
 A* Search

2

Tree search algorithms

  Basic idea:
  Exploration of state space by generating

successors of already-explored states
(a.k.a.~expanding states).

  Every states is evaluated: is it a goal state?

3

Tree search example

4

Tree search example

5

Tree search example

Best-first search

  Idea: use an evaluation function f(n) for each node
  f(n) provides an estimate for the total cost.
  Expand the node n with smallest f(n).

  Implementation:
 Order the nodes in fringe increasing order of cost.

Romania with straight-line dist.

A* search

  Idea: avoid expanding paths that are already
expensive

  Evaluation function f(n) = g(n) + h(n)
  g(n) = cost so far to reach n
  h(n) = estimated cost from n to goal
  f(n) = estimated total cost of path through n

to goal
  Best First search has f(n)=h(n)
  Uniform Cost search has f(n)=g(n)

Admissible heuristics

  A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach
the goal state from n.

  An admissible heuristic never overestimates the cost
to reach the goal, i.e., it is optimistic

  Example: hSLD(n) (never overestimates the actual
road distance)

  Theorem: If h(n) is admissible, A* using TREE-
SEARCH is optimal

Dominance
  If h2(n) ≥ h1(n) for all n (both admissible)
  then h2 dominates h1
  h2 is better for search: it is guaranteed to expand
 less or equal nr of nodes.

  Typical search costs (average number of nodes
expanded):

  d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

  d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

Relaxed problems
  A problem with fewer restrictions on the actions

is called a relaxed problem
  The cost of an optimal solution to a relaxed

problem is an admissible heuristic for the
original problem

  If the rules of the 8-puzzle are relaxed so that a
tile can move anywhere, then h1(n) gives the
shortest solution

  If the rules are relaxed so that a tile can move
to any adjacent square, then h2(n) gives the
shortest solution

Consistent heuristics
  A heuristic is consistent if for every node n, every successor n'

of n generated by any action a,

 h(n) ≤ c(n,a,n') + h(n')

  If h is consistent, we have

f(n’) = g(n’) + h(n’) (by def.)
 = g(n) + c(n,a,n') + h(n’) (g(n’)=g(n)+c(n.a.n’))
 ≥ g(n) + h(n) = f(n) (consistency)
f(n’) ≥ f(n)

  i.e., f(n) is non-decreasing along any path.

  Theorem:
 If h(n) is consistent, A* using GRAPH-SEARCH is optimal

It’s the triangle
inequality !

keeps all checked nodes
in memory to avoid repeated
 states

A* search example

A* search example

A* search example

A* search example

A* search example

A* search example

Properties of A*

  Complete? Yes (unless there are infinitely many
nodes with f ≤ f(G) , i.e. step-cost > ε)

  Time/Space? Exponential:
 except if:
  Optimal? Yes
  Optimally Efficient: Yes (no algorithm with the
 same heuristic is guaranteed to expand fewer nodes)

db
* *| () () | (log ())h n h n O h n− ≤

Memory Bounded Heuristic
Search: Recursive BFS

  How can we solve the memory problem for
A* search?

  Idea: Try something like depth first search,
but let’s not forget everything about the
branches we have partially explored.

  We remember the best f-value we have
found so far in the branch we are deleting.

RBFS:

RBFS changes its mind
very often in practice.

This is because the
f=g+h become more
accurate (less optimistic)
as we approach the goal.
Hence, higher level nodes
have smaller f-values and
will be explored first.

Problem: We should keep
in memory whatever we can.

best alternative
over fringe nodes,
which are not children:
i.e. do I want to back up?

Simple Memory Bounded A*

  This is like A*, but when memory is full we delete
the worst node (largest f-value).

  Like RBFS, we remember the best descendent in
the branch we delete.

  If there is a tie (equal f-values) we delete the oldest
nodes first.

  simple-MBA* finds the optimal reachable solution
given the memory constraint.

  Time can still be exponential.
A Solution is not reachable
if a single path from root to goal
does not fit into memory

