bubble round for a[0…n-1-j]
 for (int i=0;i<n-1-j;i++)
 if (a[i]>a[i+1])
 swap (a[i], a[i+1]);
 }
}

Check outerloop:

When j=0, range is a[0…n-1]
When j=n-2, range is a[0…1]

Check inner loop:
i=0, a[0], a[1] are compared

i=n-1-j-1, a[n-2-j] and a[n-1-j] are compared

BubbleSort: v3
//the range of bubbleup round shrinks …
// if there is no swap in a particular round, then the list
// is sorted!
Bubblesort (a,n)
{
 hasSwap;
 for (int j=0;j<n-1;j++) { //j: which round
 hasSwap = false;
 //performing a bubble round for a[0…n-1-j]
 for (int i=0;i<n-1-j;i++)
 if (a[i]>a[i+1]) {
 swap (a[i], a[i+1]);
 hasSwap=true;
 }
 If (!hasSwap)
 Return true; //finish a round, in which there is no swap
 }
}

SelectionSort

From Idea to Code …

