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It’s important to know basic data structures and understand the performance impacts of 
choosing a certain data structure (i.e., running time of the operations to insert, delete, search for 
an element). 

1.  Basic Built-in Python Data Structures 
Reference: https://docs.python.org/3/tutorial/datastructures.html

a. List

List elements are stored in contiguous memory, as a result accessing list element (i.e., a[i]) 
takes a constant time: taking the starting address of the list, and calcualte the offset for i-th 
element, and then add that to the starting address to get the address of i-th element. 

a) list initialization 

fruits = [‘orange’, ‘apple’, ‘pear’]
inputs=[]   ## an emapty of list 

print(fruits[0]) ## orange
print(fruits[1])  ## apple
print (fruits[2]) ## pear 

b) iterate through list elements

for f in fruits:  ## repeat an operation for each element f from list fruits 
print (f)

c) iterage through list elements using index

print(len(fruits))  ## 3 
for i in range (len(fruits)): 

print (i)   ## 0 1 2
print (fruits[i])

d) insert, remove, index

fruits.insert(1,’grape’)  ## [‘orange’,’grape’, ‘apple’, ‘pear’]

fruits.remove(‘pear’)   ## [‘orange’,’grape’, ‘apple’]
fruits.pop() ## remove and return last element 
fruits.pop (1) ## remove fruits[1] and return it 

https://docs.python.org/3/tutorial/datastructures.html


fruits = [‘orange’, ‘apple’, ‘pear’,’grape’]
fruits.index(‘apple’)  ## return 1
fruits.index(‘apple’,2,3) ## look for apple in fruits[2…3] sublist 

e) sort list 

fruits.sort()   ## 

b  Stack: LIFO, FILO 

Data structure where elements insertion/deletion/access must follow the principle of Last In First 
Out, or First In Last Out.  A stack data structure usually provides the following operations:

•   push(x): push a new element x to the top of the stack 
•   pop (x): remove and return the top element in the stack 
•   top (x): return the top element in the stack

Efficiency of append(), pop()? 

Stack can be easily implemented using list, where the end of the list is considered to be the top 
of stack, the beginning of the lsit is the bottom of the stack. 

 index:     0    1   2   3   4    5 
              ———————————

  | 2 | 3 | 5 | 0 | 10 | 20 |
              ———————————
               ^                           ^
  bottom of stack               top of stack

1) To push an element to the stack: use append() operation of list 

  s = [2,3,5, 0, 10, 20]
  s.append (5) ## put 5 on the top of stack
  print (stack)

2) To pop an element from the top of the stack: use pop() operation of list 

  s.pop() ## remove the top element (i.e., the last one being added, in the end of the list

3) To obtain the top element of the stack

s[0] 

Effiency of these operations are all constnat-time operation. 



c. Queue: FIFO

Insertion/Deletion/Access of elements in a queue must follow First In First Out principle. A 
queue data structure supports the following operations: 

• enqueue(x): append an element x to the end of the queue
• dequeue(): remove the element from the head of the queue, and return it

Queue can be implemented using list, or circular buffer/array/list. 

  1) implement queue using list

 index:     0    1   2   3   4    5 
              ———————————

  | 2 | 3 | 5 | 0 | 10 | 20 |
              ———————————
               ^                           ^
  queue head                queue tail

    q = [2,3,5,0,10,20]  

## enqueue operation: 
    q.append (100)   ## enqueue 100 into q, put it in the tail of the queue 

## dequeue operation 
   q.pop(0) ## dequeue, i.e., remove first element in q (i.e., element at index 0)

     ## and return it 
    
     Efficiency of enqueue operation: constant time
     running time of dequeue operation: O(n) as one needs to move all other elements 
forward to fill in the hole 

   2) Due to the linear time dequeue operation, a different implementation of queue is 
preferred: collections.deque 

from collections import deque
queue = deque(["Eric", "John", "Michael"])
queue.append("Terry")           # Terry arrives: enqueue Terry 
queue.append("Graham")          # Graham arrives
queue.popleft()                 # The first to arrive now leaves ‘Eric’, dequeue 
queue.popleft()                 # The second to arrive now leaves 'John'
    ## deque([‘Michael’, 'Terry', ‘Graham'])



d tuple

  A tuple consists of a number of values separated by commas; immutable, usually contain a 
heterogeneous equence of elements. (Lists are mutable). 

# using tuple to swap two variables
x=2
y=3
x,y=y,x

## using tuple to return mutliple values
def MinMax(a):
    min = a[0]
    max = a[0]

    for i in range (1,len(a)): 
           if (min>a[i]):
               min = a[i]
           if (max<a[i])
               max = a[i]
   
    return min, max

 l = [34, 4, 100, -23]
 smallest, largest = MinMax (l)  

e. sets

A set is an unordered collection with no duplicate elements. Opertaions include: testing 
membership, union, intersection, difference, and symmetric difference. 

a = set(‘abracadabra’)   ## set() creates a set of char elements from the string of char
b={‘a’,’l’,’a’,’c’,’a’}

a|b ## union
a & b ## a intersect b
a-b  ## letters in a but bot in b
a ^ b ## letters in a or b not both 



2. heap
Reference: 
https://interactivepython.org/courselib/static/pythonds/Trees/BinaryHeapImplementation.html

In a lot of applications/algorithms, we need to maintain a dynamic collection of items, and need 
to access/remove the item with the smallest key value. For example, a priority queue where we 
want to remove the item with the smallest priority level (refer to most urgent/important task). 

Heap is a data structure that’s suitable for such application.

Complete binary tree: a structure where everyone node has at most one parent node, and at 
most two child node (binary tree), furthermore, all nodes except those at the bottom level have 
two child nodes (complete). 

    Storing a complete binary tree in a list: root node, nodes at first level, nodes at second level, 
… nodes in each level is stored from left to right order. 

 Q: What’s the index of  the parent node of a node at index i? How to find the left and right 
children nodes for a node at index i?
    For a node at i, its parent node is at i/2
                             its left child node is at 2*i, and right child node is at 2*i+1 

 

  

    ^^ here the first (zero-th) slot is not used.

Min-Heap property: For every node in the complete binary tree, the value stored in the node is 
smaller than those stored in the node’s child or children 

https://interactivepython.org/courselib/static/pythonds/Trees/BinaryHeapImplementation.html


Demo: heapq algorithm (the library implements key operations for heap on a list) 

import heapq
heap=[]

  data=[18,19,11,14,9,5,33,14, 27, 17, 22, 19, 21]

heapify (data) ## transform list data into a heap, in linear time
print (data) 

            ## add element into heap 
            newData=[200,300]

for item in newData:
heappush(heap, item)   ## log N time operation 

print(heap) ##[0, 2, 11, 3, 5, 14, 17, 14, 9, 18, 33, 20, 27, 19, 22, 19, 21]

## Another example, heap elements could be a tuple. 
heapq=[]
heappush(heapq, (1,’handicapped’))
heappush(heapq, (4,’regular’))
heappush(heapq, (2, ‘fast pass’))
heappush(heapq, (3, ‘singler rider’))
heappush(heapq,(1,’handicapped’))

            heappush(heapq,(2,’fastpass’)) 
print (heapq)   ## 

heappop (heapq) ## remove smallest element and return (1,’handicapped’)) 
## log N time operation

How various heap operations are implemented and their efficiency? 

  1. How to take advantage of heap data structure to sort a list? 

     data=[18, 19,11, 14, 9, 5]
     heapify (data)
     
     sortedData=[] 

     ## remove smallest element to append into sortedData 
     for i in range(len(data)):
           sortedData.append (heappop (data)) 



  2. How to acess the smallest element in min-heap? How to remove it?

    1) the smallest element is in the top of the heap, a[1] 
    2) swap last element with a[1]
    3) repair heap property by heap-down operation starting at root node, where the larger 
element is sunk down, more specifically 
      
      i = 1; ## start from root node

      do { 
         leftChild = 2*i
         rightChild = 2*i+1

         ## find the smallest among a[i], a[leftChild], a[rightChild]
         smallest = i
         if a[leftChild] < a[smallest]: 
                 smallest = leftChild
         if a[rightChild] < a[smallest]: 
                smallest = rightChild

         ## if i does not store the smallest among the three, swap
        if i!=smallest: 
             a[smallest], a[i] = a[i], a[smallest]   ## swap by assign tuple 
             i = smallest
        else
              done=true   
    } while (done!=true and i is not a leaf node); 
 
    
  3. Add a new item into the heap, e.g., 6? Where should 6 be stored in the heap? 
    
     1) append the element into the end of the list
     2) repair heap property by heap-up operation starting from this new leaf node, where the 
smaller element is bubbled up. 
 
    The heap-up operation is similar to the heap-down operation, the difference is that we 
compare the element with its parent, and swap them if the element is larger than its parent. 
Then we repeat the process for the parent and the parent’s parent, until we reach the root node, 
or we do not make any swap. 



  4. heapfiy operation: how to take a list and rearrange elements in the list so that min-heap 
property is stasfieid? 

   Please use this resource to study heap operation:

https://www.cs.usfca.edu/~galles/visualization/Heap.html

3.  dictionary data structure 

Dictionary (or hashtable, hashmap) are offen called “associative memory” or “associate array” 
that stores a set of key-value pairs, where the keys are unique. Unlike list, dictionary is indexed 
by keys. 

# phonebook is a set of key-value pairs, mapping name to phone # 
phonebook={}
phonebook[‘alice’]=123456789   ## store a new key-value pair 
phonebook[‘jack’]=111111111  

phonebook[‘jack’]=22222 # modify value for key ‘jack’

print (phonebook)
print(phonebook[‘alice’])

del phonebook[‘alice’]  ## remove a pair from the dict

‘jone’ in phonebook ## checking if a key is in the dict… false 

mypb={‘bob’:2322, ‘alice’:1234,’jack’:8931}

The keys of dictionaries can be any hashable type, i.e., there is a method to map the key to a 
hash value (an integer) which never changes during its lifetime. 

All built-in types (except mutable object such as list, dict) are hashable: 

hash (123)   ## 123
hash (‘jack’)  ##  3539536964226342402
hash ((1,2))  ## tuple is hashable: 3713081631934410656
hash ({‘a’,’b’})  ## ERROR: unhashtable type: set 

When accessing dictionary, e.g., phonebook[‘jack’] (assuming there is no collision):
 is a constat time operation as illustrated below: 

            hash()                             modulo n

an array 
of size n 

1



‘jack’    ——->   35…2402    ——>       2 
(hash value)    (index into array)                        

5.  hash function analysis 
1. Given the total number of possible key values N (taken from a large universe set U), and the 

size of hashtable T of m,  hash function, h map U to {0,1, … m-1}

2. Pigeohold theorem: If |U|>m, then the function is many-to-one, there are at least two 
elements being mapped to the same value (i.e., collision).

3. Hash function design principles:

a. for any key, use all fields of the key to calculate the hash value: 
  e.g., do not just use the last charactor of a string … 

b. use “all” information: 
if you just add all characters up to calculate a string’s hash value, then ‘cat’ will 

collide with ‘act’.

instead: radix notation: teat a string as a base 128 numbers 

‘pt’: ‘p’*128+’t’
‘tp’: ’t’*128+’p’ 

c. there is no single hash function that behaves well on all possible sets of data

Imagine that keys are from a Universe set of size N, and the hash table size is m.
then for any hash function, we can find a collection of N/m keys that are mapped to the same 
slot by the hash function. 

(Prove by contradiction). If not, i.e., every slot has at most N/m - 1 elements mapped to them, 
then in total, there are (N/m -1)*m < N elements being mapped. But the hash function maps 
every element in N to the slots in the hashtable. This is contracdition. Therefore assumption is 
wrong.  

d. Universal hashing: introduce randomness in the hash function, done at the 
beginning of the hashtable creation. So that we will not be stuck with a bad hash function in 
mutliple runs of the program. 

4. Collision resolution via chaining and performance analysis

‘jack’,22222



Given collusion cannot be avoided, collision resoluion schemes have been used to 
decide what to do when multiple elements are hashed to the same slot in the table/array/list. 
We focus on the chainning method as illustrated below. The other method is so called open 
addressing, where a probing sequence (i.e., a sequence of hash functions) is used and when 
collision occurs, the next hash function is tried, and so on, until an open slot is found. 

In chaining, the multiple key-value pairs hashed to the same slot are stored as a linked 
list with the address of the linked list stored in the table: 

Insert(k, v): calculate hash value of k and insert (k,v) into the header of the linked list. 
This takes a constant time.
            Search (k): calcualte hash value of k, and look for (k,*) in the linked list. This operation 
takes a time that is linear to the length of the linked list.
            Delete (k): similar to Search() operation. 

Note that a linked-list data structure is different from a list/array. In linked list,  the 
address of second element/node is stored in the first node, and so on. So in order to access the 
n-th element, one has to start from the first element, go to second, and third, and so on until one 
finds the n-th element. The running time of such linked-list traversal is O(n). 

If a hash function is chosen well, the average length of the linked lists in a hash table is 
N/m, where N is the total number of elements in the hash table,  and m is the size of the hash 
tbale T. 


