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Outline
• Sorting problems and algorithms 
• Divide-and-conquer paradigm 
• Merge sort algorithm 
• Master Theorem 

• recursion tree 
• Median and Selection Problem  

• randomized algorithms 
• Quicksort algorithm 
• Lower bound of comparison based sorting
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CS 477/677 - Lecture 1 4

Sorting Problem
• Problem: Given a list of n elements from a 

totally-ordered universe, rearrange them in 
ascending order. 

Sorting applications
• Straightforward applications: 

• organize an MP3 library 
• Display Google PageRank results 
• List RSS news items in reverse chronological order 

• Some problems become easier once elements are sorted 
• identify statistical outlier 
• binary search  
• remove duplicates  

• Less-obvious applications 
• convex hull 
• closest pair of points 
• interval scheduling/partitioning 
• minimum spanning tree algorithms 
• …
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• Use what operations? 
• Comparison based sorting: bubble sort, Selection 

sort, Insertion sort, Mergesort, Quicksort, Heapsort, 
… 

• Non-comparison based sort: counting sort, radix sort, 
bucket sort 

• Memory (space) requirement: 
• in place: require O(1), O(log n) memory  
• out of place: more memory required, e.g., O(n) 

• Stability:  
• stable sorting: elements with equal key values keep 

their original order 
• unstable sorting: otherwise

Classification of Sorting Algorithms
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Stable vs Unstable sorting
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therefore, not stable!

Bubble Sort High-level Idea
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Questions: 
1.How many passes are needed? 
2.No need to scan/process whole array on second pass, third pass… 
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Algorithm Analysis: bubble sort
Algorithm/Function.: bubblesort (a[1…n])
input: an array of numbers a[1…n]
output: a sorted version of this array

for e=n-1 to 2:
         swapCnt=0;
  for j=1 to e:  //no need to scan whole list every time 

      if a[j] > a[j+1]:  swap (a[j], a[j+1]); swapCnt++;

if (!swapCnt==0) //if no swap, then already sorted 
               break; 
return

• Memory requirement: memory used (note that input/output does not 
count)

• Is it stable?

worst case: always swap 
assume the if … swap … 
takes c time/steps



Selection Sort: Idea
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Running time analysis:   

Idea
array: sorted part, unsorted part

insert element from unsorted part into sorted part

Example:

Insertion Sort
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data movements
<=2

<=3

<=4

<=5

<=6

<=7

• Bubble sort: O(n2) 
• stable, in-place 

• Selection sort: O(n2) 
• Idea: find the smallest, exchange it with first element; 

find second smallest, exchange it with second, … 
• stable, in-place 

• Insertion Sort: O(n2) 
• idea: expand “sorted” sublist, by insert next element into 

sorted sublist 
• stable (if inserted after elements of same key), in-place 

• asymptotically same performance 
• selection sort is better: less data movement (at most n)

O(n2) Sorting Algorithms
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From quadric sorting algorithms to 
nlogn sorting algorithms 
 —- using divide and conquer 
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What are Algorithms?

MergeSort: think recursively!

1. recursively sort left 
half 

2. recursively sort right 
half 

3. merge two sorted 
halves to make sorted 
whole
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“Recursively” means “following the same algorithm, 
passing smaller input” 
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Pseudocode for mergesort
mergesort (a[left … right]) 
  if (left>=right) return;  //base case, nothing to do  

  m = (left+right)/2; 

  mergeSort (a[left … m]) 

  mergeSort (a[m+1 … right]) 

  merge (a, left, m, right) 

     // given a[left…m], a[m+1 … right] are sorted: 

     //   1) first merge them one sorted array c[left…right] 

    //     2) copy c back to a  

 

• Goal: Given A[left…m] and A[m+1…right] are each sorted, make 
A[left…right] sorted 
•  Step 1: rearrange elements into a staging area (C) 

• Step 2: copy elements from C back to A  
• T(n)=c*n   //let n=right-left+1  

• Note that each element is copied twice, at most n comparisons
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merge (A, left, m, right)

left rightm m+1

A

Running time of MergeSort
• T(n): running time for MergeSort when sorting an 

array of size n 
• Input size n: the size of the array  

• Base case: the array is one element long  
• T(1) = C1 

• Recursive case: when array is more than one 
element long 
• T(n)=T(n/2)+T(n/2)+O(n) 
• O(n): running time of merging two sorted 

subarrays  
• What is T(n)? 
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Master Theorem
• If                                                for some constants 

a>0, b>1, and           , then 

• for analyzing divide-and-conquer algorithms 
• solve a problem of size n by solving a 

subproblems of size n/b, and using O(nd) to 
construct solution to original problem  

• binary search: a=1, b=2, d=0 (case 2), T(n)=log n 
• mergesort: a=2,b=2, d=1, (case 2), T(n)=O(nlogn) 19
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Proof of Master Theorem
• Assume that n is a power of b.

Proof
• Assume n is a power of b, i.e., n=bk 

• size of subproblems decreases by a factor of b 
at each level of recursion, so it takes k=logbn 
levels to reach base case  

• branching factor of the recursion tree is a, so the 
i-th level has ai subproblems of size n/bi 

• total work done at i-th level is:  

• Total work done: 
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• Total work done: 

• It’s the sum of a geometric series with ratio 

• if ratio is less than 1, the series is decreasing, 
and the sum is dominated by first term: O(nd) 

• if ratio is greater than 1 (increasing series), 
the sum is dominated by last term in series, 

• if ratio is 1, the sum is O(nd logbn)  

• Note: see hw2 question for details 

Proof (2)
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Iterative MergeSort

• Recursive MergeSort 
• pros: conceptually simple and elegant 

(language’s support for recursive function calls 
helps to maintain status)  

• cons: overhead for function calls (allocate/
deallocate call stack frame, pass parameters 
and return value), hard to parallelize  

• Iterative MergeSort 
• cons: coding is more complicated  
• pros: efficiency, and possible to take 

advantage of parallelism 

23

24

Iterative MergeSort  (bottom up)

merge sublist of size 1  
into sublist of size 2 

merge sublist of size 2  
into sublist of size 4

merge sublist of size 4  
into sublist of size 8

Question: what if there are 9 elements? 10 elements? 
pros: O(n) memory requirement; cons: harder to code (keep track starting/ending index  
of sublists)

For sublistSize=1 to ceiling(n/2)



MergeSort: high-level idea
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//Q stores the sublists to be merged 

//create sublists of size 1, add to Q  

eject(Q): remove the front element from Q  
inject(a): insert a to the end of Q  
Pros: could be parallelized!  
         e.g., a pool of threads,  each thread obtains two lists from Q to merge… 
Cons: memory usage O(nlogn)  

Outline
• Sorting problems and algorithms 
• Divide-and-conquer paradigm 
• Merge sort algorithm 
• Master Theorem 

• recursion tree 
• Median and Selection Problem  

• randomized algorithms 
• Quicksort algorithm 
• Lower bound of comparison based sorting
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Find Median & Selection Problem
• median of a list of numbers: bigger than half of 

the numbers, and smaller than half of the 
numbers 
• A better summary than average value (which 

can be skewed by outliers) 
• A straightforward way to find median 

• sort it first O(nlogn), and return elements in 
middle index 

• if list has even # of elements, then return 
average of the two in the middle  

• Can we do better?  
• we did more than needed by sorting… 27



• More generally, Selection Problem: find K-th smallest element 
from a list S 

• Idea:  
1. randomly choose an element p in S 
2. partition S into three parts: 

 SL (those less than p)    Sp (those equal to p)   SR (those greater than p) 

         |<—-        |SL|               ——>|   Sp  |<—        |SR|            —>| 

3. Recursively select from SL or SR as below

Selection Problem
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Partition Array
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A[p…r]: i represents the wall  
subarray p… i:       less than x 
subarray i+1…j-1:  greater than x 
subarray j…r:        not yet processed

//i: wall

—— i+1  —-

• T(n)=T(?)+O(n)  //// linear time to partition 

• How big is subproblem?  
• Depending on choice of p, and value of k 

• Worst case: p is largest value, k is 1; or p is 
smallest value, k is k…,  
• T(n)=T(n-1)+O(n)  => T(n)=n2 

•  As k is unknown, best case is to cut size by half 
• T(n)=T(n/2)+O(n)   
• By Master Theorem, T(n)=? 

Selection Problem: Running Time
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• Observation: with deterministic way to choose pivot 
value, there will be some input that deterministically yield 
worst performance 
• if choose last element as pivot, input where elements in 

sorted order will yield worst performance  
• if choose first element as pivot, same 
• If choose 3rd element as pivot, what if the largest element 

is always in 3rd position 
• … 

Selection Algorithm
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• How to achieve good “average” performance in face of all inputs? 
(Answer: Randomization!)  
• Choose pivot element uniformly randomly (i.e., choose each element 

with equal prob) 
• Given any input, we might still choose “bad” pivot, but we are equally 

likely to choose “good” pivot  
• with prob. 1/2 the pivot chosen lies within 25% - 75% percentile of 

data, shrinking prob. size to 3/4 (which is good enough!)  
• in average, it takes 2 partition to shrink to 3/4 

• By Master Theorem, T(n)=O(n) 

• By Master Theorem: T(n)=O(n) 

Randomized Selection Algorithm
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1. randomly choose an element v in S:  
       int  index=random() % inputArraySize;  
       v = S[index]; 
2. partition S into three parts: SL (those less than v), 

Sv (those equal to v), SR (those greater than v) 
3. Recursively select from SL or SR as below

Randomized Selection Problem
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Partitioning array
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p… i: less than x 
i…j: greater than x 
j…r: not yet processed

quicksort
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Observation: after partition, pivot 
is in the correct sorted position  
We now just need to sort left and  
right partition!  

That’s quicksort! 

quicksort: running time
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T(n)=O(n)+T(?) + T(?)  
The size of subproblems depend on choice of pivot 
• If pivot is smallest (or largest) element:  
  T(n)=T(n-1)+T(1)+O(n)  => T(n)=O(n2) 
• If pivot is median element: 
  T(n)=2T(n/2)+O(n)  => T(n)=O(n logn) 
• Similar to selection problem, choose pivot randomly
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sorting: can we do better? 
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• MergeSort and quicksort both have average performance of 
O(n log n) 

• quicksort performs better than merge sort  
• perform less copying of data   

• Can we do better than this? 
• no, if sorting based on comparison operation (i.e., merge 

sort and quick sort are asymptotically optimal sorting 
algorithm) 

• if (a[i]>a[i+1]) in bubblesort 
• if (a[i]>max) in selection sort …  

 

Lower bound on sorting 
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• Comparison based sorting algorithm as a decision tree: 
• leaves: sorting outcome (true order of array elements) 
• nodes: comparison operations 
• binary tree: two outcomes for comparison 

Ex: Consider sorting an array of three elements a1, a2, a3 
• number of possible true orders? (P(3,3)= 3! ) 

•  if input is 4,1,3, which path is taken? how about 2, 1, 5?

This means sorted 
order should be a1, 
a3, a2



• When sorting an array of n elements: a1, a2, …, an 

• Total possible true orders is: n!  
• Decision tree is a binary tree with n! leaf nodes  
• Height of tree: worst case performance  

• Recall: a tree of height n has at most 2n leaf nodes 
• So a tree with n! leaf nodes has height of at least 

log2(n!)=O(nlog2n) 
• Any sorting algorithm must make in the worst case   

(nlog2n) comparison. 

lower bound on sorting 
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Comment
• Such lower bound analysis applies to the 

problem itself, not to particular algorithms  
• reveal fundamental lower bound on running 

time, i.e., you cannot do better than this 
• Can you apply same idea to show a lower bound 

on searching an sorted array for a given 
element, assuming that you can only use 
comparison operation? 
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Non-Comparison based sorting
• Example: sort 100 kids by their ages (taken 

value between 1-9) 
• comparison based sorting: at least nlogn 

• Counting sort:  
• count how many kids are of each age 
• and then output each kid based upon how 

many kids are of younger than him/her 
• Running time: a linear time sorting algorithm 

that sort in O(n+k) time when elements are in 
range from 1 to k.

43

Counting Sort
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Counting Sorting
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Recall: stable vs unstable sorting
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therefore, not stable!

Radix Sorting
• What if range of value, k, is large? 
• Radix Sort: sort digit by digit  

• starting from least significant digit to most 
significant digit, uses counting sort (or other 
stable sorting algorithm) to sort by each digit

47

What if unstable 
soring is used? 
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Readings

• Chapter 2


