
Divide and Conquer 
CISC5835, Algorithms for Big Data

CIS, Fordham Univ.

Instructor: X. Zhang

Acknowledgement
• The set of slides have use materials from the

following resources
• Slides for textbook by Dr. Y. Chen from

Shanghai Jiaotong Univ.
• Slides from Dr. M. Nicolescu from UNR
• Slides sets by Dr. K. Wayne from Princeton

• which in turn have borrowed materials
from other resources

• Other online resources

2

Outline
• Sorting problems and algorithms
• Divide-and-conquer paradigm
• Merge sort algorithm
• Master Theorem

• recursion tree
• Median and Selection Problem

• randomized algorithms
• Quicksort algorithm
• Lower bound of comparison based sorting

3

CS 477/677 - Lecture 1 4

Sorting Problem
• Problem: Given a list of n elements from a

totally-ordered universe, rearrange them in
ascending order.

Sorting applications
• Straightforward applications:

• organize an MP3 library
• Display Google PageRank results
• List RSS news items in reverse chronological order

• Some problems become easier once elements are sorted
• identify statistical outlier
• binary search
• remove duplicates

• Less-obvious applications
• convex hull
• closest pair of points
• interval scheduling/partitioning
• minimum spanning tree algorithms
• …

5

• Use what operations?
• Comparison based sorting: bubble sort, Selection

sort, Insertion sort, Mergesort, Quicksort, Heapsort,
…

• Non-comparison based sort: counting sort, radix sort,
bucket sort

• Memory (space) requirement:
• in place: require O(1), O(log n) memory
• out of place: more memory required, e.g., O(n)

• Stability:
• stable sorting: elements with equal key values keep

their original order
• unstable sorting: otherwise

Classification of Sorting Algorithms

6

Stable vs Unstable sorting

7

therefore, not stable!

Bubble Sort High-level Idea

8

Questions:
1.How many passes are needed?
2.No need to scan/process whole array on second pass, third pass…

9

Algorithm Analysis: bubble sort
Algorithm/Function.: bubblesort (a[1…n])
input: an array of numbers a[1…n]
output: a sorted version of this array

for e=n-1 to 2:
 swapCnt=0;
 for j=1 to e: //no need to scan whole list every time

 if a[j] > a[j+1]: swap (a[j], a[j+1]); swapCnt++;

if (!swapCnt==0) //if no swap, then already sorted
 break;
return

• Memory requirement: memory used (note that input/output does not
count)

• Is it stable?

worst case: always swap
assume the if … swap …
takes c time/steps

Selection Sort: Idea

10

Running time analysis:

Idea
array: sorted part, unsorted part

insert element from unsorted part into sorted part

Example:

Insertion Sort

11

data movements
<=2

<=3

<=4

<=5

<=6

<=7

• Bubble sort: O(n2)
• stable, in-place

• Selection sort: O(n2)
• Idea: find the smallest, exchange it with first element;

find second smallest, exchange it with second, …
• stable, in-place

• Insertion Sort: O(n2)
• idea: expand “sorted” sublist, by insert next element into

sorted sublist
• stable (if inserted after elements of same key), in-place

• asymptotically same performance
• selection sort is better: less data movement (at most n)

O(n2) Sorting Algorithms

12

From quadric sorting algorithms to
nlogn sorting algorithms
 —- using divide and conquer

13

14

What are Algorithms?

MergeSort: think recursively!

1. recursively sort left
half

2. recursively sort right
half

3. merge two sorted
halves to make sorted
whole

15

“Recursively” means “following the same algorithm,
passing smaller input”

16

Pseudocode for mergesort
mergesort (a[left … right])
 if (left>=right) return; //base case, nothing to do

 m = (left+right)/2;

 mergeSort (a[left … m])

 mergeSort (a[m+1 … right])

 merge (a, left, m, right)

 // given a[left…m], a[m+1 … right] are sorted:

 // 1) first merge them one sorted array c[left…right]

 // 2) copy c back to a

• Goal: Given A[left…m] and A[m+1…right] are each sorted, make
A[left…right] sorted
• Step 1: rearrange elements into a staging area (C)

• Step 2: copy elements from C back to A
• T(n)=c*n //let n=right-left+1

• Note that each element is copied twice, at most n comparisons

17

merge (A, left, m, right)

left rightm m+1

A

Running time of MergeSort
• T(n): running time for MergeSort when sorting an

array of size n
• Input size n: the size of the array

• Base case: the array is one element long
• T(1) = C1

• Recursive case: when array is more than one
element long
• T(n)=T(n/2)+T(n/2)+O(n)
• O(n): running time of merging two sorted

subarrays
• What is T(n)?

18

Master Theorem
• If for some constants

a>0, b>1, and , then

• for analyzing divide-and-conquer algorithms
• solve a problem of size n by solving a

subproblems of size n/b, and using O(nd) to
construct solution to original problem

• binary search: a=1, b=2, d=0 (case 2), T(n)=log n
• mergesort: a=2,b=2, d=1, (case 2), T(n)=O(nlogn) 19

20

Proof of Master Theorem
• Assume that n is a power of b.

Proof
• Assume n is a power of b, i.e., n=bk

• size of subproblems decreases by a factor of b
at each level of recursion, so it takes k=logbn
levels to reach base case

• branching factor of the recursion tree is a, so the
i-th level has ai subproblems of size n/bi

• total work done at i-th level is:

• Total work done:

21

• Total work done:

• It’s the sum of a geometric series with ratio

• if ratio is less than 1, the series is decreasing,
and the sum is dominated by first term: O(nd)

• if ratio is greater than 1 (increasing series),
the sum is dominated by last term in series,

• if ratio is 1, the sum is O(nd logbn)

• Note: see hw2 question for details

Proof (2)

22

Iterative MergeSort

• Recursive MergeSort
• pros: conceptually simple and elegant

(language’s support for recursive function calls
helps to maintain status)

• cons: overhead for function calls (allocate/
deallocate call stack frame, pass parameters
and return value), hard to parallelize

• Iterative MergeSort
• cons: coding is more complicated
• pros: efficiency, and possible to take

advantage of parallelism

23

24

Iterative MergeSort (bottom up)

merge sublist of size 1
into sublist of size 2

merge sublist of size 2
into sublist of size 4

merge sublist of size 4
into sublist of size 8

Question: what if there are 9 elements? 10 elements?
pros: O(n) memory requirement; cons: harder to code (keep track starting/ending index
of sublists)

For sublistSize=1 to ceiling(n/2)

MergeSort: high-level idea

25

//Q stores the sublists to be merged

//create sublists of size 1, add to Q

eject(Q): remove the front element from Q
inject(a): insert a to the end of Q
Pros: could be parallelized!
 e.g., a pool of threads, each thread obtains two lists from Q to merge…
Cons: memory usage O(nlogn)

Outline
• Sorting problems and algorithms
• Divide-and-conquer paradigm
• Merge sort algorithm
• Master Theorem

• recursion tree
• Median and Selection Problem

• randomized algorithms
• Quicksort algorithm
• Lower bound of comparison based sorting

26

Find Median & Selection Problem
• median of a list of numbers: bigger than half of

the numbers, and smaller than half of the
numbers
• A better summary than average value (which

can be skewed by outliers)
• A straightforward way to find median

• sort it first O(nlogn), and return elements in
middle index

• if list has even # of elements, then return
average of the two in the middle

• Can we do better?
• we did more than needed by sorting… 27

• More generally, Selection Problem: find K-th smallest element
from a list S

• Idea:
1. randomly choose an element p in S
2. partition S into three parts:

 SL (those less than p) Sp (those equal to p) SR (those greater than p)

 |<—- |SL| ——>| Sp |<— |SR| —>|

3. Recursively select from SL or SR as below

Selection Problem

28

Partition Array

29

A[p…r]: i represents the wall
subarray p… i: less than x
subarray i+1…j-1: greater than x
subarray j…r: not yet processed

//i: wall

—— i+1 —-

• T(n)=T(?)+O(n) //// linear time to partition

• How big is subproblem?
• Depending on choice of p, and value of k

• Worst case: p is largest value, k is 1; or p is
smallest value, k is k…,
• T(n)=T(n-1)+O(n) => T(n)=n2

• As k is unknown, best case is to cut size by half
• T(n)=T(n/2)+O(n)
• By Master Theorem, T(n)=?

Selection Problem: Running Time

30

• Observation: with deterministic way to choose pivot
value, there will be some input that deterministically yield
worst performance
• if choose last element as pivot, input where elements in

sorted order will yield worst performance
• if choose first element as pivot, same
• If choose 3rd element as pivot, what if the largest element

is always in 3rd position
• …

Selection Algorithm

31

• How to achieve good “average” performance in face of all inputs?
(Answer: Randomization!)
• Choose pivot element uniformly randomly (i.e., choose each element

with equal prob)
• Given any input, we might still choose “bad” pivot, but we are equally

likely to choose “good” pivot
• with prob. 1/2 the pivot chosen lies within 25% - 75% percentile of

data, shrinking prob. size to 3/4 (which is good enough!)
• in average, it takes 2 partition to shrink to 3/4

• By Master Theorem, T(n)=O(n)

• By Master Theorem: T(n)=O(n)

Randomized Selection Algorithm

32

1. randomly choose an element v in S:
 int index=random() % inputArraySize;
 v = S[index];
2. partition S into three parts: SL (those less than v),

Sv (those equal to v), SR (those greater than v)
3. Recursively select from SL or SR as below

Randomized Selection Problem

33

Partitioning array

34

p… i: less than x
i…j: greater than x
j…r: not yet processed

quicksort

35

Observation: after partition, pivot
is in the correct sorted position
We now just need to sort left and
right partition!

That’s quicksort!

quicksort: running time

36

T(n)=O(n)+T(?) + T(?)
The size of subproblems depend on choice of pivot
• If pivot is smallest (or largest) element:
 T(n)=T(n-1)+T(1)+O(n) => T(n)=O(n2)
• If pivot is median element:
 T(n)=2T(n/2)+O(n) => T(n)=O(n logn)
• Similar to selection problem, choose pivot randomly

Outline
• Sorting problems and algorithms
• Divide-and-conquer paradigm
• Merge sort algorithm
• Master Theorem

• recursion tree
• Median and Selection Problem

• randomized algorithms
• Quicksort algorithm
• Lower bound of comparison based sorting

37

sorting: can we do better?

38

• MergeSort and quicksort both have average performance of
O(n log n)

• quicksort performs better than merge sort
• perform less copying of data

• Can we do better than this?
• no, if sorting based on comparison operation (i.e., merge

sort and quick sort are asymptotically optimal sorting
algorithm)

• if (a[i]>a[i+1]) in bubblesort
• if (a[i]>max) in selection sort …

Lower bound on sorting

39

• Comparison based sorting algorithm as a decision tree:
• leaves: sorting outcome (true order of array elements)
• nodes: comparison operations
• binary tree: two outcomes for comparison

Ex: Consider sorting an array of three elements a1, a2, a3
• number of possible true orders? (P(3,3)= 3!)

• if input is 4,1,3, which path is taken? how about 2, 1, 5?

This means sorted
order should be a1,
a3, a2

• When sorting an array of n elements: a1, a2, …, an

• Total possible true orders is: n!
• Decision tree is a binary tree with n! leaf nodes
• Height of tree: worst case performance

• Recall: a tree of height n has at most 2n leaf nodes
• So a tree with n! leaf nodes has height of at least

log2(n!)=O(nlog2n)
• Any sorting algorithm must make in the worst case

(nlog2n) comparison.

lower bound on sorting

40

Comment
• Such lower bound analysis applies to the

problem itself, not to particular algorithms
• reveal fundamental lower bound on running

time, i.e., you cannot do better than this
• Can you apply same idea to show a lower bound

on searching an sorted array for a given
element, assuming that you can only use
comparison operation?

41

Outline
• Sorting problems and algorithms
• Divide-and-conquer paradigm
• Merge sort algorithm
• Master Theorem

• recursion tree
• Median and Selection Problem

• randomized algorithms
• Quicksort algorithm
• Lower bound of comparison based sorting

42

Non-Comparison based sorting
• Example: sort 100 kids by their ages (taken

value between 1-9)
• comparison based sorting: at least nlogn

• Counting sort:
• count how many kids are of each age
• and then output each kid based upon how

many kids are of younger than him/her
• Running time: a linear time sorting algorithm

that sort in O(n+k) time when elements are in
range from 1 to k.

43

Counting Sort

44

Counting Sorting

45

Recall: stable vs unstable sorting

46

therefore, not stable!

Radix Sorting
• What if range of value, k, is large?
• Radix Sort: sort digit by digit

• starting from least significant digit to most
significant digit, uses counting sort (or other
stable sorting algorithm) to sort by each digit

47

What if unstable
soring is used?

48

Readings

• Chapter 2

