Algorithm Analysis
CISC4080
CIS, Fordham Univ.

Instructor: X. Zhang

Outline

e Resource usage of algorithms: space and time
e Characterize resource usage of algorithms
e Experimental approach

e Running time Analysis: based upon code or
pseudocode

e count number of “computer steps”

e write recursive formula for running time of
recursive algorithm

e math help: math. induction

Running time

“ As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will arise—By what course of calculation can these results be arrived at by
the machine in the shortest time? " — Charles Babbage (1864)

how many times do you
have to turn the crank?

Analytic Engine

INn pursuit of better algorithms

e We want to solve problems using less resource:
e Space: how much memory is needed?

e Time: how fast can we get the result?

e Observation: Given an algorithm, its resource usage depends on the
size of input

e |t takes longer to sort a long list

e |t takes longer to calculate Fn, n-th term in Fibonacci sequence for larger n

e When the input is small, it doesn’t matter. So we focus on
problem of very large size.

Algorithm Analysis: bubble sort

bubblesort (a[0...n-1])

input: a list of numbers a[0...n-1]

output: a sorted version of this list
for endp=n-I to I:
swapOP=0;
for i=0 to endp-1:
if a[i] > a[i+1]: swap (a[i], a[i+1]); swapOP++;
if (swapOP==0): return //no need to continue
return

Q: Does it take same amount of time to sort following input lists?

I listI[0...5]={l, 4, 5, 6, 7, 9}
2. list2[0...5]={9, 1, 4, 7, 6, 9}
3. list3[0...5]={9, 7, 6, 5, 4, |}

Resource usage of algorithms

Running time/space requirement of an algorithm depends
upon
e Size of the input, usually denoted as n

e often times, also upon the particular input, e.g. if the list is sorted
already or not

For a given problem size, running time often varies:

e best case: some problem instances/inputs yield shortest possible
running time (e.g. the value searched for is in first place)

e worst case: some problem instances yield longest possible running
time (e.g., linear search: value searched for is in last place)

e average case: if we assume all instances are equally likely (or any other
prob. distribution), the expected running time...

e We usually focus on worst case running time.

Outline

e Resource usage of algorithms: space and time
e Characterize resource usage of algorithms
e Experimental approach

e Running time Analysis: based upon code or
pseudocode

e count number of “computer steps”

e write recursive formula for running time of
recursive algorithm

e math help: math. induction

Experimental Approach

Insight: [knuth 1970] Use scientific method to
understand performance

1. Observe some features of the natural world (here measure running time or
memory usage)

Hypothesize a model that is consistent with the observation
Predict using the hypothesis

Verify the prediction by making further observation

Validate by repeating until the hypothesis and observation agrees

A

Observe how long does it take...

you to finish a homework assignment?

e Right before beginning to work on the homework, check the clock, and
it’s Wednesday, Sept 9, 10:15:00 am

e Work on the homework (without taking any break).

e Right after finish, check the clock again and it’s Wednesday, Sept 9,
1:20:00pm

e How long did it take you to finish the homework?

How long does It take...

an algorithm to run when given some input?

e Get current time of the clock, and store it in start_time
e Call your algorithm with some input

e Get current time of the clock, and store it in finish_time
e Running time of the algorithm: finish_time - start_time

10

System Time

All computer systems maintain a system time/clock.

e |t keeps track number of seconds and nanoseconds (10~
second) passed since some starting time, called the epoch.

In Unix and POSIX-compliant systems, the epoch used is Jan

1st, 1970 00:00:00

Unix time/clock tells you how many seconds and

nanoseconds has passed since the Unix epoch at January
1st 1970 00:00:00

11

https://en.wikipedia.org/wiki/Epoch_(computing)
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Unix_epoch

clock_gettime()

A library function, clock gettime retrieves the time of a clock

Usage example
#include <time.h>
/* timespec type:
struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

Lo*/

struct timespec t; // declare a variable t of type timespec

clock_gettime(CLOCK_REALTIME, &t);
// Retrieve the time of specified clock, CLOCK_REALTIME

12

Measuring running fime

#Hinclude <time.h>

struct timespec t1, t2; //t1, t2 are two variables of type timeval

clock_gettime(CLOCK_REALTIME, &t1);

result = Fib(100); // or any other algorithm we want to measure
running time of ...

clock_gettime (CLOCK_REALTIME, &t2);
// calculate how many seconds have passed between t1 and t2
double timelnSeconds = (t2.tv_sec-tl.tv_sec) +

(t2.tv_nsec-t2.tv_nsec)/1e9;

* Question: How the running time of Fib() grows when with n?

13

Example (Fib1: recursive)

Recursive Fib calculator Time (in seconds)

n F(n) T(n)ofFibl (s)

1 1 2.72e-07 o o i
2 1 1.67e-07 40.000000

3 2 2.49e-07

4 3 3e-07

5 5 3.95e-07

6 8 3.98e-07

7 13 5.46e-07 30.000000

8 21 7.25e-07

13 233 4.256e-06

14 377 6.848e—06

15 610 1.0964e-05

16 987 1.7656e-05 70.000000
17 1597 2.8207e-05

18 2584 4.5365e-05

19 4181 7.3375e-05

33 3524578
34 5702887
35 9227465
36 14930352

0.0195626 10.000000
0.0318968

0.0516566

0.0839258

490 102334155
41 165580141
42 267914296 1.51373

43 433494437 2.40282 . . n

44 701408733 3.89735 Running time seems to grows

45 1134903170 6.31143 . .

46 1836311903 10.2351 exponentially as n increases

47 -1323752223 16.5711 .

48 512559680 26.8665 How long does it take to Calculate F(100)?

49 -811192543 43.6285 14

.605248
0.000000
. 932493 o

WNERPROe S

Observation

Observation:

e Time to calculate n-th term is sum of time to calculate (n-
1), (n-2) terms
e Explanation?

Hypothesis: running time of recursive Fib grows
exponentially with n,

e T(n)=c*a"+cy, fora>1

e Possible to model fitting to obtain the constants...

15

Outline

e Resource usage of algorithms: space and time
e How to understand resource usage of algorithms?
e Experimental approach

e Running time Analysis: based upon code or
pseudocode

e count number of “computer steps”

e write recursive formula for running time of
recursive algorithm

e math help: math. induction

16

Analytic Approach

Total running time: sum of cost x frequency for all operations
e Need to analyze program to determine set of operations
e (Cost of operation: depends on machine, compiler
e Frequency depends on algorithm, input data

The Art of The Art of The Art of The Art of
Computer Computer Computer Computer
Programming Programming Programming Programming
DONALD E KNUTH DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH Donald Knuth
1974 Turing Award

In principle, accurate mathematical models are available.

Cost of basic operations

operation example nanoseconds !

integer add a+b 2:1
integer multiply a*b 2.4
integer divide a/b 5.4

floating-point add a+b 4.6
floating-point multiply a*b 4.2
floating-point divide A D 13.5

sine Math.sin(theta) 91.3
arctangent Math.atan2(y, x) 129.0

t Running OS X on Macbook Pro 2.2GHz with 2GB RAM

18

Cost of basic operations

Observation: most primitive operations takes constant time

operation example nanoseconds !

variable declaration int a C
assignment statement a=>b Ca
integer compare a<b 3
array element access ali] C4
array length a.length s
1 D array allocation new int[N] ce N
2D array allocation new int[N][N] c7 N2

Caveat. Non-primitive operations take more time constant time
e.g. BST search takes log N time (C++, ordered_map look up)... 19

Example: how many 0'se
Q. Frequency as a function of input size N?

int count = 0;
for (Gint i = 0; i < N; i++)
if (a[i] = 0)
count++;

N array accesses

variable declaration 2
assignment statement 2
less than compare N+1
equal to compare N
array access N
increment Nto2 N

Total running time, T(N)=2c1+ 2c2+ (N+1) c3+N ca+N cs+ 2N cs

20

Example: Sum to O
Q. How many instructions as a function of input size N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1l; j < N; j++)
if (a[i] + a[j] == 0)
count++;

0+14+24...+(N-1)

Pf. [n even]

0+1+2+.“+(N—1)=:1N2—-1N

2 2
half of half of
square diagonal

o~ N | -

N (N -1)

21

Example: 2-Sum 1o O

Q. How many instructions as a function of input size N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1l; j < N; j++)
if (a[i] + a[j] == 0)
count++;

04+14+2+...+(N-1) =

N (N -1)

A~ N | -
N 2
t CSEEET

variable declaration N+2
assignment statement N+2
less than compare BLIN+1)(N+2) B
equal to compare BWNIN-1)
> tedious to count exactly
array access NN-1)
increment LKNIN-1)toONN-1) >

22

Simplitying the calculations

“ It is convenient to have a measure of the amount of work involved
in a computing process, even though it be a very crude one. We may
count up the number of times that various elementary operations are
applied in the whole process and then given them various weights.
We might, for instance, count the number of additions, subtractions,
multiplications, divisions, recording of numbers, and extractions
of figures from tables. In the case of computing with matrices most
of the work consists of multiplications and writing down numbers,
and we shall therefore only attempt to count the number of

multiplications and recordings. ” — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING
(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]
SUMMARY

A number of methods of solving sets of linear equations and inverting matrices
are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known ‘Gauss
elimination process’, it is found that the errors are normally quite moderate: no

23

Simplification

Use frequency of basic operation in the deepest loop to
represent/capture running time

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1l; j < N; j++)
if (a[i] + a[j] == 0)
count++;

04+1424...+(N—-1) =

N (I.'\" — 1)

NN -
(8] '2: =
v .

variable declaration N+2
assignment statement N+2
less than compare BN+ 1) (N+2)
equal to compare BWN(IN-1) Running time, T(N) = N(N-1)
array access N(N-1) <«——— cost model = array accesses
) (we assume compiler/JVM do not
Increment BWNIN-1)toN(N-1)

optimize any array accesses away!)

24

Running time fib2(n)

Characterize running time of fib2(n), by choosing frequency of array access
operation

function fib2(n)
if n = 0 return O
create an array f[O0...n]
f[o] =0, f[1] =1
for i = 2...n:
flil] = f[i - 1] + £[1i - 2]
return f[n]

Note: in homework/quizzes, the representative operations
will be specified for you.

25

Example: checking cross-pairs

Q. How many array access operations?
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
if (ali] + b[j] == 0)

count++;

Steps
1. List all values for outer loop variables |
2. For each value of i, write the inner loop header
— How many times is the inner loop body iterates?

3. Sum all frequency up

26

bubble sort: worst case

bubblesort (a[0...n-1])
input: an array of numbers a[0...n-1]

output: a sorted version of this array
for endp=n-1 to I:
swapOP=0;
for i=0 to endp-1:
if a[i] > a[i+1]: swap (a[i], a[i*+1]);

return

endp=n: inner loop (for =1 to endp-1) repeats for n-1 times
endp=n-1: inner loop repeats for n-2 times
endp=n-2: inner loop repeats for n-3 times

endp=2: inner loop repeats for | times
Total # of comparison operation: T(n) = (n-1)+(n-2)+(n-3)+...+|

27

How bigis T(n)<¢

T(n) = (n-1)+(n-2)+(n-3)+...+1

Can you write big sigma notation for T(n)?

1+2+3+..+(n—2)+(n—1)= X"

Can you write simplified formula for T(n)?

1+2+3+...+(n_2)+(n_1):”(”—1)

, forn > 2

Can you prove the above using math. induction? 2(2 1) _1
1) when n=2, left hand size =1, right hand size is 2

2) if the equation is true for n=k, then it’s also true for n=k+| o8

Outline

e Resource usage of algorithms: space and time
e How to understand resource usage of algorithms?
e Experimental approach

e Running time Analysis: based upon code or
pseudocode

e count number of “computer steps”

e write recursive formula for running time of
recursive algorithm

e math help: math. induction

29

Running Time analysis

function fibl(n)

if n = 0: return O

if n=1: return 1

return fibl(n - 1) + fibl(n - 2)

Analyze running time of recursive algorithm

* first, define T(n) to denote the running time (or total number of
operations carried out) during fib1(n)’s execution

* write a recursive formula for T(n)

* then, either derive a closed formula for T(n) or come up some
bound for T(n)

30

Our first exponential running time algorithm

* T(n): number of computer steps to compute fib1(n),
T(0)=1
T(1)=2
T(n)=T(n-1)+T(n-2)+3, n>1

* Wecanseeforanyn, T(n)>F,
* Given Fo=0, F1=1, Frh=Fn-1+Fn-2, we can prove

F'n, Z 2% — 20.571,

* |Infact, there is a tighter lower bound: T(n) >= 20-694n
* So, running time of Fib1 grows exponentially fast:

T(n) > F'n, 2 20.69471,

31

How many comparison operationse

SelectionSort_Recursive(l, first, last)
{
if first==last
return
s=first
for i=first+1 to last
if I[i]<I[s]
S=i
if sl=first
Swap (I[s],I[first])

SelectionSort_Recursive(l,first+1, last)

32

Summary: Running fime analysis

e For an input of size n, how many total number of computer
steps are executed?

e Size of input: size of an array, polynomial degree, # of elements in

a matrix, vertices and edges in a graph, # of bits in the binary
representation of input, ...

e Computer steps: arithmetic operations, data movement, control,
decision making (if /then), comparison,...

e For non-recursive algorithm: unpack loops

e For recursive algorithm: Write recursive formula for T(n)

33

