
Review and Warmup: Recursion

CISC4080

CIS, Fordham Univ.

Instructor: X. Zhang

Goal
• Understand basic components of recursive

algorithms: one or more base cases, and one or more
general cases

• Trace execution of recursive algorithms

• Call stack (detailed tracing)

• Recursion trees

• Understand three questions rule for checking
correctness of recursive algorithms

• Example of recursion algorithms studied:

• Fibonacci sequence calculation

• bubble sort, selection sort recursively, recursive

thinking

Recursion
• Recursion is a distinct algorithmic problem-solving

technique. Essentially this technique boils down to
creating smaller and smaller versions of the same
problem until the smallest version is easily solved and
then going in reverse to solve the larger problem
piece by piece. 
 

Recursive View of Data Structure
• Sublist in a list a[first….last]

• Made up of a Left half and Right half, both sublists

• Make up a[first] and the rest, a[first+1…last]

• …

• Subtrees in a tree

• Left subtree

• Right subtree

• …

• Lead naturally to recursive algorithms on these data

structures  

Fib1
• Recursive function: a function that calls itself.

• All valid recursive function starts by checking if the

problem instant belongs to which cases below

• Base case(s): smallest problem instance that can be

solved directly (i.e., without recursion)

• General case(s): larger problem instance that is solved by

reducing to smaller problems… 
 

Call stack: detailed on recursion
• a call stack is a stack data structure that stores information

about active subroutines (i.e., functions) of a computer
program.

• An active subroutine is one that has been called, but is

yet to complete execution.

•

Demo: Let’s look at what
happened during fib1(3)

Whiteboard demo and gdb
demo…

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program

Call stack: detailed on recursion
• For each function call (i.e. active subroutine): its own local

variables, parameters; and return address is stored in a call
stack frame
• Return address: the point to which the function call

should return control when it finishes executing.

• Calling a function => push a (call stack) frame to call stack

• Returning from a function => pop the top frame from call

stack

• Control passed back to the saved return address

• Resume execution from caller at the address

Call stack: detailed on recursion
1. int fib1(int n)
2. {
3. if (n==0)
4. return 0;
5. if (n==1)
6. return 1;
7. return fib1(n-1) +
8. fib1(n-2);
9. }

11.int main()
12.{
13. int r= fib1(3);
14. cout<<r<<endl;
15.}

frame for main()
r:

frame for fib1(3) calln: 3
When return: go to line 13

n: 2 frame for fib1(2) call
When return: go to line 7

frame for fib1(1) call
n: 1
When return: go to line 7

Question: what’s current function call?
What happens when this function returns?

Exercise
• What’s the base cases of the following function? General

cases?

• Trace the execution of following function call Exp (2,5).

1. int Exp (int a, int n)

2. {

3. if (n==0)

4. return 1;

5. else if (n==1)

6. return a;

7. int result = Exp (a, n/2);

8.

9. if (n%2==0)

10. return result*result;

11. else

12. return result*result*a;

13.}

Tracing recursion: Recursion trees
• Trace recursive function call by drawing call stack is tedious

• We can just draw recursion tree:

• Node: recursive call

• Edges: calling

• Label parameters and returning values

1. int Exp (int a, int n)

2. {

3. if (n==0)

4. return 1;

5. else if (n==1)

6. return a;

7. int result = Exp (a, n/2);

8.

9. if (n%2==0)

10. return result*result;

11. else

12. return result*result*a;

13.}

Why this recursive function is correct?

• Does it return the right value when n=0?

• How about for input instance n=1?

• How about n=2?

• How about n=5?

• How about n=32?

• Any n>=0 (assuming there is no integer overload problem)…

Why this recursive function is correct?
/* Calculate a^n, for n>=0 */

1. int Exp (int a, int n)

2. {

3. if (n==0)

4. return 1;

5. else if (n==1)

6. return a;

7. int result = Exp (a, n/2);

8.

9. if (n%2==0)

10. return result*result;

11. else

12. return result*result*a;

13.}

Three questions rule
/* Calculate a^n, for n>=0 */

1. int Exp (int a, int n)

2. {

3. if (n==0)

4. return 1;

5. else if (n==1)

6. return a;

7. int result = Exp (a, n/2);

8.

9. if (n%2==0)

10. return result*result;

11. else

12. return result*result*a;

13.}

To find an algorithm to solve your problem and

to verify a recursive solution works, we must be

able to answer “yes” to all three of these

questions.

• Base Case Question: Is there a

nonrecursive way out of the algorithm, and

does the algorithm work correctly for this

base case?

Three questions rule
/* Calculate a^n, for n>=0 */

1. int Exp (int a, int n)

2. {

3. if (n==0)

4. return 1;

5. else if (n==1)

6. return a;

7. int result = Exp (a, n/2);

8.

9. if (n%2==0)

10. return result*result;

11. else

12. return result*result*a;

13.}

• Smaller Caller Question: Does each recursive

call to the algorithm involve a smaller case of

the original problem, leading inescapably to the

base case?

Three questions rule
/* Calculate a^n, for n>=0 */

1. int Exp (int a, int n)

2. {

3. if (n==0)

4. return 1;

5. else if (n==1)

6. return a;

7. int result = Exp (a, n/2);

8.

9. if (n%2==0)

10. return result*result;

11. else

12. return result*result*a;

13.}

• General Case Question: Assuming the recursive

call(s) to the smaller case(s) work correctly, does the

algorithm work correctly for the general case?

Practice Recursive Thinking
/* Finding Largest value in a[first…last]

 @param a: the list

 @param first, last: specify the range of the sublist

 @return largest value in a[first…last]*/

int Largest (a, first, last)

{

}

one bubbling round?
/*Bubble largest element to right as in bubble sort
 @param a: the list
 @param n: length of a
*/
bubbleRound (a, n)
{
 //scan list from left to right, compare each
adjacent pair of elements, swap them if they are in
wrong order
}

one bubbling round?
/*Bubble largest element to right as in bubble sort
 @param a: the list
 @param n: length of a
*/
bubbleRound (a, n)
{
 //scan list from left to right, compare each adjacent pair
of elements, swap them if they are in wrong order
 for (int i=0; i<=n-1;i++)
 If (a[i] > a[i+1])
 swap (a[i], a[i+1])
}

Check boundary condition:
Look at boundary value for I, and see what’s
happens at these boundary condition:
i=0 => compare a[0] with a[1]
i=n-1 => compare a[n-1] with a[n-1+1]

How to fix?

bubble sort recursively…

• In iterative implementation: we repeat n-1 rounds
to sort whole list
• or repeat until there is no swap in prev round

• Recursive thinking?
• After round 1, we have a smaller problem in our hand

Selection sort
• First round: find

location of smallest
element, swap it
with the front
element

• Iteratively, we can
repeat the above
for n-2 times

• Recursively?

