Divide and Conquer

CISC5835, Algorithms for Big Data
CIS, Fordham Univ.

Instructor: X. Zhang

Acknowledgement

* The set of slides have use materials from the

following resources

+ Slides for textbook by Dr. Y. Chen from
Shanghai Jiaotong Univ.

» Slides from Dr. M. Nicolescu from UNR

» Slides sets by Dr. K. Wayne from Princeton
* which in turn have borrowed materials

from other resources
» Other online resources

Outline

» Sorting problems and algorithms
» Divide-and-conquer paradigm
* Merge sort algorithm
* Master Theorem
* recursion tree
* Median and Selection Problem
* randomized algorithms
* Quicksort algorithm
* Lower bound of comparison based sorting

Sorting Problem

* Problem: Given a list of n elements from a
totally-ordered universe, rearrange them in
ascending order

Sorting applications

» Straightforward applications:
« organize an MP3 library
Display Google PageRank results
List RSS news items in reverse chronological order
» Some problems become easier once elements are sorted
identify statistical outlier
binary search
remove duplicates
* Less-obvious applications
» convex hull
 closest pair of points
« interval scheduling/partitioning
* minimum spanning tree algorithms

Classification of Sorting Algorithms

* Use what operations?

» Comparison based sorting: bubble sort, Selection
sort, Insertion sort, Mergesort, Quicksort, Heapsort,

* Non-comparison based sort: counting sort, radix sort,
bucket sort

+ Memory (space) requirement:
» in place: require O(1), O(log n) memory
» out of place: more memory required, e.g., O(n)
« Stability:
» stable sorting: elements with equal key values keep
their original order
* unstable sorting: otherwise

Stable vs Unstable sorting

+ ASTABLE sort preserves relative order of records with equal keys

Aaron 4 A £64-480-0023 097 Little
Andrews 3 A 874-088-1212 121 Whitman
Battle 4 c 991-878-4544 308 Blair
Chen 2 A 884-212-5341 11 Dickinson
Fox 1 A 243-456-5091 101 Brown
Furis 3 || & | 7ee-0s3sen2 22 Brown
Gazei 4 B £65-302-0266 113 Walker
Kanaga 3 B 898-122-9643 143 Forbes
Rohde 3 A 232-341-5555 115 Holder
Quilici L] o] 343-987-5642 32 MoCosh
Sort file on second key: —
Pox 1 A 243-456-9091 101 Brown
Quilici 1 c 343-987-5642 32 McCosh
Records with key value Chen 2 A | 884-232-5241 11 Dickineon
3 are not in Qrder on ﬁrst Kanaga 3 B 898-122-9642 343 Forbes
kE 1" Andrews 3 A 874-088-1212 121 Whitman
v Puria 2 | a | 766-093-9873 22 Brown
Rohde 3 A 232-343-5555 115 Holder
fherefore nOT STGble' Battle 4 C 991-878-4944 308 Blair
! : Gazei 4 | B | 6e5-303-0266 113 Walker
Aaron 4 A -480-0023 097 Little ¢
7
Bubble Sort Example Codingcompiler.com
First Pass Second Pass Third Pass
e p— R
s[afa]2]s] 1]a]2]s]s] 1]2]4]s]s]
- —wapping T —warning oo swary
[s[4]>]s] 1[a]2]5]s] 1[2]4]s]s]
—ewaping [roswapy [roswany
1[a]s]=2]s] 1[2]4]s[s] Te]alsls)
0 swapy 1m0 swap
1[af2]s]s] 1[2]4]s]s] 1]2]4]s]s]
(]a]z2] Llz]als[e) “[af=]4]s]s]
Questions:
1.How many passes are needed?
2.No need to scan/process whole array on second pass, third pass... 8

Algorithm Analysis: bubble sort

Algorithm/Function.: bubblesort (a[l...n])

input: an array of numbers a[l...n]
. . worst case: always swap
output: a sorted version of this array assume the if ... swap ...
for e=n-I to 2: takes c time/steps
swapCnt=0;

for j=1 to e: //no need to scan whole list every time
if a[j] > a[j+1]: swap (a[j], a[j+1]); swapCnt++;

if (!swapCnt==0) //if no swap, then already sorted
break;

return

* Memory requirement: memory used (note that input/output does not
count)
* Is it stable?

Selection Sort: Idea

Selection Sort

———swap

29|72‘95|13|a7‘ss 52‘51‘35'
Sway

—
[#]
——

3
%»Inlwlwls'lsslﬂlw%I
¢

98 s largest

87 s largest

72 s largest

66 s largest

zsl sz|3s||3|5| [es[n{u[ssl
no swapping

29| 52| 3s| 13|5| lss ln |s7 |93| s2is lrgest

(S EERErEER
Etglﬂnls'lsdss{vhﬂnl

629|13|38I51I52lu[7237sel

13|2slss|sllszlss|72|87lsa|

51 i largest

36 is largest
o swapping

29 i largest

sorting completed

©wares

Running time analysis:

Insertion Sort

Insertion sort (Card game) comparisons

(8)5)]7 1 9 3 1
1 9 3 2
GIs 7 &)(s): .,
e pE -

(n-1)

[1[3]5 7 8 9] 0

Sorted list. Total comparisons= n(n-1)/2
Current element, (worst case)*
Inserted element.

~0 (nl)

data movements

<=2

<=3

<=4

<=6

<=7

O(n?) Sorting Algorithms

» Bubble sort: O(n?)
- stable, in-place
» Selection sort: O(n?)

« Idea: find the smallest, exchange it with first element;
find second smallest, exchange it with second, ...

« stable, in-place
» Insertion Sort: O(n?)

« idea: expand “sorted” sublist, by insert next element into

sorted sublist

« stable (if inserted after elements of same key), in-place
» asymptotically same performance
» selection sort is better: less data movement (at most n)

From quadric sorting algorithms to
nlogn sorting algorithms
—- using divide and conquer

Divide-and-conquer paradigm

Divide-and-conquer.
« Divide up problem into several subproblems.
+ Solve each subproblem recursively.
« Combine solutions to subproblems into overall solution.

Most common usage.
* Divide problem of size » into two subproblems of size n/2 in linear time.
* Solve two subproblems recursively.
« Combine two solutions into overall solution in linear time.

Consequence.
* Brute force: @(?).
* Divide-and-conquer: ©(nlog n).

MergeSort: think recursively!

input

A L G () R I T H M 5

sort left half

1. recursively sort left
half A G L O R T H M s

2. recursively sort right
half

3. merge two sorted
halves to make sorted merge resuits
whole A G H I L M O R S T

sort right half

A G L (0] R H | M S T

“Recursively” means “following the same algorithm,
passing smaller input”

Pseudocode for mergesort

mergesort (a[left ... right])
if (left>=right) return; //base case, nothing to do
m = (left+right)/2;
mergeSort (a[left ... m])
mergeSort (a[m+1 ... right])
merge (a, left, m, right)
1l given a[left...m], a[m+1 ... right] are sorted:
/I 1) first merge them one sorted array c[left...right]

/I 2) copy c back to a

merge (A, left, m, right)

Goal: Given Afleft...m] and A[m+1...right] are each sorted, make

Alleft...right] sorted
« Step 1: rearrange elements into a staging area (C)

sorted list A sorted list A

left d m ms 2 4 right

merge to form sorted list C

» Step 2: copy elements from C back to A
* T(n)=c*n /llet n=right-left+1

* Note that each element is copied twice, at most n comparisons

17

Running time of MergeSort

e T(n): running time for MergeSort when sorting an
array of size n
* Input size n: the size of the array

» Base case: the array is one element long
c T(1)=C4

* Recursive case: when array is more than one
element long
e T(n)=T(n/2)+T(n/2)+O(n)
* O(n): running time of merging two sorted

subarrays
e Whatis T(n)?

Master Theorem

« If T(n) =aT([n/b]) + O(n?) for some constants
a>0, b>1,andd > 0 , then

O(n%), if d > logya
T(n) = O(ndlogn), if d = logpa
O(nloge®), if d < logya

» for analyzing divide-and-conquer algorithms

» solve a problem of size n by solving a
subproblems of size n/b, and using O(n) to
construct solution to original problem

* binary search: a=1, b=2, d=0 (case 2), T(n)=log n
* mergesort: a=2,b=2, d=1, (case 2), T(n)=0(nlogn)

Proof of Master Theorem

. Figure 2.3 Each problem of size n is divided into a subproblems of size n/b.
‘.

Size n Branching factor a

Size n/b

Size n/b?
Depth
log,n

CAAA A A

Width alos " = nloes e

20

Proof

» Assume n is a power of b, i.e., n=bk

» size of subproblems decreases by a factor of b
at each level of recursion, so it takes k=logsn
levels to reach base case

* branching factor of the recursion tree is a, so the
i-th level has a' subproblems of size n/bi

« total work done at i-th level is:
a' x O(;5) = 0(n) x (1)’
« Total work done:

logyn

> 0 x ()"
=0

21

Proof (2)

logyn
» Total work done: Z O(n%) x (bd)l
=0 a
It's the sum of a geometric series with ratio pa
if ratio is less than 1, the series is decreasing,
and the sum is dominated by first term: O(n¢)

« if ratio is greater than 1 (increasing series),
the sum is dominated by last term in series,

log, n
pd (2B (A — osen _ llog,nllogsa) _ plogsa
bd - (blogs n)d - - - :

 ifratiois 1, the sum is.O(n¢ logon).

* Note: see hw2 question for details

22

Iterative MergeSort

* Recursive MergeSort

» pros: conceptually simple and elegant
(language’s support for recursive function calls
helps to maintain status)

» cons: overhead for function calls (allocate/
deallocate call stack frame, pass parameters
and return value), hard to parallelize

* |terative MergeSort

» cons: coding is more complicated

 pros: efficiency, and possible to take
advantage of parallelism

23

Iterative MergeSort (bottom up)

Input: [10]2 [5[3[7]13[1]6]

For sublistSize=1 to ceiling(n/2)

merge sublist of size: 1
into sublist of size 2
[200] [3]s] (7l [1]e]
merge sublist of size: 2
into sublist of size 4
merge sublist of size: 4
into sublist of size 8

Question: what if there are 9 elements? 10 elements?

pros: O(n) memory requirement; cons: harder to code (keep track starting/ending index
of sublists)

213|510

[1[2]3]5]6]7]10]13]

24

MergeSort: high-level idea

function iterative-mergesort(a[l...n])

Input: elements aj,a2,...,a, to be sorted
Q = [] (empty queue) //Q stores the sublists to be merged
for i=1 to n:

inject(Q, [az]) //create sublists of size 1, add to Q
while |Q| >1:

inject(Q,merge(eject(Q), eject(Q)))
return eject(Q)

eject(Q): remove the front element from Q
inject(a): insert a to the end of Q
Pros: could be parallelized!
e.g., a pool of threads, each thread obtains two lists from Q to merge...
Cons: memory usage O(nlogn) 2

Outline

» Sorting problems and algorithms
* Divide-and-conquer paradigm
* Merge sort algorithm
* Master Theorem
* recursion tree
* Median and Selection Problem
* randomized algorithms
* Quicksort algorithm
* Lower bound of comparison based sorting

26

Find Median & Selection Problem

* median of a list of numbers: bigger than half of
the numbers, and smaller than half of the
numbers
* Abetter summary than average value (which

can be skewed by outliers)
* Astraightforward way to find median
« sort it first O(nlogn), and return elements in
middle index

+ if list has even # of elements, then return
average of the two in the middle

+ Can we do better?
+ we did more than needed by sorting... ”

Selection Problem

* More generally, Selection Problem: find K-th smallest element
fromalist S

e ldea:
1. randomly choose an element p in S
2. partition S into three parts:
St (those less than p) Sp (those equal to p) Sr (those greater than p)

B
[<— sl > Spl<— ISkl —>|
3. Recursively select from S or Sg as below

selection(Sy, k) if k< |Sc|
selection(S, k) = ¢ v if [Se| < k < |St|+ (S|
selection(Sg, k — |Sc| — |Sv]) if k > |Sc|+ S|

i

,
@ [2]8]7[1]3]s]s]+]

Partition Array

PARTITION(A, p, 1) i j r
1 x = Alr] ®) [8[7[1[3]5]6]

2 i=p-1 iz wall i j ,

3 forj=ptor—1 © -71 356'4

4 ifA[j]<x _ :

5 i=i+1 pi J r
6 exchange A[i] with A[j] G 7] 1 [3 1516

7 exchange A[i + 1] with A[r] p i j r
8 returni + 1 © 71835 [¢]

P i J r

® SRl o]

A[p...r]: i represents the wall P——i itd —] T
subarray p... i less than x ® [8[7[5]¢]

subarray i+1...j-1: greater than x » i r
subarray j...r: not yet processed) [8]7]5]6]

P i r
® 7[5 6 8]

Selection Problem: Running Time

e T(n)=T(?)+O(n) //ll linear time to partition

selection(S¢, k) if k<|S.|
selection(S, k) = Qv if [Se] < k < |SL|+ S|
selection(Sg, k — |St| — |Sv]) if k> |Sc|+|Sy].

* How big is subproblem?
» Depending on choice of p, and value of k

* Worst case: p is largest value, kis 1; or p is
smallest value, kis k...,
* T(n)=T(n-1)+O(n) => T(n)=n?

* As ks unknown, best case is to cut size by half
« T(n)=T(n/2)+O(n)
* By Master Theorem, T(n)=?

Selection Algorithm

» Observation: with deterministic way to choose pivot
value, there will be some input that deterministically yield
worst performance

« if choose last element as pivot, input where elements in
sorted order will yield worst performance

« if choose first element as pivot, same

« If choose 3rd element as pivot, what if the largest element
is always in 3rd position

31

Randomized Selection Algorithm

« How to achieve good “average” performance in face of all inputs?
(Answer: Randomization!)
« Choose pivot element uniformly randomly (i.e., choose each element
with equal prob)
« Given any input, we might still choose “bad” pivot, but we are equally
likely to choose “good” pivot

« with prob. 1/2 the pivot chosen lies within 25% - 75% percentile of
data, shrinking prob. size to 3/4 (which is good enough!)
« in average, it takes 2 partition to shrink to 3/4

« By Master Theorem, T(n)=0(n)

T(n) <T(3n/4)+ O(n)

« By Master Theorem: T(n)=0(n)

32

Randomized Selection Problem

1. randomly choose an element v in S:
int index=random() % inputArraySize;
v = Slindex; . awewm
2. partition S into three parts: Si (those less than v),
Sv (those equal to v), Sr (those greater than v)

3. Recursively select from St or Sr as below

selection(Sy, k) if k <|S;]
selection(S, k) = v if |SL) < k < |Si|+ S|
selection(Sg, k — |S| — |Sv|) if k> S|+ S|

33

Partitioning array

PARTITION(4, p,) i pj r
1 x=4p] @ J2[8[7]1[3]s[e]4]

2 i=p-1 pi j r
y forgsplr-l O & BunBE O
s A< x HOuDBE0E

5 i=i+1 pii J r
6 exchange A[i] with A[j] © 87 [1[3]5]6]4]

7 exchange A[i + 1] with A[r] i j .
8 returni +1 @ n E n

p i J r
CIEIN AL BRI

p... i less than x P i j r
i...J: greater than x ® 8715 6]+]

j...r: not yet processed]]

)4 i Jjr

©® [2]1]s]8]7]5]]
i

P r

A P PR

i

quicksort

PARTITION(4, p, r)

1 x = A[r] .
2 i=p-1 P i r
3 forj=ptor—1 2(1(3§447|5|6|8
3 oy = por [2[1]3]+ |IsTeTE]
2 ;xjh;n+elA[i] with A[j] Observation: after partition, pivot
7 exchange A[i +gl] with Afr] J is in the correct sorted position
& We now just need to sort left and
8 returni +1

right partition!
algorithm quicksort(A, lo, hi) isThO"S quicksort!
if lo < hi then

p := partition(A, lo, hi)

quicksort(A, lo, p — 1)

quicksort(A, p + 1, hi)

35

quicksort: running time

algorithm quicksort(A, lo, hi) is
if lo < hi then
p := partition(A, lo, hi)
quicksort(A, lo, p — 1)
quicksort(A, p + 1, hi)

T(n)=0(n)+T(?) + T(?)

The size of subproblems depend on choice of pivot

+ If pivot is smallest (or largest) element:
T(n)=T(n-1)+T(1)+O(n) => T(n)=0(n?)

 |f pivot is median element:
T(n)=2T(n/2)+O(n) => T(n)=0(n logn)

» Similar to selection problem, choose pivot randomly “

Outline

Sorting problems and algorithms
Divide-and-conquer paradigm

Merge sort algorithm

Master Theorem

* recursion tree

Median and Selection Problem

* randomized algorithms

Quicksort algorithm

Lower bound of comparison based sorting

37

sorting: can we do better?

» MergeSort and quicksort both have average performance of
O(n log n)

» quicksort performs better than merge sort
» perform less copying of data

» Can we do better than this?

* no, if sorting based on comparison operation (i.e., merge
sort and quick sort are asymptotically optimal sorting

algorithm)
« if (a[i]>a[i+1]) in bubblesort
« if (a[i]>max) in selection sort ...

38

Lower bound on sorting

» Comparison based sorting algorithm as a decision tree:
« leaves: sorting outcome (true order of array elements)
* nodes: comparison operations
* binary tree: two outcomes for comparison

Ex: Consider sorting an array of three elements a1, az, a3
* number of possible true orders? (P(3,3)= 3!)
e ifinputis 4,1,3, which path is taken? how about 2, 1, 57

This means sorted

order should be a1, 39

lower bound on sorting

0 (nlog2n) comparison.

When sorting an array of n elements: a1, az, ..., an
« Total possible true orders is: n!

« Decision tree is a binary tree with n! leaf nodes

« Height of tree: worst case performance

Recall: a tree of height n has at most 2" leaf nodes
So a tree with n! leaf nodes has height of at least
logzn!)=0O(nlogzn)

Any sorting algorithm must make in the worst case

Comment

Such lower bound analysis applies to the

problem itself, not to particular algorithms

+ reveal fundamental lower bound on running
time, i.e., you cannot do better than this

Can you apply same idea to show a lower bound

on searching an sorted array for a given

element, assuming that you can only use

comparison operation?

41

Outline

Sorting problems and algorithms
Divide-and-conquer paradigm

Merge sort algorithm

Master Theorem

* recursion tree

Median and Selection Problem

* randomized algorithms

Quicksort algorithm

Lower bound of comparison based sorting

42

Non-Comparison based sorting

« Example: sort 100 kids by their ages (taken
value between 1-9)

+ comparison based sorting: at least nlogn
+ Counting sort:
» count how many kids are of each age

« and then output each kid based upon how
many kids are of younger than him/her

* Running time: a linear time sorting algorithm
that sort in O(n+k) time when elements are in
range from 1 to k.

43

Counting Sort

COUNTING-SORT(4, B, k)

let C[0..k] be a new array
fori =0tok
Clil=0
for j = 1to A.length
ClA[jll = ClA[j1+1
// C[i] now contains the number of elements equal to i.
fori =1tok
Cli] = C[i]+C[i —1]
// C[i] now contains the number of elements less than or equal to i.
10 for j = A.length downto 1
11 B[C[A[j]Il = A[/]
12 ClALT = ClA[jlI -1

VoAU A W=

44

Counting Sorting

For simplicity, consider the data in the range @ to 9.

Input data: 1, 4, 1, 2, 7, 5, 2
1) Take a count array to store the count of each unique object.
Index: 12 3 456 7 89
Count: e 22 0 110100

2) Modify the count array such that each element at each index
stores the sum of previous counts.
Index: 0 3456 7

1 2 8 9

Count: @ 2 4 45 6 6 7 77

The modified count array indicates the position of each object in
the output sequence.

3) Output each object from the input sequence followed by
decreasing its count by 1.

Process the input data: 1, 4, 1, 2, 7, 5, 2. Position of 1 is 2.
Put data 1 at index 2 in output. Decrease count by 1 to place
next data 1 at an index 1 smaller than this index.

45

Recall: stable vs unstable sorting

+ ASTABLE sort preserves relative order of records with equal keys

Aaron 4 A -0023
Sort file on first key: s i [
Battle 4 [
Chen 2 A
Fox 1| =
Puria 3 A
Gazei 4 B
Kanaga 3 B
Rohde 3 A
Quilici 1 [
Sort file on second key: —
Pox 1 A 243-456-9091
Quilici 1 c 343-987-5642
Records with key value Chen 2 | a | 884-232-5341
3 are not in order on first R 3 | & | a9e-122-9643
Key!l Andrews 3 | & | eraoeeazz
v Puria 2 | a | 766-093-9873 22 Brown
Rohde 3 A 232-343-5555 115 Holder
Battle 4 C 991-878-4944 308 Blair
Therefore' nOT Sfdble! Gazei 4 B 665-303-0266 113 Walker
Aaron 4 & | 664-480-0023 037 Littls ¢

46

Radix Sorting

* What if range of value, k, is large?
* Radix Sort: sort digit by digit
« starting from least significant digit to most
significant digit, uses counting sort (or other
stable sorting algorithm) to sort by each digit

329 720 720 329
gg; igg igz 232 What if unstable
830 wwiiin 457wt 839 i 457 OO SUsed?
436 657 355 657
720 329 457 720
355 839 657 839

47

Readings

\\(é « Chapter 2
AV

48

