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Outline

• Resource usage of algorithms: space and time
• Characterize resource usage of algorithms 

• Experimental approach 
• Running time Analysis: based upon code or 

pseudocode
• count number of “computer steps” 
• write recursive formula for running time of 

recursive algorithm
• math help: math. induction
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Running time



In pursuit of better algorithms

• We want to solve problems using less resource: 

• Space: how much memory is needed? 

• Time: how fast can we get the result?
• Observation: Given an algorithm, its resource usage depends on the 

size of input 

• It takes longer to sort a long list
• It takes longer to calculate Fn, n-th term in Fibonacci sequence for larger n

• …

• When the input is small, it doesn’t matter. So we focus on 
problem of very large size. 
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Algorithm Analysis: bubble sort

bubblesort (a[0…n-1])

input: a list of numbers a[0…n-1]
output: a sorted version of this list

for endp=n-1 to 1:
         swapOP=0;   
  for i=0 to endp-1:
       if a[i] > a[i+1]:  swap (a[i], a[i+1]); swapOP++;
         if (swapOP==0): return  //no need to continue 
return

Q: Does it take same amount of time to sort following input lists? 
1. list1[0…5]={1, 4, 5, 6, 7, 9}
2. list2[0…5]={9, 1, 4, 7, 6, 9}
3. list3[0…5]={9, 7, 6, 5, 4, 1} 
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Resource usage of algorithms

Running time/space requirement of an algorithm depends 
upon

• Size of the input, usually denoted as n 
• often times, also upon the particular input, e.g. if the list is sorted 

already or not

For a given problem size, running time often varies:
• best case: some problem instances/inputs yield shortest possible 

running time (e.g. the value searched for is in first place)
• worst case: some problem instances yield longest possible running 

time (e.g., linear search: value searched for is in last place)
• average case: if we assume all instances are equally likely (or any other 

prob. distribution), the expected running time… 
• We usually focus on worst case running time.
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Outline

• Resource usage of algorithms: space and time
• Characterize resource usage of algorithms

• Experimental approach 
• Running time Analysis: based upon code or 

pseudocode
• count number of “computer steps” 
• write recursive formula for running time of 

recursive algorithm
• math help: math. induction
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Experimental Approach

Insight: [knuth 1970] Use scientific method to 
understand performance 

1. Observe some features of the natural world (here measure running time or 
memory usage)

2. Hypothesize a model that is consistent with the observation
3. Predict using the hypothesis
4. Verify the prediction by making further observation
5. Validate by repeating until the hypothesis and observation agrees
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Observe how long does it take…

you to finish a homework assignment?
• Right before beginning to work on the homework, check the clock, and 

it’s Wednesday, Sept 9, 10:15:00 am
• Work on the homework (without taking any break). 
• Right after finish, check the clock again and it’s Wednesday, Sept 9, 

1:20:00pm 

• How long did it take you to finish the homework? 
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How long does it take…

an algorithm to run when given some input? 

• Get current time of the clock, and store it in start_time
• Call your algorithm with some input
• Get current time of the clock, and store it in finish_time
• Running time of the algorithm: finish_time - start_time
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System Time

All computer systems maintain a system time/clock.
• It keeps track number of seconds and nanoseconds (10-9 

second) passed since some starting time, called the epoch. 

In Unix and POSIX-compliant systems, the epoch used is Jan 
1st, 1970 00:00:00 

Unix time/clock tells you how many seconds and 
nanoseconds has passed since the Unix epoch at January 
1st 1970 00:00:00
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https://en.wikipedia.org/wiki/Epoch_(computing)
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Unix_epoch


clock_gettime()

A library function, clock_gettime retrieves the time of a clock
Usage example

        #include <time.h> 
        /* timespec type: 
          struct timespec {

               time_t   tv_sec;        /* seconds */
               long     tv_nsec;       /* nanoseconds */
           };  */

        struct timespec t; // declare a variable t of type timespec
        
        clock_gettime(CLOCK_REALTIME, &t);   
      // Retrieve the time of specified clock, CLOCK_REALTIME

12



Measuring running time

#include <time.h> 

    … 
        struct timespec t1, t2; //t1, t2 are two variables of type timeval
         …  
        clock_gettime(CLOCK_REALTIME, &t1); 
        result = Fib(100);  // or any other algorithm we want to measure 

running time of … 
      clock_gettime (CLOCK_REALTIME, &t2);

        // calculate how many seconds have passed between t1 and t2
        double timeInSeconds = (t2.tv_sec-t1.tv_sec) +
               (t2.tv_nsec-t2.tv_nsec)/1e9;  

* Question: How the running time of Fib() grows when with n? 13



Example (Fib1: recursive)

Recursive Fib calculator
n   F(n)      T(n)ofFib1 (s)
1 1 2.72e-07 
2 1 1.67e-07 
3 2 2.49e-07 
4 3 3e-07 
5 5 3.95e-07 
6 8 3.98e-07 
7 13 5.46e-07 
8 21 7.25e-07 
… 
13 233 4.256e-06 
14 377 6.848e-06 
15 610 1.0964e-05 
16 987 1.7656e-05 
17 1597 2.8207e-05 
18 2584 4.5365e-05 
19 4181 7.3375e-05 
…
33 3524578 0.0195626 
34 5702887 0.0318968 
35 9227465 0.0516566 
36 14930352 0.0839258 
…
40 102334155 0.605248 
41 165580141 0.932493 
42 267914296 1.51373 
43 433494437 2.40282 
44 701408733 3.89735
45 1134903170 6.31143 
46 1836311903 10.2351 
47 -1323752223 16.5711 
48 512559680 26.8665 
49 -811192543 43.6285 14

n

Time (in seconds)

Running time seems to grows 
exponentially as n increases

How long does it take to Calculate F(100)?



Observation

Observation: 
• Time to calculate n-th term is sum of time to calculate (n-

1), (n-2) terms 
• Explanation? 

Hypothesis: running time of recursive Fib grows 
exponentially with n,

• T(n)=c*an+c2, for a > 1
• Possible to model fitting to obtain the constants… 
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Outline

• Resource usage of algorithms: space and time
• How to understand resource usage of algorithms? 

• Experimental approach 
• Running time Analysis: based upon code or 

pseudocode
• count number of “computer steps” 
• write recursive formula for running time of 

recursive algorithm
• math help: math. induction
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Analytic Approach

Total running time: sum of cost x frequency for all operations
• Need to analyze program to determine set of operations
• Cost of operation: depends on machine, compiler
• Frequency depends on algorithm, input data
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Cost of basic operations
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Cost of basic operations
Observation: most primitive operations takes constant time
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Caveat. Non-primitive operations take more time constant time
e.g. BST search takes log N time (C++, ordered_map look up)…



Example: how many 0’s?
Q. Frequency as a function of input size N?

20Total running time, T(N)= 2c1 + 2c2 + (N+1) c3+N c4 +N c5 + 2N c6



Example: Sum to 0
Q. How many instructions as a function of input size N?
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Example: 2-Sum to 0

Q. How many instructions as a function of input size N?
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Simplifying the calculations
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Simplification
Use frequency of basic operation in the deepest loop to 
represent/capture running time 
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Running time, T(N) = N(N-1)



Running time fib2(n)
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Note: in homework/quizzes, the representative operations 
will be specified for you. 

Characterize running time of fib2(n), by choosing frequency of array access 
operation 



Example: checking cross-pairs

Q. How many array access operations?
for (int i=0; i<N; i++)

     for (int j=0; j<N; j++)

         if (a[i] + b[j] == 0)

               count++;

    
Steps
1. List all values for outer loop variables I
2. For each value of i, write the inner loop header

– How many times is the inner loop body iterates?
3. Sum all frequency up 
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bubble sort: worst case
bubblesort (a[0…n-1])
input: an array of numbers a[0…n-1]
output: a sorted version of this array

for endp=n-1 to 1:
         swapOP=0;   
  for i=0 to endp-1:
       if a[i] > a[i+1]:  swap (a[i], a[i+1]);
         
return 

endp=n:   inner loop (for j=1 to endp-1) repeats for n-1 times
endp=n-1:   inner loop repeats for n-2 times
endp=n-2:  inner loop repeats for n-3 times       
… 
endp=2: inner loop repeats for 1 times 
Total # of comparison operation:  T(n) = (n-1)+(n-2)+(n-3)+…+1            
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How big is T(n)?

T(n) = (n-1)+(n-2)+(n-3)+…+1 

Can you write big sigma notation for T(n)?

Can you write simplified formula for T(n)? 

Can you prove the above using math. induction? 
    1) when n=2, left hand size =1, right hand size is 

     2) if the equation is true for n=k, then it’s also true for n=k+1     28



Outline

• Resource usage of algorithms: space and time
• How to understand resource usage of algorithms? 

• Experimental approach 
• Running time Analysis: based upon code or 
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• count number of “computer steps” 
• write recursive formula for running time of 

recursive algorithm
• math help: math. induction
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Running Time analysis

Analyze running time of recursive algorithm
• first, define T(n) to denote the running time (or total number of 

operations carried out) during fib1(n)’s execution
• write a recursive formula for T(n)
• then, either derive a closed formula for T(n) or come up some 

bound for T(n)
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Our first exponential running time algorithm

• T(n): number of computer steps to compute fib1(n),
• T(0)=1 
• T(1)=2
• T(n)=T(n-1)+T(n-2)+3, n>1

• We can see for any n, T(n) > Fn

• Given F0=0, F1=1, Fn=Fn-1+Fn-2, we can prove 

• In fact, there is a tighter lower bound: T(n) >= 20.694n

• So, running time of Fib1 grows exponentially fast: 

31



How many comparison operations?

SelectionSort_Recursive(l, first, last)
{

if first==last
     return
s=first
for i=first+1 to last
    if l[i]<l[s]  
         s=i
if s!=first
      Swap (l[s],l[first])
SelectionSort_Recursive(l,first+1, last)

}
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Summary: Running time analysis

•  For an input of size n, how many total number of computer 
steps are executed?

• Size of input: size of an array, polynomial degree, # of elements in 
a matrix, vertices and edges in a graph, # of bits in the binary 
representation of input, …

• Computer steps: arithmetic operations, data movement, control, 
decision making (if /then), comparison,…

• For non-recursive algorithm: unpack loops
• For recursive algorithm: Write recursive formula for T(n)
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