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Tree search algorithms 

  Basic idea: 
  Exploration of state space by generating 

successors of already-explored states 
(a.k.a.~expanding states). 

  Every states is evaluated: is it a goal state? 
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Best-first search 

  Idea: use an evaluation function f(n) for each node 
  f(n) provides an estimate for the total cost. 
  Expand the node n with smallest f(n). 

  Implementation: 
 Order the nodes in fringe increasing order of cost. 

 



Romania with straight-line dist. 



A* search 

  Idea: avoid expanding paths that are already 
expensive 

  Evaluation function f(n) = g(n) + h(n) 
  g(n) = cost so far to reach n 
  h(n) = estimated cost from n to goal 
  f(n) = estimated total cost of path through n 

to goal 
  Best First search has f(n)=h(n) 
  Uniform Cost search has f(n)=g(n) 



Admissible heuristics 

  A heuristic h(n) is admissible if for every node n, 
 h(n) ≤ h*(n), where h*(n) is the true cost to reach 
the goal state from n. 

  An admissible heuristic never overestimates the cost 
to reach the goal, i.e., it is optimistic 

  Example: hSLD(n) (never overestimates the actual 
road distance) 

  Theorem: If h(n) is admissible, A* using TREE-
SEARCH is optimal 



Dominance 
  If h2(n) ≥ h1(n) for all n (both admissible) 
  then h2 dominates h1  
  h2 is better for search: it is guaranteed to expand 
    less or equal nr of nodes. 

  Typical search costs (average number of nodes 
expanded): 

  d=12  IDS = 3,644,035 nodes 
  A*(h1) = 227 nodes  
  A*(h2) = 73 nodes  

  d=24  IDS = too many nodes 
  A*(h1) = 39,135 nodes  
  A*(h2) = 1,641 nodes  



Relaxed problems 
  A problem with fewer restrictions on the actions 

is called a relaxed problem 
  The cost of an optimal solution to a relaxed 

problem is an admissible heuristic for the 
original problem 

  If the rules of the 8-puzzle are relaxed so that a 
tile can move anywhere, then h1(n) gives the 
shortest solution 

  If the rules are relaxed so that a tile can move 
to any adjacent square, then h2(n) gives the 
shortest solution 



Consistent heuristics 
  A heuristic is consistent if for every node n, every successor n' 

of n generated by any action a,    

      h(n) ≤ c(n,a,n') + h(n') 

  If h is consistent, we have 

f(n’)  = g(n’) + h(n’)                   (by def.) 
       = g(n) + c(n,a,n') + h(n’)    (g(n’)=g(n)+c(n.a.n’))  
       ≥ g(n) + h(n) = f(n)            (consistency) 
f(n’)   ≥ f(n) 
 
  i.e., f(n) is non-decreasing along any path. 

  Theorem:  
     If h(n) is consistent, A* using GRAPH-SEARCH is optimal 

It’s the triangle 
inequality ! 

keeps all checked nodes 
in memory to avoid repeated  
                               states 
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Properties of A* 

  Complete? Yes (unless there are infinitely many 
nodes with f ≤ f(G) , i.e. step-cost > ε) 

  Time/Space? Exponential: 
           except if:   
  Optimal? Yes 
  Optimally Efficient: Yes (no algorithm with the 
   same heuristic is guaranteed to expand fewer nodes) 

db
* *| ( ) ( ) | (log ( ))h n h n O h n− ≤



Memory Bounded Heuristic 
Search: Recursive BFS 

  How can we solve the memory problem for 
A* search? 

  Idea: Try something like depth first search, 
but let’s not forget everything about the 
branches we have partially explored. 

  We remember the best f-value we have 
found so far in the branch we are deleting.  



RBFS:  

RBFS changes its mind  
very often in practice. 
 
This is because the  
f=g+h become more  
accurate (less optimistic) 
as we approach the goal. 
Hence, higher level nodes 
have smaller f-values and 
will be explored first. 
 
Problem: We should keep  
in memory whatever we can. 

best alternative 
over fringe nodes, 
which are not children: 
i.e. do I want to back up? 



Simple Memory Bounded A* 

  This is like A*, but when memory is full we delete 
the worst node (largest f-value). 

  Like RBFS, we remember the best descendent in 
the branch we delete. 

  If there is a tie (equal f-values) we delete the oldest 
nodes first. 

  simple-MBA* finds the optimal reachable solution 
given the memory constraint.  

  Time can still be exponential.  
A Solution is not reachable  
if a single path from root to goal 
does not fit into memory 


