
Algorithm Analysis
CISC4080

CIS, Fordham Univ.

Instructor: X. Zhang

Outline

• Resource usage of algorithms: space and time
• Characterize resource usage of algorithms

• Experimental approach
• Running time Analysis: based upon code or

pseudocode
• count number of “computer steps”
• write recursive formula for running time of

recursive algorithm
• math help: math. induction

2

Running time

In pursuit of better algorithms

• We want to solve problems using less resource:

• Space: how much memory is needed?

• Time: how fast can we get the result?
• Observation: Given an algorithm, its resource usage depends on the

size of input

• It takes longer to sort a long list
• It takes longer to calculate Fn, n-th term in Fibonacci sequence for larger n

• …

• When the input is small, it doesn’t matter. So we focus on
problem of very large size.

4

Algorithm Analysis: bubble sort

bubblesort (a[0…n-1])

input: a list of numbers a[0…n-1]
output: a sorted version of this list

for endp=n-1 to 1:
 swapOP=0;
 for i=0 to endp-1:
 if a[i] > a[i+1]: swap (a[i], a[i+1]); swapOP++;
 if (swapOP==0): return //no need to continue
return

Q: Does it take same amount of time to sort following input lists?
1. list1[0…5]={1, 4, 5, 6, 7, 9}
2. list2[0…5]={9, 1, 4, 7, 6, 9}
3. list3[0…5]={9, 7, 6, 5, 4, 1}

5

Resource usage of algorithms

Running time/space requirement of an algorithm depends
upon

• Size of the input, usually denoted as n
• often times, also upon the particular input, e.g. if the list is sorted

already or not

For a given problem size, running time often varies:
• best case: some problem instances/inputs yield shortest possible

running time (e.g. the value searched for is in first place)
• worst case: some problem instances yield longest possible running

time (e.g., linear search: value searched for is in last place)
• average case: if we assume all instances are equally likely (or any other

prob. distribution), the expected running time…
• We usually focus on worst case running time.

6

Outline

• Resource usage of algorithms: space and time
• Characterize resource usage of algorithms

• Experimental approach
• Running time Analysis: based upon code or

pseudocode
• count number of “computer steps”
• write recursive formula for running time of

recursive algorithm
• math help: math. induction

7

Experimental Approach

Insight: [knuth 1970] Use scientific method to
understand performance

1. Observe some features of the natural world (here measure running time or
memory usage)

2. Hypothesize a model that is consistent with the observation
3. Predict using the hypothesis
4. Verify the prediction by making further observation
5. Validate by repeating until the hypothesis and observation agrees

8

Observe how long does it take…

you to finish a homework assignment?
• Right before beginning to work on the homework, check the clock, and

it’s Wednesday, Sept 9, 10:15:00 am
• Work on the homework (without taking any break).
• Right after finish, check the clock again and it’s Wednesday, Sept 9,

1:20:00pm

• How long did it take you to finish the homework?

9

How long does it take…

an algorithm to run when given some input?

• Get current time of the clock, and store it in start_time
• Call your algorithm with some input
• Get current time of the clock, and store it in finish_time
• Running time of the algorithm: finish_time - start_time

10

System Time

All computer systems maintain a system time/clock.
• It keeps track number of seconds and nanoseconds (10-9

second) passed since some starting time, called the epoch.

In Unix and POSIX-compliant systems, the epoch used is Jan
1st, 1970 00:00:00

Unix time/clock tells you how many seconds and
nanoseconds has passed since the Unix epoch at January
1st 1970 00:00:00

11

https://en.wikipedia.org/wiki/Epoch_(computing)
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Unix_epoch

clock_gettime()

A library function, clock_gettime retrieves the time of a clock
Usage example

 #include <time.h>
 /* timespec type:
 struct timespec {

 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 }; */

 struct timespec t; // declare a variable t of type timespec

 clock_gettime(CLOCK_REALTIME, &t);
 // Retrieve the time of specified clock, CLOCK_REALTIME

12

Measuring running time

#include <time.h>

 …
 struct timespec t1, t2; //t1, t2 are two variables of type timeval
 …
 clock_gettime(CLOCK_REALTIME, &t1);
 result = Fib(100); // or any other algorithm we want to measure

running time of …
 clock_gettime (CLOCK_REALTIME, &t2);

 // calculate how many seconds have passed between t1 and t2
 double timeInSeconds = (t2.tv_sec-t1.tv_sec) +
 (t2.tv_nsec-t2.tv_nsec)/1e9;

* Question: How the running time of Fib() grows when with n? 13

Example (Fib1: recursive)

Recursive Fib calculator
n F(n) T(n)ofFib1 (s)
1 1 2.72e-07
2 1 1.67e-07
3 2 2.49e-07
4 3 3e-07
5 5 3.95e-07
6 8 3.98e-07
7 13 5.46e-07
8 21 7.25e-07
…
13 233 4.256e-06
14 377 6.848e-06
15 610 1.0964e-05
16 987 1.7656e-05
17 1597 2.8207e-05
18 2584 4.5365e-05
19 4181 7.3375e-05
…
33 3524578 0.0195626
34 5702887 0.0318968
35 9227465 0.0516566
36 14930352 0.0839258
…
40 102334155 0.605248
41 165580141 0.932493
42 267914296 1.51373
43 433494437 2.40282
44 701408733 3.89735
45 1134903170 6.31143
46 1836311903 10.2351
47 -1323752223 16.5711
48 512559680 26.8665
49 -811192543 43.6285 14

n

Time (in seconds)

Running time seems to grows
exponentially as n increases

How long does it take to Calculate F(100)?

Observation

Observation:
• Time to calculate n-th term is sum of time to calculate (n-

1), (n-2) terms
• Explanation?

Hypothesis: running time of recursive Fib grows
exponentially with n,

• T(n)=c*an+c2, for a > 1
• Possible to model fitting to obtain the constants…

15

Outline

• Resource usage of algorithms: space and time
• How to understand resource usage of algorithms?

• Experimental approach
• Running time Analysis: based upon code or

pseudocode
• count number of “computer steps”
• write recursive formula for running time of

recursive algorithm
• math help: math. induction

16

Analytic Approach

Total running time: sum of cost x frequency for all operations
• Need to analyze program to determine set of operations
• Cost of operation: depends on machine, compiler
• Frequency depends on algorithm, input data

17

Cost of basic operations

18

Cost of basic operations
Observation: most primitive operations takes constant time

19
Caveat. Non-primitive operations take more time constant time
e.g. BST search takes log N time (C++, ordered_map look up)…

Example: how many 0’s?
Q. Frequency as a function of input size N?

20Total running time, T(N)= 2c1 + 2c2 + (N+1) c3+N c4 +N c5 + 2N c6

Example: Sum to 0
Q. How many instructions as a function of input size N?

21

Example: 2-Sum to 0

Q. How many instructions as a function of input size N?

22

Simplifying the calculations

23

Simplification
Use frequency of basic operation in the deepest loop to
represent/capture running time

24

Running time, T(N) = N(N-1)

Running time fib2(n)

25

Note: in homework/quizzes, the representative operations
will be specified for you.

Characterize running time of fib2(n), by choosing frequency of array access
operation

Example: checking cross-pairs

Q. How many array access operations?
for (int i=0; i<N; i++)

 for (int j=0; j<N; j++)

 if (a[i] + b[j] == 0)

 count++;

Steps
1. List all values for outer loop variables I
2. For each value of i, write the inner loop header

– How many times is the inner loop body iterates?
3. Sum all frequency up

26

bubble sort: worst case
bubblesort (a[0…n-1])
input: an array of numbers a[0…n-1]
output: a sorted version of this array

for endp=n-1 to 1:
 swapOP=0;
 for i=0 to endp-1:
 if a[i] > a[i+1]: swap (a[i], a[i+1]);

return

endp=n: inner loop (for j=1 to endp-1) repeats for n-1 times
endp=n-1: inner loop repeats for n-2 times
endp=n-2: inner loop repeats for n-3 times
…
endp=2: inner loop repeats for 1 times
Total # of comparison operation: T(n) = (n-1)+(n-2)+(n-3)+…+1

27

How big is T(n)?

T(n) = (n-1)+(n-2)+(n-3)+…+1

Can you write big sigma notation for T(n)?

Can you write simplified formula for T(n)?

Can you prove the above using math. induction?
 1) when n=2, left hand size =1, right hand size is

 2) if the equation is true for n=k, then it’s also true for n=k+1 28

Outline

• Resource usage of algorithms: space and time
• How to understand resource usage of algorithms?

• Experimental approach
• Running time Analysis: based upon code or

pseudocode
• count number of “computer steps”
• write recursive formula for running time of

recursive algorithm
• math help: math. induction

29

Running Time analysis

Analyze running time of recursive algorithm
• first, define T(n) to denote the running time (or total number of

operations carried out) during fib1(n)’s execution
• write a recursive formula for T(n)
• then, either derive a closed formula for T(n) or come up some

bound for T(n)

30

Our first exponential running time algorithm

• T(n): number of computer steps to compute fib1(n),
• T(0)=1
• T(1)=2
• T(n)=T(n-1)+T(n-2)+3, n>1

• We can see for any n, T(n) > Fn

• Given F0=0, F1=1, Fn=Fn-1+Fn-2, we can prove

• In fact, there is a tighter lower bound: T(n) >= 20.694n

• So, running time of Fib1 grows exponentially fast:

31

How many comparison operations?

SelectionSort_Recursive(l, first, last)
{

if first==last
 return
s=first
for i=first+1 to last
 if l[i]<l[s]
 s=i
if s!=first
 Swap (l[s],l[first])
SelectionSort_Recursive(l,first+1, last)

}

32

Summary: Running time analysis

• For an input of size n, how many total number of computer
steps are executed?

• Size of input: size of an array, polynomial degree, # of elements in
a matrix, vertices and edges in a graph, # of bits in the binary
representation of input, …

• Computer steps: arithmetic operations, data movement, control,
decision making (if /then), comparison,…

• For non-recursive algorithm: unpack loops
• For recursive algorithm: Write recursive formula for T(n)

33

