Divide and Conquer CISC5835, Algorithms for Big Data CIS, Fordham Univ.

Instructor: X. Zhang

Acknowledgement

- The set of slides have use materials from the following resources
 - Slides for textbook by Dr. Y. Chen from Shanghai Jiaotong Univ.
 - Slides from Dr. M. Nicolescu from UNR
 - Slides sets by Dr. K. Wayne from Princeton
 - which in turn have borrowed materials from other resources
 - Other online resources

Outline

- Sorting problems and algorithms
- Divide-and-conquer paradigm
- Merge sort algorithm
- Master Theorem
- recursion tree
- Median and Selection Problem
 - randomized algorithms
- Quicksort algorithm
- Lower bound of comparison based sorting

3

Sorting Problem

 Problem: Given a list of n elements from a totally-ordered universe, rearrange them in ascending order

4

5

6

Sorting applications

- Straightforward applications:
 - organize an MP3 library
 - Display Google PageRank results
 - List RSS news items in reverse chronological order
- Some problems become easier once elements are sorted
 - · identify statistical outlier
 - binary search
 - remove duplicates
 - Less-obvious applications
 - convex hull
 - closest pair of points
 - interval scheduling/partitioning
 - minimum spanning tree algorithms
 - ...

Classification of Sorting Algorithms

- Use what operations?
 - Comparison based sorting: bubble sort, Selection sort, Insertion sort, Mergesort, Quicksort, Heapsort,
 - Non-comparison based sort: counting sort, radix sort, bucket sort
- · Memory (space) requirement:
 - in place: require O(1), O(log n) memory
 - out of place: more memory required, e.g., O(n)
- Stability:

.

- stable sorting: elements with equal key values keep their original order
- unstable sorting: otherwise

Selecti	on Sc	ort: Idea	_
Selection Sort	98 is largest	Running time analysis:	-
29 72 36 13 87 66 52 51 98 5000 70 72 36 13 51 66 52 87 98	87 is largest		
29 52 36 13 51 66 72 87 98	66 is largest no swapping		
29 52 36 13 51 66 72 87 98 500 72 29 51 36 13 52 66 72 87 98	52 is largest 51 is largest		
29 13 36 51 52 66 72 87 98 swap 29 13 36 51 52 66 72 87 98	36 is largest no swapping 29 is largest		
13 29 36 51 52 66 72 87 98	Sorting completed	1	10

Insertion sort (Card game)	comparisons	data movements	
857193	1	<=2	
587193	2	<=3	
5 7 8 1 9 3	*	<=4	
157893	· · ·	<=5	
1 5 7 8 9 3	(n - 2) " 5 *	<=6	
1 3 5 7 8 9	(n - 1) * 0	<=7	

•

.

selection sort is better: less data movement (at most n) •

From quadric sorting algorithms to nlogn sorting algorithms —- using divide and conquer

13

Divide-and-conquer paradigm

Divide-and-conquer.

- Divide up problem into several subproblems.
- Solve each subproblem recursively.
- Combine solutions to subproblems into overall solution.

Most common usage.

- Divide problem of size n into two subproblems of size n/2 in linear time.
- Solve two subproblems recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: $\Theta(n^2)$.
- Divide-and-conquer: $\Theta(n \log n)$.

Master Theorem

- If $T(n) = aT(\lceil n/b\rceil) + O(n^d)$ for some constants a>0, b>1, and $d \ge 0\,$, then

$$T(n) = \left\{ \begin{array}{ll} O(n^d), & \text{if } d > log_b a \\ O(n^d log n), & \text{if } d = log_b a \\ O(n^{log_b a}), & \text{if } d < log_b a \end{array} \right.$$

- · for analyzing divide-and-conquer algorithms
 - solve a problem of size n by solving a subproblems of size n/b, and using O(n^d) to construct solution to original problem
- binary search: a=1, b=2, d=0 (case 2), T(n)=log n
- mergesort: a=2,b=2, d=1, (case 2), T(n)=O(nlogn)

- branching factor of the recursion tree is a, so the i-th level has aⁱ subproblems of size n/bⁱ
- · total work done at i-th level is:

$$a^i \times O(\frac{n}{b^i})^d = O(n^d) \times (\frac{a}{b^d})^i$$
 work done:

Total work done:

٠

•

$$\sum_{i=0}^{\log_b n} O(n^d) \times (\frac{a}{b^d})^i$$

Iterative MergeSort

Recursive MergeSort

- pros: conceptually simple and elegant (language's support for recursive function calls helps to maintain status)
- cons: overhead for function calls (allocate/ deallocate call stack frame, pass parameters and return value), hard to parallelize

Iterative MergeSort

- · cons: coding is more complicated
- pros: efficiency, and possible to take advantage of parallelism

MergeSort: high-level idea

 $\frac{\texttt{function iterative-mergesort}(a[1 \dots n])}{\texttt{Input: elements } a_1, a_2, \dots, a_n} \text{ to be sorted}$

 $\begin{array}{ll} Q = [&] & (\texttt{empty queue}) & //Q \text{ stores the sublists to be merged} \\ \texttt{for } i = 1 & \texttt{to } n \texttt{:} \\ & \texttt{inject}(Q, [a_i]) & //\texttt{create sublists of size 1, add to Q} \\ \texttt{while } |Q| > 1 \texttt{:} \\ & \texttt{inject}(Q, \texttt{merge}(\texttt{eject}(Q), \texttt{eject}(Q))) \\ \texttt{return } \texttt{eject}(Q) \end{array}$

eject(Q): remove the front element from Q inject(a): insert a to the end of Q Pros: could be parallelized! e.g., a pool of threads, each thread obtains two lists from Q to merge... Cons: memory usage O(nlogn)

Outline

- Sorting problems and algorithms
- Divide-and-conquer paradigm
- Merge sort algorithm
- Master Theorem
- recursion tree
- Median and Selection Problem
 - randomized algorithms
- Quicksort algorithm
- · Lower bound of comparison based sorting

26

27

Find Median & Selection Problem median of a list of numbers: bigger than half of the numbers, and smaller than half of the numbers A better summary than average value (which can be skewed by outliers) A straightforward way to find median sort it first O(nlogn), and return elements in middle index if list has even # of elements, then return average of the two in the middle

- Can we do better?
 - we did more than needed by sorting...

Selection Algorithm

- Observation: with deterministic way to choose pivot value, there will be some input that deterministically yield worst performance
 - if choose last element as pivot, input where elements in sorted order will yield worst performance
 - if choose first element as pivot, same
 - If choose 3rd element as pivot, what if the largest element is always in 3rd position
 - ...

31

Randomized Selection Algorithm How to achieve good "average" performance in face of all inputs? (Answer: Randomization!) Choose pivot element uniformly randomly (i.e., choose each element with equal prob) Given any input, we might still choose "bad" pivot, but we are equally

- likely to choose "good" pivot
 with prob. 1/2 the pivot chosen lies within 25% 75% percentile of data, shrinking prob. size to 3/4 (which is good enough!)
- in average, it takes 2 partition to shrink to 3/4
- By Master Theorem, T(n)=O(n)

$$T(n) \le T(3n/4) + O(n)$$

By Master Theorem: T(n)=O(n)

Partition	ing array
PARTITION (A, p, r) 1 $x = A[r]$	(a) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 $i = p - 1$ 3 for $j = p$ to $r - 1$ 4 if $A[j] \le x$	(b) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 $i = i + 1$ 6 exchange $A[i]$ with $A[j]$ 7 exchange $A[i + 1]$ with $A[r]$	(c) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 return $i + 1$	(d) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
in the second	(e) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
p i: less than x ij: greater than x jr: not yet processed	(f) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(g) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Outline

- Sorting problems and algorithms
- Divide-and-conquer paradigm
- Merge sort algorithm
- Master Theorem

٠

- recursion tree
- Median and Selection Problem
- randomized algorithms
- Quicksort algorithm
- Lower bound of comparison based sorting

37

38

sorting: can we do better?

- MergeSort and quicksort both have average performance of O(n log n)
- quicksort performs better than merge sort
 perform less copying of data
- Can we do better than this?
 - no, if <u>sorting based on comparison operation</u> (i.e., merge sort and quick sort are asymptotically optimal sorting algorithm)
 - if (a[i]>a[i+1]) in bubblesort
 - if (a[i]>max) in selection sort ...

lower bound on sorting

- When sorting an array of n elements: $a_1, a_2, ..., a_n$
 - Total possible true orders is: n!
 - Decision tree is a binary tree with n! leaf nodes
 - Height of tree: worst case performance
- Recall: a tree of height n has at most 2^{n} leaf nodes
- So a tree with n! leaf nodes has height of at least log₂(n!)=O(nlog₂n)
- Any sorting algorithm must make in the worst case
- Ω (nlog₂n) comparison.

Comment

• Can you apply same idea to show a lower bound on searching an sorted array for a given element, assuming that you can only use comparison operation?

41

Outline

- Sorting problems and algorithms
- Divide-and-conquer paradigm
- Merge sort algorithm
- Master Theorem
- recursion tree
- Median and Selection Problem
 - randomized algorithms
- Quicksort algorithm
- Lower bound of comparison based sorting

Non-Comparison based sorting

- Example: sort 100 kids by their ages (taken value between 1-9)
 - comparison based sorting: at least nlogn
- Counting sort:
 - · count how many kids are of each age
 - and then output each kid based upon how many kids are of younger than him/her
 - Running time: a linear time sorting algorithm that sort in O(n+k) time when elements are in range from 1 to k.

•	What if r	ange of v	alue, k, is	large?	
•	Radix Se	ort: sort di	ait by dia	it	
			0 7 0		· · · · · · · · · · · · · · · · · · ·
		ng from le			
	signif	icant digit	, uses col	unting so	ort (or other
	stable	sorting a	(lgorithm)	to sort b	by each digit
		0	o ,		, 0
	329	720	720	329	
	457	355	329	355	
	657	436	436	436	What if unstable soring is used?
	839)	In⊷ 457 ·····}	ı⊳ 839	an 457	sound is used a
	436	657	355	657	
		and the second sec	4 5 7	720	
	720	329	457	120	

