Data Structure Review, C++ STL
CISC4080
CIS, Fordham Univ.

Instructor: X. Zhang

This class

From CISC2200 to C++ STL
ADT list and C++ STL vector, list

- Principle of composition: vector of vectors, list of
vector, ...

ADT Set and C++ STL’s set, unordered_set

ADT Dictionary and C++ STL’s ordered_map,
unordered_map

ADT Priority Queue (heap) and C++ priority_queue

Intro. To C++ STL

« C++ Standard Template Library is a set of C++
template classes to provide common
programming data structures and functions such
as lists, stacks, arrays, etc.

 |tis a generalized library (its components are
parameterized) provides:

container classes: list, stack, array, queue,
hashtable, BST, ...

algorithms: swap, sorting, ...

iterators: allow you to iterates through
elements in the container

C++ STL in a nutshell

ADT list Sequence Containers data structures which can be accessed in a
Implemented with array, Vector (dynamic array) sequential manner.

dynamic array, linked Array (fixed array) pople-ended queues are sequence containers
list, doubly list, ... deque, forward list \yith gynamic sizes that can be expanded or
contracted on both ends (either its front or its
back).
Queue, stack, heap/ Container Adaptors: provide a different interface for
~ priority queue o queue, sequential containers, FIFO for queue,
(list with constrained priority_queue,stack LIFO for stack
access) S
Binary Search Tree Associative Ordered data structures that can be quickly

containers searched (O(log n) complexity)

set, multiset, map, __ searching by key
multimap

Hash table Unordered associative implement unordered data structures
containers that can be quickly searched
unordered_set,
unordered_multiset,
unordered_map,
unordered_multimap

C++ vector

« A sequence container implemented using a
dynamic array based container

* You can assign a vector to another one, or
use copy constructor,

« Copy constructor: copy from partial vector
 https://www.geeksforgeeks.org/vector-in-cpp-stl/

https://www.geeksforgeeks.org/vector-in-cpp-stl/

Case studies: merge sort

MergeSort (vector<int> & list)
{
If (list.size()<=1)
return;

int mid = (O+list.size()-1)/2;

vector<int> leftHalf (list.begin(), list.begin()+mid+1);
vector<int> rightHalf (list.begin()+mid+1, list.end());
MergeSort (leftHalf);

MergeSort (rightHalf);

MergeSortedVectors (leftHalf, rightHalf, list);

/[to be developed later: merge sorted two halves back to list in
sorted order

What are set, multiset?

ADT list Sequence Containers data structures which can be accessed
Implemented with array, Vector (dynamic array) in g sequential manner.

dynamic array, linked Array (fixed array) poyple-ended queues are sequence containers
list, doubly list, ... deque, forward list with dynamic sizes that can be expanded or
contracted on both ends (either its front or its
back).

Queue, stack, heap/ Container Adaptors: provide a different interface for

~ priority queue . queue, sequential containers
(list with constrained priority_queue,stack
access)
Binary Search Tree Associative sorted data structures that can be

containers g ickly searched (O(log n) complexity)

set, multiset, map, :
Sl searching by key

Hash table Unordered associative implement unordered data structures
containers that can be quickly searched
unordered_set,
unordered_multiset,

unordered_map,
unordered_multimap

Set

Sets are containers that store unique elements.

Each element has a value, and each value must be
unique.

Support basic set operations such as: insert(), delete(),
find(), ...

Usage: find all unique values in a vector of int, ...

Setin C++ STL: BST

« C++ STL set: implement set container using Binary
Search tree

° t=_> log n time insertion, deletion and searching
Ime

* a binary tree where every node in the left subtree is
less than the root, and every node in the right
subtree is of a value greater than the root.

 Example code

https://www.geeksforgeeks.org/set-in-cpp-stl/

Setin C++ STL

« C++ STL unordered_set template class: implement
set using hash table

 "almost”’ constant insertion, deletion and
searching time

 Code example
* Discussion: how insertion, deletion and search works?

https://www.geeksforgeeks.org/unordered_set-in-cpp-stl/

Multiset

 In mathematics, a multiset (or bag, or mset) is a
modification of the concept of a set that, unlike a set,
allows for multiple instances for each of its elements.

» The number of instances given for each element is called
the multiplicity of that element in the multiset.

E.g., an infinite number of multisets exist which contain only
elements a and b, but vary in the multiplicities of their
elements:

* The set {a, b} contains only elements a and b, each
having multiplicity 1 when {a, b} is seen as a multiset.

* In the multiset {a, a, b}, the element a has multiplicity 2,
and b has multiplicity 1.

* In the multiset {a, a, a, b, b, b}, a and b both have
multiplicity 3.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Element_(mathematics)

Multiset in C++ STL

« two multiset container class in C++ STL

« Multiset: implemented using BST

* unordered_ multiset: implemented using hash table
* For more details & sample code

« Multiset

« unordered multiset

https://www.geeksforgeeks.org/multiset-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_multiset-and-its-uses/

What are map, multimap?

ADT list Sequence Containers data structures which can be accessed
Implemented with array, Vector (dynamic array) in g sequential manner.

dynamic array, linked Array (fixed array) poyple-ended queues are sequence containers
list, doubly list, ... deque, forward list with dynamic sizes that can be expanded or
contracted on both ends (either its front or its
back).

Queue, stack, heap/ Container Adaptors: provide a different interface for

~ priority queue . queue, sequential containers
(list with constrained priority_queue,stack
access)
Binary Search Tree Associative sorted data structures that can be

containers g ickly searched (O(log n) complexity)

set, multiset, map, :
Sl searching by key

Hash table Unordered associative implement unordered data structures
containers that can be quickly searched
unordered_set,
unordered_multiset,

unordered_map,
unordered_multimap

Map (C++ STL) or Dictionary

 Dictionary (or map in C++ STL) a data structure that
stores a collection of (key, value) pairs
— supporting INSERT, DELETE, SEARCH
operations
— Key are unique
— Search: look up value associated with a key, i.e.,
mapping a key to the value associated with the
key
— Sometimes called associative array, as it associate a
value with a key, and use key as "index” to the array

14

#include <unordered map>

#include <fstream>

int main()

{
unordered map<string,int> wordsCount;
char filename[256];
ifstream input; //declare an ifstream object, which represents a disk file from which
//we will read info.
string word;
cout <<"Enter the file you want to analyze:";
cin >> filename;
//Open the disk file
input.open (filename);
if (input.is_open())
//reading from the file is similar to reading from standard input (cin)
while (input >> word){ //as long as we successfully read a word
wordsCount[word]++; //Increment the count for the word
//when a word is encounted for the first time, wordsCount[word] is
//accessed for the first time, the value will be initialized to 0
automatically

} //continue until we reached the end of file

//Close the file
input.close();

} else

{

cout <<"Failed to open file " << filename<<endl;
exit(1l);

//Search a unordered_map

char cont;

do{
cout <<"Enter a word:";
cin >> word;
map<string,int>::iterator it;

it = wordsCount.find(word);
if (it==wordsCount.end())

{
cout <<" does not appear\n";
//if accessed (as below), it will be initialized to
// default value, for int, it's 0
cout <<"if accessed?"<<wordsCount|[word]<<endl;
}
else

cout <<" appears "<<wordsCount[word]<<" times\n";

cout <<"Continue (y/n)?";
cin >> cont;
} while (cont=='y');

//iterate through a map

cout <<"Display the words and count\n";
map<string,int>::iterator it;

cout <<"word count\n";

for (it=wordsCount.begin();it!=wordsCount.end();it++)

{

cout <<it->first<<" "<<it->second<<endl;

BST Implementation of map

If key type is ordered (i.e., one can compare two given

keys, k1, k2), one can use binary search tree
each node stores a key, value pair

pairs with smaller keys => stored in left subtree
pairs with larger keys => stored in right subtree
insert O(log n), delete O(log n), search O(log n)

18

ordered map

* |[n C++ STL, ordered_map implements dictionary using
BST

» #include <ordered map>

// wordsCnt is a dictionary/map, key is string, value is int type
« ordered_map<string, int> wordsCnt;
» //stores occurrence for each word
 string word;
* inputFile>>word;
» wordsCnt[word]++; //increment occurrence by 1

19

Hash table based map

If key type is not ordered (i.e., one cannot compare two

given keys, k1, k2,), one can use hash table
insert, delete, search: almost constant time operation

e unordered map in C++ STL

#include <unordered_map> wordsCnt;

unordered_map<string, int> wordsCnt; //stores occurrence for each
word

string word;
inputFile>>word;
wordsCnt[word]++; //increment occurrence by 1

20

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

hash("it") = 3 2

3
4

Issues. hash("times") = 3 —

« Computing the hash function.

e Equality test: Method for checking whether two keys are equal.

o Collision resolution: Algorithm and data structure

to handle two keys that hash to the same array index.

Classic space-time tradeoff.
« No space limitation: trivial hash function with key as index.
 No time limitation: trivial collision resolution with sequential search.
e Space and time limitations: hashing (the real world).

Direct Address Table

« Direct address table: use key as index into the array
* only applicable when key is integer type

« |f T is the array, then T[k] stores the element whose
key is k

T:

Key =21 20

»21 — data for Key = 21

22

e Limitations:
« Kkey has to be integer type

« table/array needs to be big enough to have one slot for

every possible key
22

HashTable Operations

Insert a new key value pair:

Table[h(“john”)]=Element(“John”,
25000)

Delete element by key
Table[h(“john”)]=NULL
Search by key
return Table[h(“dave”)]

Assuming running time of h() is
constant, all above operations
takes O(1) time

O 0 N N i A W= O

| key | Element value

Vv £

john 25000

phil 31250

dave 27500

mary 28200

23

Collision Resolution

* Recall that h(.) is not one-to-one, so it maps
multiple keys to same slot:

 for distinct k1, k2, h(k1)=h(k2) => collision
« Two different ways to resolve collision

« Chaining: store colliding keys in a linked list
(bucket) at the hash table slot

« dynamic memory allocation, storing
pointers (overhead)

* Open addressing: if slot is taken, try another,
and another (a probing sequence)

* clustering problem.

24

Chaining

Chaining: store colliding elements in a linked list at the
same hash table slot

 if all keys are hashed to same slot, hash table
degenerates to a linked list.

T
/
et ——/ [FZL [u]/]
universe of keys) 7 . o
‘ % Here doubly-linked list is used
/
= ——/[ks] T2 [k] T[]/
o/ /
=7 — k]
/——>|/|ks| <L [k

Figure 11.3 Collision resolution by chaining. Each hash-table slot 7'[j] contains a linked list of
all the keys whose hash value is j. For example, h(k1) = h(ks) and h(ks) = h(k7) = h(kz).
The linked list can be either singly or doubly linked; we show it as doubly linked because deletion is
faster that way.

25

Chaining: operations

Insert (X):

 Insert x at the head of T[h(x.key)]

* Running time (worst and best case): O(1)
Search (k)

» search for an element with key x in list T[h(k)]
Delete (x)

* Delete x from the list T[h(x.key)]

Running time of search and delete: proportional
to length of list stored in h(x.key)

26

Chaining: analysis

« (Consider a hash table T with m slots stores n
elements.

. load factor

« |deal case: any given element is equally likely to hash

into any of the m slots, independently of where any
other element is hashed to

« average length of lists is
 search and delete takes

« Worst case: If all keys are hashed to same slot, hash
table degenerates to a linked list

. search and delete takes

27

Collision Resolution

* Open addressing: store colliding elements
elsewhere in the table

« Advantage: no need for dynamic allocation, no need to
store pointers

* When inserting:

« examine (probe) a sequence of positions in hash table
until find empty slot

* When searching/deleting:

e examine (probe) a sequence of positions in hash
table until find element

28

Open Addressing

Hash function: extended to probe sequence (m
functions):

hz(a:),z — 0,]., ceey 1T — 1
hi(x) # hj(x), for i # j

insert: if ho(k) is taken, try hi(k), and then hz(k),
until find an empty slot

Search for key k: if element at ho(k) is not a
match, try h4(k), and then ha(k), ..until find
matching element, or reach an empty slot

Delete key k: first search for k, then mark its slot
as DELETED

29

Linear Probing

occupied \

occupied sequence

occupied * h(x) mod m,

unoccupied | o found

occupied

* Probing sequence
| hi(x)=(h(x)+i) mod m
 try following indices in

* (h(x)+1) mod m,
e (h(x)+2) mod m, ...
« Continue until an empty slot is

* Problem: primary clustering

(« if there are multiple keys mapped to
a slot, the slots after it tends to be

Quadratic Probing

hi(z) = (h(z) + c1% + c2i?) mod m

* probe sequence:

* ho(x)=h(x) mod m

* hy(x)=(h(x)+c1+c2) mod m

* ha(x)=(h(x)+2c1+4c2) mod m

* Problem:
» secondary clustering

* choose c1,c2,m carefully so that all slots are
probed

31

