Dynamic Programming CISC5835, Algorithms for Big Data CIS, Fordham Univ.

Instructor: X. Zhang

Rod Cutting Problem

- A company buys long steel rods (of length n), and cuts them into shorter one to sell
 - integral length only
 - cutting is free
 - rods of diff lengths sold for diff. price, e.g.,

- Best way to cut the rods?
 - n=4: no cutting: \$9, 1 and 3: 1+8=\$9, 2 and 2: 5+5=\$10
 - n=5:?

Rod Cutting Problem Formulation

- Input:
 - a rod of length n
 - a table of prices p[1...n] where p[i] is price for rod of length i
- Output
 - determine maximum revenue r_n obtained by cutting up the rod and selling all pieces
- Analysis solution space (how many possibilities?)
 - how many ways to write n as sum of positive integers?
 - 4=4, 4=1+3, 4=2+2
 - # of ways to cut n: $e^{\pi \sqrt{2n/3}}/4n\sqrt{3}$.

Rod Cutting Problem Formulation

- // return r_n: max. revenue
- int Cut_Rod (int p[1...n], int n)
- Divide-and-conquer?
 - how to divide it into smaller one?
 - we don't know we want to cut in half...

Rod Cutting Problem

- // return r_n: max. revenue for rod of length n
- int Cut_Rod (int n, int p[1...n])

- Start from small
 - n=1, $r_1=1$ //no possible cutting
 - n=2, r₂=5 // no cutting (if cut, revenue is 2)
 - n=3, $r_3=8$ //no cutting
 - $r_4=9$ (max. of p[4], p[1]+ r_3 , p[2]+ r_3 , p[3]+ r_1)
 - $r_5 = \max (p[5], p[1]+r_4, p[2]+r_2, p[3]+r_2, p[4]+r_1)$
 - ...

Rod Cutting Problem

- // return r_n: max. revenue for rod size n
- int Cut_Rod (int n, int p[1...n])

- Given a rod of length n, consider first rod to cut out
 - if we don't cut it at all, max. revenue is p[n]
 - if first rod to cut is1: max. revenue is p[1]+r_{n-1}
 - if first rod to cut out is 2: max. revenue is p[2]+r_{n-2,...}
 - max. revenue is given by maximum among all the above options
- $r_n = \max (p[n], p[1]+r_{n-1}, p[2]+r_{n-2}, ..., p[n-1]+r_1)$

Optimal substructure

- // return r_n: max. revenue for rod size n
- int Cut_Rod (int n, int p[1...n])

- $r_n = max (p[n], p[1]+r_{n-1}, p[2]+r_{n-2}, ..., p[n-1]+r_1)$
- Optimal substructure: Optimal solution to a problem of size n incorporates optimal solutions to problems of smaller size (1, 2, 3, ... n-1).

Rod Cutting Problem

- // return r_n: max. revenue for rod size n
- int Cut_Rod (int p[1...n], int n)

• $r_n = \max (p[n], p[1] + r_{n-1}, p[2] + r_{n-2}, ..., p[n-1] + r_1)$

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```

Recursive Rod Cutting

Running time T(n)

Closed formula: $T(n)=2^n$

 $T(n) = 1 + \sum T(j) .$

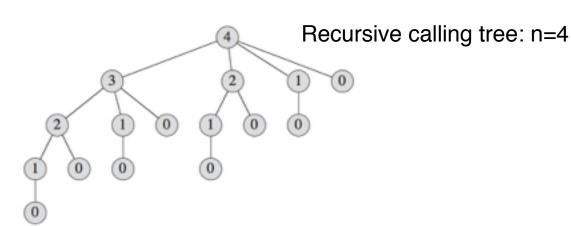
CUT-ROD(p, n)1 **if** n == 0

$$3 \quad q = -\infty$$

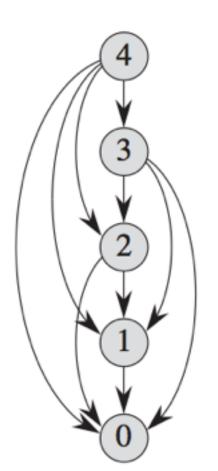
4 **for**
$$i = 1$$
 to n

$$q = \max(q, p[i] + \text{Cut-Rod}(p, n - i))$$

6 **return** q



Subproblems Graph



- Avoid recomputing subproblems again and again by storing subproblems solutions in memory/table (hence "programming")
 - trade-off between space and time
- Overlapping of subproblems

Dynamic Programming

- Avoid recomputing subproblems again and again by storing subproblems solutions in memory/ table (hence "programming")
 - trade-off between space and time
- Two-way to organize
 - top-down with memoization
 - Before recursive function call, check if subproblem has been solved before
 - After recursive function call, store result in table
 - bottom-up method
 - Iteratively solve smaller problems first, move the way up to larger problems

Memoized Cut-Rod

```
MEMOIZED-CUT-ROD(p, n)
   let r[0...n] be a new array // stores solutions to all problems
   for i = 0 to n
        r[i] = -\infty // initialize to an impossible negative value
   return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
                                              // A recursive function
   if r[n] \geq 0
                  // If problem of given size (n) has been
                      solved before, just return the stored result
        return r[n]
  if n == 0
    q = 0
   else q = -\infty
6
                                         // same as before...
        for i = 1 to n
             q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
   r[n] = q
   return q
```

Memoized Cut-Rod: running time

```
MEMOIZED-CUT-ROD(p, n)
   let r[0...n] be a new array // stores solutions to all problems
  for i = 0 to n
        r[i] = -\infty // initialize to an impossible negative value
   return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
                                              // A recursive function
   if r[n] \geq 0
                 // If problem of given size (n) has been
                      solved before, just return the stored result
        return r[n]
  if n == 0
    q = 0
   else q = -\infty
6
                                         // same as before...
        for i = 1 to n
             q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
   r[n] = q
   return q
```

Bottom-up Cut-Rod

```
BOTTOM-UP-CUT-ROD(p,n)

1 let r[0..n] be a new array // stores solutions to all problems

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```

Running time: 1+2+3+..+n-1=O(n²)

Bottom-up Cut-Rod (2)

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0..n] be a new array 1 let r[0..n] and s[0..n] be new arrays

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```

```
What if we want to know who to achieve r[n]? i.e., how to cut? i.e., n=n_1+n_2+...n_k, such that p[n_1]+p[n_2]+...+p[n_k]=r_n
```

Recap

- We analyze rod cutting problem
- Optimal way to cut a rod of size n is found by
 - 1) comparing optimal revenues achievable after cutting out the first rod of varying len,
 - This relates solution to larger problem to solutions to subproblems
 - 2) choose the one yield largest revenue

maximum (contiguous) subarray

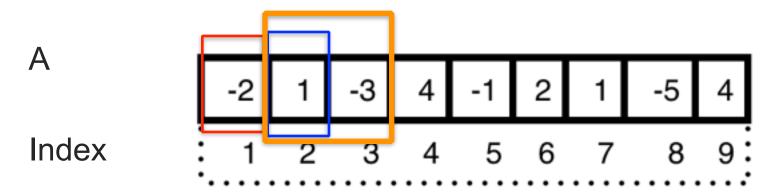
- Problem: find the contiguous subarray within an array (containing at least one number) which has largest sum (midterm lab)
 - If given the array [-2,1,-3,4,-1,2,1,-5,4],
 - contiguous subarray [4,-1,2,1] has largest sum = 6
- Solution to midterm lab
 - brute-force: n² or n³
 - Divide-and-conquer: T(n)=2 T(n/2)+O(n), T(n)=nlogn
 - Dynamic programming?

- Problem: find contiguous subarray with largest sum
- Sample Input: [-2,1,-3,4,-1,2,1,-5,4] (array of size n=9)
- How does solution to this problem relates to smaller subproblem?
 - If we divide-up array (as in midterm)
 - [-2,1,-3,4,-1,2,1,-5,4] //find MaxSub in this array

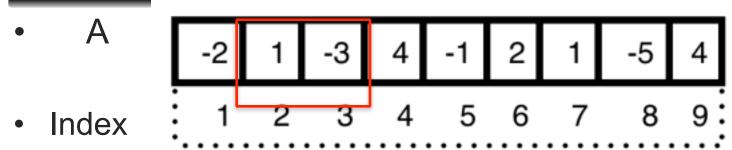
```
[-2,1,-3,4,-1] [2,1,-5,4] still need to consider subarray that spans both halves This does not lead to a dynamic programming sol.
```

Need a different way to define smaller subproblems!

Problem: find contiguous subarray with largest sum



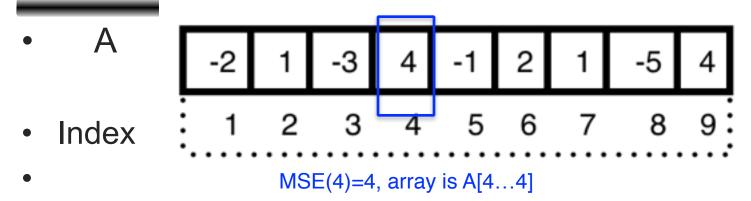
- MSE(k), max. subarray ending at pos k, among all subarray ending at k (A[i...k] where i<=k), the one with largest sum
 - MSE(1), max. subarray ending at pos 1, is A[1..1], sum is -2
 - MSE(2), max. subarray ending at pos 2, is A[2..2], sum is 1
 - MSE(3) is A[2..3], sum is -2
 - MSE(4)?



- MSE(k) and optimal substructure
 - MSE(3): A[2..3], sum is -2 (red box)
 - MSE(4): two options to choose
 - (1) either grow MSE(3) to include pos 4
 - subarray is then A[2..4], sum is MSE(3)+A[4]=-2+A[4]=2

How a problem's optimal solution can be derived from optimal solution to smaller problem

- (2) or start afresh from pos 4
 - subarray is then A[4...4], sum is A[4]=4 (better)
- Choose the one with larger sum, i.e.,
 - MSE(4) = max (A[4], MSE(3)+A[4])



- MSE(k) and optimal substructure
 - Max. subarray ending at k is the larger between A[k...k] and Max. subarray ending at k-1 extended to include A[k]
 MSE(k) = max (A[k], MSE(k-1)+A[k])
 - MSE(5)= , subarray is
 - MSE(6)
 - MSE(7)
 - MSE(8)
 - MSE(9)



- Once we calculate MSE(1) ... MSE(9)
 - MSE(1)=-2, the subarray is A[1..1]
 - MSE(2)=1, the subarray is A[2..2]
 - MSE(3)=-2, the subarray is A[2..3]
 - MSE(4)=4, the subarray is A[4...4]
 - ... MSE(7)=6, the subarray is A[4...7]
 - MSE(9)=4, the subarray is A[9...9]
- What's the maximum subarray of A?
 - well, it either ends at 1, or ends at 2, ..., or ends at 9
 - Whichever yields the largest sum!

Idea to Pseudocode

- Calculate MSE(1) ... MSE(n)
 - MSE(1)= A[1]
 - MSE(i) = max (A[i], A[i]+MSE(i-1));
- Return maximum among all MSE(i), for i=1, 2, ...n

Practice:

- 1) fill in ??
- 2) How to find out the starting index of the max. subarray, i.e., the start parameter?

```
(int, start,end) MaxSubArray (int A[1...n])
  // Use array MSE to store the MSE(i)
  MSE[1]=A[1];
  max MSE = MSE[1];
 for (int i=2;i <= n;i++)
     MSE[i] = ??
     if (MSE[i] > max_MSE) {
        max_MSE = MSE[i];
       end = i:
 return (max MSE, start, end)
```

Running time Analysis

```
int MaxSubArray (int A[1...n], int & start,
  int & end)
  // Use array MSE to store the MSE(i)
  MSE[1]=A[1];
  max MSE = MSE[1];
 for (int i=2;i<=n;i++)
     MSE[i] = ??
     if (MSE[i] > max_MSE) {
        max_MSE = MSE[i];
       end = i;
 return max MSE;
```

It's easy to see that running time is O(n)

 a loop that iterates for n-1 times

Recall other solutions:

- brute-force: n² or n³
- Divide-and-conquer: nlogn

Dynamic programming wins!

What is DP? When to use?

- We have seen several optimization problems
 - brute force solution
 - divide and conquer
 - dynamic programming
- To what kinds of problem is DP applicable?
 - Optimal substructure: Optimal solution to a problem of size n incorporates optimal solution to problem of smaller size (1, 2, 3, ... n-1).
 - Overlapping subproblems: small subproblem space and common subproblems

Optimal substructure

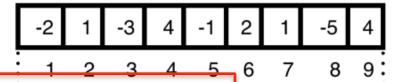
- Optimal substructure: Optimal solution to a problem of size n incorporates optimal solution to problem of smaller size (1, 2, 3, ... n-1).
- Rod cutting: find r_n (max. revenue for rod of len n)

```
Sol to problem sol to problem instance of size n instance of size n-1, n-2, ... 1  r_n = max \ (p[1] + r_{n-1}, \ p[2] + r_{n-2}, \ p[3] + r_{n-3}, ..., \ p[n-1] + r_1, \ p[n])
```

- A recurrence relation (recursive formula)
- => Dynamic Programming: Build an optimal solution to the problem from solutions to subproblems
 - We solve a range of sub-problems as needed

Optimal substructure in Max. Subarray

- Optimal substructure: Optimal solution to a problem of size n incorporates optimal solution to problem of smaller size (1, 2, 3, ... n-1).
 - Max. Subarray Problem:



MSE(i) = max (A[i], MSE(i-1)+A[i])

Max. Subarray Ending at position i is the either the max. subarray ending at pos i-1 extended to pos i; or just made up of A[i]

Max Subarray = max (MSE(1), MSE(2), ...MSE(n))

Overlapping Subproblems

- space of subproblems must be "small"
 - total number of distinct subproblems is a polynomial in input size (n)
 - a recursive algorithm revisits same problem repeatedly, i.e., optimization problem has overlapping subproblems.
- DP algorithms take advantage of this property
 - solve each subproblem once, store solutions in a table
 - Look up table for sol. to repeated subproblem using constant time per lookup.
- In contrast: divide-and-conquer solves new subproblems at each step of recursion.

Longest Increasing Subsequence

- Input: a sequence of numbers given by an array a
- Output: a longest subsequence (a subset of the numbers taken in order) that is increasing (ascending order)
- Example, given a sequence
 - 5, 2, 8, 6, 3, 6, 9, 7
 - There are many increasing subsequence: 5, 8, 9; or 2, 9; or 8
 - The longest increasing subsequence is:
 2, 3, 6, 9 (length is 4)

LIS as a DAG

 Find longest increasing subsequence of a sequence of numbers given by an array a

5, 2, 8, 6, 3, 6, 9, 7



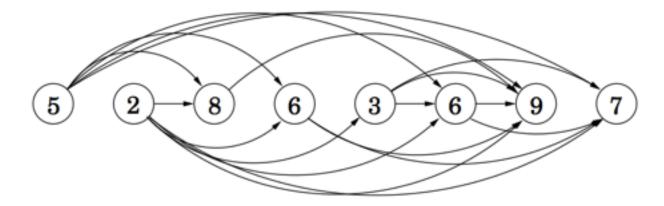
Observation:

- If we add directed edge from smaller number to larger one, we get a DAG.
- A path (such as 2,6,7) connects nodes in increasing order
- LIS corresponds to longest path in the graph.

Graph Traversal for LIS

 Find longest increasing subsequence of a sequence of numbers given by an array a

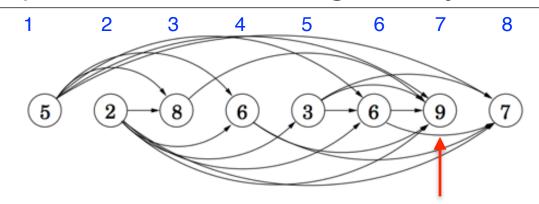
5, 2, 8, 6, 3, 6, 9, 7



Observation:

- LIS corresponds to longest path in the graph.
- Can we use graph traversal algorithms here?
 - BFS or DFS?
 - Running time

 Find Longest Increasing Subsequence of a sequence of numbers given by an array a



Let L(n) be the length of LIS ending at n-th number

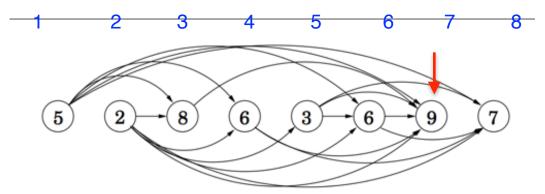
L(1) = 1, LIS ending at pos 1 is 5

L(2) = 1, LIS ending at pos 2 is 2

L(7)= // how to relate to L(1), ...L(6)?

Consider LIS ending at a[7] (i.e., 9). What's the number before 9?
?,9

Given a sequence of numbers given by an array a

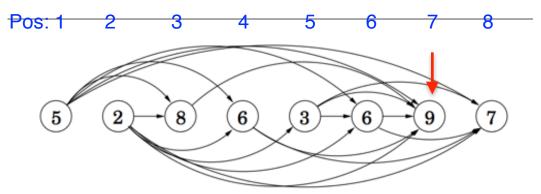


Let L(n) be length of LIS ending at n-th number

Consider all increasing subsequence ending at a[7] (i.e., 9).

- What's the number before 9?
 - It can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers pointing to 9)
 - If the number before 9 is 3 (a[5]), what's max. length of this seq? L(5)+1 where the seq is 3, 9

Given a sequence of numbers given by an array a



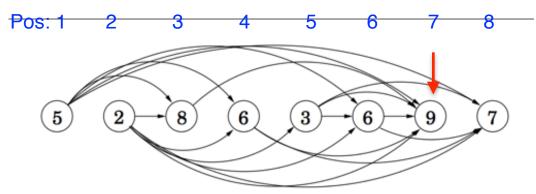
Let L(n) be length of LIS ending at n-th number

Consider all increasing subsequence ending at a[7] (i.e., 9).

- It can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers pointing to 9)
 - L(7)=max(1, L(6)+1, L(5)+1, L(4)+1, L(3)+1, L(2)+1, L(1)+1)

L(8)=?

Given a sequence of numbers given by an array a



Let L(n) be length of LIS ending at n-th number.

Recurrence relation:

$$L(j) = 1 + \max\{L(i) : (i, j) \in E\}$$

Note that the i's in RHS is always smaller than the j

- How to implement? Running time?
- LIS of sequence = Max (L(i), 1<=i<=n) // the longest among all

Next, two-dimensional subproblem space

i.e., expect to use two-dimensional table

Longest Common Subseq.

Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$
$$Y = \langle y_1, y_2, ..., y_n \rangle$$

find a maximum length common subsequence (LCS) of X and Y

• *E.g.*:

$$X = \langle A, B, C, B, D, A, B \rangle$$

- Subsequence of X:
 - A subset of elements in the sequence taken in order but not necessarily consecutive

$$\langle A, B, D \rangle$$
, $\langle B, C, D, B \rangle$, etc

Example

$$X = \langle A, B, C, B, D, A, B \rangle$$
 $X = \langle A, B, C, B, D, A, B \rangle$
 $Y = \langle B, D, C, A, B, A \rangle$ $Y = \langle B, D, C, A, B, A \rangle$

- (B, C, B, A) and (B, D, A, B) are longest common subsequences of X and Y (length = 4)
- BCBA = LCS(X,Y): functional notation, but is it not a function
- (B, C, A), however is not a LCS of X and Y

Brute-Force Solution

- Check every subsequence of X[1 . . m] to see if it is also a subsequence of Y[1 .. n].
- There are 2^m subsequences of X to check
- Each subsequence takes O(n) time to check
 - scan Y for first letter, from there scan for second,
 and so on
- Worst-case running time: O(n2^m)
 - Exponential time too slow

Towards a better algorithm

Simplification:

- 1. Look at length of a longest-common subsequence
- Extend algorithm to find the LCS itself later

Notation:

- Denote length of a sequence s by |s|
- Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$ we define the *i*-th prefix of X as (for i = 0, 1, 2, ..., m) $X_i = \langle x_1, x_2, ..., x_i \rangle$
- Define:

```
c[i,j] = | LCS (X_i, Y_j) = | LCS(X[1..i], Y[1..j])|: the length of a LCS of sequences X_i = \langle x_1, x_2, ..., x_i \rangle and Y_j = \langle y_1, y_2, ..., y_j \rangle
```

- |LCS(X,Y)| = c[m,n] //this is the problem we want to solve

Find Optimal Substructure

- Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle, Y = \langle y_1, y_2, ..., y_n \rangle$
- To find LCS (X,Y) is to find c[m,n]

```
c[i, j] = | LCS (X<sub>i</sub>, Y<sub>j</sub>) |
//length LCS of i-th prefix of X and j-th prefix of Y
// X[1..i], Y[1..j]
```

- How to solve c[i,j] using sol. to smaller problems?
 - what's the smallest (base) case that we can answer right away?
 - How does c[i,j] relate to c[i-1,j-1], c[i,j-1] or c[i-1,j]?

Recursive Formulation

Base case: c[i, j] = 0 if i = 0 or j = 0

LCS of an empty sequence, and any sequence is empty

General case:

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } X[i] = Y[j] \\ max(c[i, j-1], c[i-1, j]) & \text{otherwise (i.e., if } X[i] \neq Y[j]) \end{cases}$$

$$X: \quad 1 \quad 2 \qquad i \qquad m$$

$$Y: \quad 1 \quad 2 \qquad j \qquad \text{compare } X[i], Y[j]$$

$$...$$

Recursive Solution. Case 1

Case 1:
$$X[i] ==Y[j]$$

e.g.: $X_4 = \langle A, B, D, E \rangle$
 $Y_3 = \langle Z, B, E \rangle$

 Choice: include one element into common sequence (E) and solve resulting subproblem

c[4, 3] = c[4 - 1, 3 - 1] + 1
LCS of
$$X_3 = \langle A, B, D \rangle$$
 and $Y_2 = \langle Z, B \rangle$

- Append X[i] = Y[j] to the LCS of X_{i-1} and Y_{j-1}
- Must find a LCS of X_{i-1} and Y_{j-1}

Recursive Solution. Case 2

Case 2: X[i] ≠ Y[j]

e.g.:
$$X_4 = \langle A, B, D, G \rangle$$

$$Y_3 = \langle Z, B, D \rangle$$

Either the G or the D is not in the LCS (they cannot be both in LCS)

$$c[i, j] = max \{ c[i - 1, j], c[i, j-1] \}$$

If we ignore last element in Xi

If we ignore last element in Yj

- Must solve two problems
 - find a LCS of X_{i-1} and Y_j : $X_{i-1} = \langle A, B, D \rangle$ and $Y_j = \langle Z, B, D \rangle$
 - find a LCS of X_i and Y_{j-1} : $X_i = \langle A, B, D, G \rangle$ and $Y_{j-1} = \langle Z, B \rangle$

Recursive algorithm for LCS

```
// X, Y are sequences, i, j integers
//return length of LCS of X[1...i], Y[1...j]
LCS(X, Y, i, j)
    if i = 0 or j = 0
         return 0;
    if X[i] == Y[ j] // if last element match
    then
         c[i, j] \leftarrow LCS(X, Y, i-1, j-1) + 1
    else
       c[i, j] \leftarrow max\{LCS(X, Y, i-1, j),
                      LCS(X, Y, i, j-1)
```

Optimal substructure & Overlapping Subproblems

- A recursive solution contains a "small" number of distinct subproblems repeated many times.
 - e.g., C[5,5] depends on C[4,4], C[4,5], C[5,4]
 - Exercise: Draw there subproblem dependence graph
 - each node is a subproblem
 - directed edge represents "calling", "uses solution of" relation
- Small number of distinct subproblems:
 - total number of distinct LCS subproblems for two strings of lengths m and n is mn.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
\begin{split} LCS(X,\,Y,\,i,\,j) \\ &\text{if } c[i,\,j] = NIL \quad /\!/ \ LCS(i,j) \ \text{has not been solved yet} \\ &\text{then if } x[i] = y[j] \\ &\text{then } c[i,\,j] \leftarrow LCS(x,\,y,\,i-1,\,j-1) + 1 \\ &\text{else } c[i,\,j] \leftarrow max\{LCS(x,\,y,\,i-1,\,j), \\ &\text{LCS}(x,\,y,\,i,\,j-1)\} \end{split}
```

Same as before

Bottom-Up

			0 Y	1 A	2 B	3 C	4 B	5 D	6 A	7 В
Initialization: base case c[i,j] = 0 if i=0, or j=0	0	X								
//Fill table row by row // from left to right for (int i=1; i<=m;i++) for (int j=1;j<=n;j++) update c[i,j]	1	В								
	2	D				C[2,3]	C[2,4]			
	3	C				C[3,3]	C[3,4]			
return c[m, n]	4	Α								
Running time = $\Theta(mn)$	5	В								
	6	Α		[C[3,4]=	length	of LCS	S (X ₃ , `	Y ₄)	
	= Length of LCS (BDC, ABCB)					48				

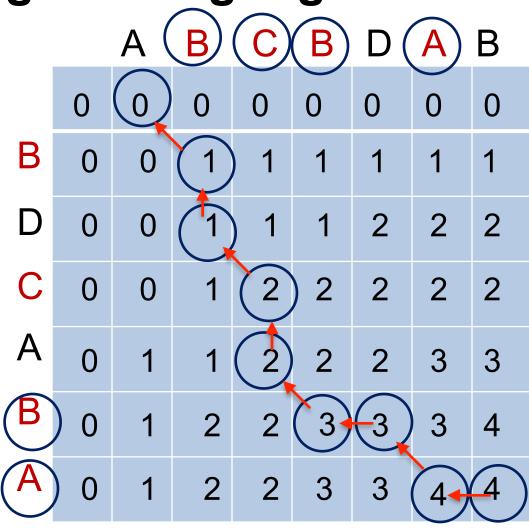
i-th row, 4-th column element

Dynamic-Programming Algorithm

Reconstruct LCS tracing backward:

how do we get value of C[i,j] from? (either C[i-1,j-1]+1, C[i-1,j], C[i, j-1)

as red arrow indicates...



Matrix

Matrix: a 2D (rectangular) array of numbers, symbols, or expressions, arranged in rows and columns.

e.g., a 2 × 3 matrix (there are two rows and three columns)

$$\left[egin{array}{ccc} 1 & 9 & -13 \ 20 & 5 & -6 \end{array}
ight].$$

Each element of a matrix is denoted by a variable with two subscripts, a_{2,1} element at second row and first column of a matrix A.

an
$$m \times n$$
 matrix A :
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Matrix Multiplication

Matrix Multiplication:

Dimension of A, B, and A x B?

Matrix A Matrix B Product
$$\begin{bmatrix} 1 & 4 & 6 & 10 \\ 2 & 7 & 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 4 & 6 \\ 2 & 7 & 5 \\ 9 & 0 & 11 \\ 3 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 93 & 42 & 92 \\ 70 & 60 & 102 \end{bmatrix}$$

$$[{f AB}]_{i,j} = A_{i,1}B_{1,j} + A_{i,2}B_{2,j} + \cdots + A_{i,n}B_{n,j} = \sum_{r=1}^n A_{i,r}B_{r,j}$$
 ,

MATRIX-MULTIPLY (A, B)

Total (scalar) multiplication: 4x2x3=24

```
if A.columns \neq B.rows

error "incompatible dimensions"

else let C be a new A.rows \times B.columns matrix

for i = 1 to A.rows

for j = 1 to B.columns

c_{ij} = 0

for k = 1 to A.columns

c_{ij} = c_{ij} + a_{ik} \cdot b_{kj} Total (scalar) multiplication: n_2xn_1xn_3

return C
```

Multiplying a chain of Matrix

Given a sequence/chain of matrices, e.g., A₁, A₂, A₃, there are different ways to calculate A₁A₂A₃

- 1. $(A_1A_2)A_3$
- 2. $(A_1(A_2A_3))$

Dimension of A₁: 10 x 100

 A_2 : 100 x 5

A₃: 5 x 50

all yield the same result

But not same efficiency

Matrix Chain Multiplication

Given a chain $<A_1, A_2, ... A_n>$ of matrices, where matrix A_i has dimension p_{i-1X} p_i , find optimal fully parenthesize product $A_1A_2...A_n$ that minimizes number of scalar multiplications.

Chain of matrices <A₁, A₂, A₃, A₄>: five distinct ways

 A_1 : $p_1 \times p_2$ A_2 : $p_2 \times p_3$ A_3 : $p_3 \times p_4$ A_4 : $p_4 \times p_5$

$$(A_1(A_2(A_3A_4)))$$
 # of multiplication: p₃p₄p₅+ p₂p₃p₅+ p₁p₂p₅ $(A_1((A_2A_3)A_4))$ $((A_1A_2)(A_3A_4))$ $((A_1(A_2A_3))A_4)$ Find the one with minimal multiplications? $(((A_1A_2)A_3)A_4)$

Matrix Chain Multiplication

- Given a chain <A1, A2, ... An> of matrices, where matrix Ai has dimension p_{i-1X} p_i , find optimal fully parenthesize product A1A2...An that minimizes number of scalar multiplications.
- Let m[i, j] be the minimal # of scalar multiplications needed to calculate A_iA_{i+1}...A_j (m[1...n]) is what we want to calculate)
- Recurrence relation: how does m[i...j] relate to smaller problem
 - First decision: pick k (can be i, i+1, ...j-1) where to divide A_iA_{i+1}...A_j into two groups: (A_i...A_k)(A_{k+1}...A_j)
 - $(A_i...A_k)$ dimension is $p_{i-1} \times p_k$, $(A_{k+1}...A_j)$ dimension is $p_k \times p_j$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

Summary

- Keys to DP
 - Optimal Substructure
 - overlapping subproblems
- Define the subproblem: r(n), MSE(i), LCS(i,j) LCS of prefixes ...
- Write recurrence relation for subproblem: i.e., how to calculate solution to a problem using sol. to smaller subproblems
- Implementation:
 - memoization (table+recursion)
 - bottom-up table based (smaller problems first)
- Insights and understanding comes from practice! 55