
Data Structure Review, C++ STL

CISC4080

CIS, Fordham Univ.

Instructor: X. Zhang

This class
• From CISC2200 to C++ STL
• ADT list and C++ STL vector, list

– Principle of composition: vector of vectors, list of
vector, …

• ADT Set and C++ STL’s set, unordered_set
• ADT Dictionary and C++ STL’s ordered_map,

unordered_map
• ADT Priority Queue (heap) and C++ priority_queue

Intro. To C++ STL

• C++ Standard Template Library is a set of C++
template classes to provide common
programming data structures and functions such
as lists, stacks, arrays, etc.

• It is a generalized library (its components are
parameterized) provides:
• container classes: list, stack, array, queue,

hashtable, BST, …
• algorithms: swap, sorting, …
• iterators: allow you to iterates through

elements in the container

C++ STL in a nutshell
CISC 2200 Data

Structure terminology
C++ STL Explanation

ADT list
Implemented with array,

dynamic array, linked
list, doubly list, …

Sequence Containers
Vector (dynamic array)

Array (fixed array)
deque, forward list

data structures which can be accessed in a
sequential manner.
Double-ended queues are sequence containers
with dynamic sizes that can be expanded or
contracted on both ends (either its front or its
back).

Queue, stack, heap/
priority queue

(list with constrained
access)

Container Adaptors:
queue,

priority_queue,stack

 provide a different interface for
sequential containers, FIFO for queue,
LIFO for stack, …

Binary Search Tree Associative
containers

set, multiset, map,
multimap

Ordered data structures that can be quickly
searched (O(log n) complexity)
— searching by key

Hash table Unordered associative
containers

unordered_set,
unordered_multiset,

unordered_map,
unordered_multimap

implement unordered data structures
that can be quickly searched

C++ vector

• A sequence container implemented using a
dynamic array based container
• You can assign a vector to another one, or

use copy constructor,
• Copy constructor: copy from partial vector

• https://www.geeksforgeeks.org/vector-in-cpp-stl/

https://www.geeksforgeeks.org/vector-in-cpp-stl/

Case studies: merge sort
MergeSort (vector<int> & list)
{

If (list.size()<=1)
 return;

int mid = (0+list.size()-1)/2;

vector<int> leftHalf (list.begin(), list.begin()+mid+1);
vector<int> rightHalf (list.begin()+mid+1, list.end());
MergeSort (leftHalf);
MergeSort (rightHalf);
MergeSortedVectors (leftHalf, rightHalf, list);
//to be developed later: merge sorted two halves back to list in
sorted order

}

What are set, multiset?
CISC 2200 Data

Structure terminology
C++ STL

ADT list
Implemented with array,

dynamic array, linked
list, doubly list, …

Sequence Containers
Vector (dynamic array)

Array (fixed array)
deque, forward list

data structures which can be accessed
in a sequential manner.
Double-ended queues are sequence containers
with dynamic sizes that can be expanded or
contracted on both ends (either its front or its
back).

•
Queue, stack, heap/

priority queue
(list with constrained

access)

Container Adaptors:
queue,

priority_queue,stack

 provide a different interface for
sequential containers

Binary Search Tree Associative
containers

set, multiset, map,
multimap

sorted data structures that can be
quickly searched (O(log n) complexity)
— searching by key

Hash table Unordered associative
containers

unordered_set,
unordered_multiset,

unordered_map,
unordered_multimap

implement unordered data structures
that can be quickly searched

Set
• Sets are containers that store unique elements.
• Each element has a value, and each value must be

unique.
• Support basic set operations such as: insert(), delete(),

find(), …
• Usage: find all unique values in a vector of int, …

Set in C++ STL: BST
• C++ STL set: implement set container using Binary

Search tree
• => log n time insertion, deletion and searching

time

• a binary tree where every node in the left subtree is
less than the root, and every node in the right
subtree is of a value greater than the root.

• Example code

https://www.geeksforgeeks.org/set-in-cpp-stl/

Set in C++ STL
• C++ STL unordered_set template class: implement

set using hash table
• ”almost” constant insertion, deletion and

searching time

• Code example
• Discussion: how insertion, deletion and search works?

https://www.geeksforgeeks.org/unordered_set-in-cpp-stl/

Multiset
• In mathematics, a multiset (or bag, or mset) is a

modification of the concept of a set that, unlike a set,
allows for multiple instances for each of its elements.

• The number of instances given for each element is called
the multiplicity of that element in the multiset.

E.g., an infinite number of multisets exist which contain only
elements a and b, but vary in the multiplicities of their
elements:
• The set {a, b} contains only elements a and b, each

having multiplicity 1 when {a, b} is seen as a multiset.
• In the multiset {a, a, b}, the element a has multiplicity 2,

and b has multiplicity 1.
• In the multiset {a, a, a, b, b, b}, a and b both have

multiplicity 3.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Element_(mathematics)

Multiset in C++ STL
• two multiset container class in C++ STL

• Multiset: implemented using BST
• unordered_multiset: implemented using hash table

• For more details & sample code
• Multiset
• unordered_multiset

https://www.geeksforgeeks.org/multiset-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_multiset-and-its-uses/

What are map, multimap?
CISC 2200 Data

Structure terminology
C++ STL

ADT list
Implemented with array,

dynamic array, linked
list, doubly list, …

Sequence Containers
Vector (dynamic array)

Array (fixed array)
deque, forward list

data structures which can be accessed
in a sequential manner.
Double-ended queues are sequence containers
with dynamic sizes that can be expanded or
contracted on both ends (either its front or its
back).

•
Queue, stack, heap/

priority queue
(list with constrained

access)

Container Adaptors:
queue,

priority_queue,stack

 provide a different interface for
sequential containers

Binary Search Tree Associative
containers

set, multiset, map,
multimap

sorted data structures that can be
quickly searched (O(log n) complexity)
— searching by key

Hash table Unordered associative
containers

unordered_set,
unordered_multiset,

unordered_map,
unordered_multimap

implement unordered data structures
that can be quickly searched

• Dictionary (or map in C++ STL) a data structure that
stores a collection of (key, value) pairs
– supporting INSERT, DELETE, SEARCH

operations
– Key are unique
– Search: look up value associated with a key, i.e.,

mapping a key to the value associated with the
key

– Sometimes called associative array, as it associate a
value with a key, and use key as ”index” to the array

Map (C++ STL) or Dictionary

 14

#include <unordered_map>

#include <fstream>

int main()
{

unordered_map<string,int> wordsCount;
char filename[256];
ifstream input; //declare an ifstream object, which represents a disk file from which
 //we will read info.
string word;

cout <<"Enter the file you want to analyze:";
cin >> filename;

//Open the disk file
input.open (filename);

if (input.is_open())
{

//reading from the file is similar to reading from standard input (cin)
while (input >> word){ //as long as we successfully read a word

wordsCount[word]++; //Increment the count for the word

//when a word is encounted for the first time, wordsCount[word] is
//accessed for the first time, the value will be initialized to 0

automatically
} //continue until we reached the end of file

//Close the file
input.close();

} else
{

cout <<"Failed to open file " << filename<<endl;
exit(1);

}

//Search a unordered_map
char cont;
do{

cout <<"Enter a word:";
cin >> word;
map<string,int>::iterator it;

it = wordsCount.find(word);
if (it==wordsCount.end())
{

cout <<" does not appear\n";
//if accessed (as below), it will be initialized to
// default value, for int, it's 0
cout <<"if accessed?"<<wordsCount[word]<<endl;

}
else

cout <<" appears "<<wordsCount[word]<<" times\n";

cout <<"Continue (y/n)?";
cin >> cont;

} while (cont=='y');

//iterate through a map
cout <<"Display the words and count\n";
map<string,int>::iterator it;
cout <<"word count\n";
for (it=wordsCount.begin();it!=wordsCount.end();it++)
{

cout <<it->first<<" "<<it->second<<endl;
}

}

• If key type is ordered (i.e., one can compare two given
keys, k1, k2), one can use binary search tree

• each node stores a key, value pair
• pairs with smaller keys => stored in left subtree
• pairs with larger keys => stored in right subtree
• insert O(log n), delete O(log n), search O(log n)

BST Implementation of map

 18

• In C++ STL, ordered_map implements dictionary using
BST
• #include <ordered_map>

• // wordsCnt is a dictionary/map, key is string, value is int type
• ordered_map<string, int> wordsCnt;

• //stores occurrence for each word
• string word;
• inputFile>>word;
• wordsCnt[word]++; //increment occurrence by 1

ordered_map

 19

• If key type is not ordered (i.e., one cannot compare two
given keys, k1, k2,), one can use hash table

• insert, delete, search: almost constant time operation

• unordered_map in C++ STL
• #include <unordered_map> wordsCnt;
• unordered_map<string, int> wordsCnt; //stores occurrence for each

word
• string word;
• inputFile>>word;
• wordsCnt[word]++; //increment occurrence by 1

Hash table based map

 20

• Direct address table: use key as index into the array
• only applicable when key is integer type
• If T is the array, then T[k] stores the element whose

key is k

• Limitations:
• key has to be integer type
• table/array needs to be big enough to have one slot for

every possible key

Direct Address Table

 22

HashTable Operations

 23

• Insert a new key value pair:
• Table[h(“john”)]=Element(“John”,

25000)
• Delete element by key

• Table[h(“john”)]=NULL

• Search by key
• return Table[h(“dave”)]

• Assuming running time of h() is
constant, all above operations
takes O(1) time

Collision Resolution
• Recall that h(.) is not one-to-one, so it maps

multiple keys to same slot:
• for distinct k1, k2, h(k1)=h(k2) => collision

• Two different ways to resolve collision
• Chaining: store colliding keys in a linked list

(bucket) at the hash table slot
• dynamic memory allocation, storing

pointers (overhead)
• Open addressing: if slot is taken, try another,

and another (a probing sequence)
• clustering problem.

 24

Chaining
• Chaining: store colliding elements in a linked list at the

same hash table slot
• if all keys are hashed to same slot, hash table

degenerates to a linked list.

 25

Here doubly-linked list is used

Chaining: operations
• Insert (x):

• insert x at the head of T[h(x.key)]
• Running time (worst and best case): O(1)

• Search (k)
• search for an element with key x in list T[h(k)]

• Delete (x)
• Delete x from the list T[h(x.key)]

• Running time of search and delete: proportional
to length of list stored in h(x.key)

 26

• Consider a hash table T with m slots stores n
elements.
• load factor

• Ideal case: any given element is equally likely to hash
into any of the m slots, independently of where any
other element is hashed to
• average length of lists is
• search and delete takes

• Worst case: If all keys are hashed to same slot, hash
table degenerates to a linked list
• search and delete takes

Chaining: analysis

 27

Collision Resolution
• Open addressing: store colliding elements

elsewhere in the table
• Advantage: no need for dynamic allocation, no need to

store pointers
• When inserting:

• examine (probe) a sequence of positions in hash table
until find empty slot

• When searching/deleting:
• examine (probe) a sequence of positions in hash

table until find element

 28

Open Addressing

 29

• Hash function: extended to probe sequence (m
functions):

• insert: if h0(k) is taken, try h1(k), and then h2(k),
until find an empty slot

• Search for key k: if element at h0(k) is not a
match, try h1(k), and then h2(k), ..until find
matching element, or reach an empty slot

• Delete key k: first search for k, then mark its slot
as DELETED

Linear Probing

 30

• Probing sequence
 hi(x)=(h(x)+i) mod m

• try following indices in
sequence
• h(x) mod m,
• (h(x)+1) mod m,
• (h(x)+2) mod m, …

• Continue until an empty slot is
found

• Problem: primary clustering
• if there are multiple keys mapped to

a slot, the slots after it tends to be
occupied

Quadratic Probing

 31

• probe sequence:
• h0(x)=h(x) mod m
• h1(x)=(h(x)+c1+c2) mod m
• h2(x)=(h(x)+2c1+4c2) mod m
• …

• Problem:
• secondary clustering
• choose c1,c2,m carefully so that all slots are

probed

