Dynamic Programming
CISC5835, Algorithms for Big Data
CIS, Fordham Univ.

Instructor: X. Zhang

Rod Cutting Problem

« A company buys long steel rods (of length n),
and cuts them into shorter one to sell

* integral length only
 cutting is free
 rods of diff lengths sold for diff. price, e.qg.,

5 6 7 8 9 10

length i |1 2 4
5 9 10 17 17 20 24 30

3
price p; | 1 8

* Best way to cut the rods?

* n=4: no cutting: $9, 1 and 3: 1+8=%9, 2 and 2:
5+5=%$10

e Nn=5:7

Rod Cutting Problem Formulation

* |nput:
e arod of length n

 atable of prices p[1...n] where pl[i] is price for rod of
length |

« Output

« determine maximum revenue rn obtained by cutting up
the rod and selling all pieces

* Analysis solution space (how many possibilities?)

* how many ways to write n as sum of positive
integers?
© 4=4,4=1+43,4=2+2
- #ofwaystocutn: ¢7v2r/3/4y./3.

w

Rod Cutting Problem Formulation

* /[return r_n: max. revenue
 int Cut_Rod (int p[1...n], int n)

 Divide-and-conquer?
* how to divide it into smaller one?
« we don’t know we want to cut in half...

Rod Cutting Problem

* /l return rn: max. revenue for rod of length n
 int Cut_Rod (int n, int p[1...n])

lengthi |1 2 3 4 5 6 7 8 9 10
picep; (1 5 8 9 10 17 17 20 24 30

« Start from small
* n=1, r1=1 //no possible cutting
* n=2, r2=5 // no cutting (if cut, revenue is 2)
* n=3, r3=8 //no cutting
* r4=9 (max. of p[4], p[1]+r3, p[2]+r3, p[3]+r1)
rs = max (p[3], p[1]+r4, p[2]+r2, p[3]+r2, p[4]+ri)

Rod Cutting Problem

e /[return rn: max. revenue for rod size n
* int Cut_Rod (int n, int p[1...n])

6 7 8 9 10
10 17 17 20 24 30

g
E
W N
(I S
0| W
O| &
()

* Given a rod of length n, consider first rod to cut out
« if we don'’t cut it at all, max. revenue is p[n]
 if first rod to cut is1: max. revenue is p[1]+rn-1
o if first rod to cut out is 2: max. revenue is p[2]+r-2, ...

* max. revenue is given by maximum among all the
above options

e m=max (p[n], p[1]+rm-1, P[2]+rn2, ..., p[n-1]+r+)

Optimal substructure

e /[return rn: max. revenue for rod size n
* int Cut_Rod (int n, int p[1...n])

lengthi |1 2 3 4 5 6 7 8 9 10
5 8 9 10 17 17 20 24 30

* rn=max (p[n], p[1]+rn-1, p[2]+rn-2, ..., P[N-1]+r1)

* Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solutions
to problems of smaller size (1, 2, 3, ... n-1).

Rod Cutting Problem

* /[return r_n: max. revenue for rod size n
 int Cut_Rod (int p[1...n], int n)

lengthi |1 2 3 4 5 6 7 8 9 10
picep; |1 5 8 9 10 17 17 20 24 30

* rn=max (p[n], p[1]+r-1, p[2]+-2, ..., p[n-1]+r1)

CuT-ROD(p,n)
if n ==
return 0
q = —00
fori = 1ton
g = max(q, pli] + CuT-ROD(p,n —i))
return g

NN B W -

Recursive Rod Cutting

Running time T(n)
n—1

T(n)=1+) T(j).
j=0

Closed formula: T(n)=2n

g = max(q, pli] + CUT-ROD(p,n —1i))

CUT-ROD(p, n)

1 ifn==

2 return O

3 g =—

4 fori = 1ton

5

6 returng
/ \ l| |O
® © ©

Recursive calling tree: n=4

h "‘i"‘-;“'~-f6jj;:.

Subproblems Graph

* Avoid recomputing subproblems
o again and again by storing
subproblems solutions In

9 memory/table (hence
‘programming”)
Q trade-off between space and

‘ time

o « Overlapping of subproblems

O

10

Dynamic Programming

* Avoid recomputing subproblems again and again
by storing subproblems solutions in memory/
table (hence “programming”)

 trade-off between space and time
* Two-way to organize
e top-down with memoization

« Before recursive function call, check if subproblem
has been solved before

o After recursive function call, store result in table
e bottom-up method

* l|teratively solve smaller problems first, move

the way up to larger problems
11

Memoized Cut-Rod

MEMOIZED-CUT-ROD(p, n)

1 letr[0..n]be anew array // stores solutions to all problems
2 fori =0ton

3 r[i] = —0C / initialize to an impossible negative value
4 return MEMOIZED-CUT-ROD-AUX(p,n,r)

MEMOIZED-CUT-ROD-AUX(p,n,r) /I A recursive function

1 ifr[n]>0 /1 If problem of given size (n) has been

2 return r[n] solved before, just return the stored result

3 ifn==

4 q=20

S5 elseqg = —o0

6 fori = 1ton /l same as before...

7 g = max(q, p[i] + MEMOIZED-CUT-ROD-AUX(p,n —i,r))
8 r[n] =gq

9 returngq

Memoized Cut-Rod: running time

MEMOIZED-CUT-ROD(p, n)

1 letr[0..n]be anew array // stores solutions to all problems
2 fori =0ton

3 r[i] = —0C / initialize to an impossible negative value
4 return MEMOIZED-CUT-ROD-AUX(p,n,r)

MEMOIZED-CUT-ROD-AUX(p,n,r) // A recursive function

1 ifrr]=>0 /1 If problem of given size (n) has been

2 return ,.[n] solved before, just return the stored result

3 ifn==

4 g =20

5 elseg = —o0

6 fori = 1ton /l same as before...

7 g = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))
8 r[n] =g¢

9 returngq

Bottom-up Cut-Rod

BOTTOM-UP-CUT-ROD(p, n)

1 letr[0..n]be anew array /I stores solutions to all problems

2 r[0] =0

3 forj =1ton

4 g = —o0

5 fori = 1toj // Solve subproblem j, using
6 g = max(q’ p[i] + r[j _ l]) solution to smaller subproblems
7 rlj] = ¢

8 return r|n]

Running time: 1+2+3+..+n-1=0(n2)

14

Bottom-up Cut-Rod (2)

BOTTOM-UP-CUT-ROD(p, n)

1 letr[0..n]beanewarray 1 Iletr[0..n]and s[0..n]be new arrays
2 r[0] =0
3 forj =1ton

4 q = —00 . e

5 fori = 1toj 'f"<”[‘][f]’_£f [‘.'])
= pli|+rlj—i

6 q = max(q, pli] +rlj —i]) sl=i

7 rljl = ¢

8 return r|n]

What if we want to know who to achieve r[n]?
i.e., how to cut?
i.e., n=n_1+n_2+...n_k, such that p[n_1]+p[n_2]+...+p[n_k]=rn

15

Recap

 We analyze rod cutting problem
« Optimal way to cut a rod of size n is found by

* 1) comparing optimal revenues achievable
after cutting out the first rod of varying len,

* This relates solution to larger problem to
solutions to subproblems

« 2) choose the one yield largest revenue

16

maximum (contiguous) subarray

* Problem: find the contiguous subarray within an
array (containing at least one number) which has
largest sum (midterm lab)

 If given the array [-2,1,-3 4,-1,2,1,-5,4],
e contiguous subarray [4,-1,2,1] has largest sum =6
« Solution to midterm lab
 brute-force: n? or n®
» Divide-and-conquer: T(n)=2 T(n/2)+0(n), T(n)=nlogn
e Dynamic programming?

17

Analyze optimal solution

* Problem: find contiguous subarray with largest sum

« Sample Input: [-2,1,-3,4,-1,2,1,-5,4] (array of size n=9)

 How does solution to this problem relates to smaller
subproblem?

 If we divide-up array (as in midterm)
e [-2,1,-3,4,-1,2,1,-5,4] //find MaxSub in this array

[-2,1,-3,4,-1] [2,1,-5,4]
still need to consider subarray that spans both halves

This does not lead to a dynamic programming sol.
* Need a different way to define smaller subproblems!

18

Analyze optimal solution

* Problem: find contiguous subarray with largest sum

A —
2
Index 123 4 56 7 8 9

« MSE(k), max. subarray ending at pos k, among all
subarray ending at k (A[i...k] where i<=k), the one with
largest sum

MSE(1), max. subarray ending at pos 1, is A[1..1], sum is -2
MSE(2), max. subarray ending at pos 2, is A[2..2], sum is 1
MSE(3) is A[2..3], sum is -2

« MSE(4)?

19

Analyze optimal solution

|I IIII

. Index : S 6 7

« MSE(k) and optimal substructure
« MSE(3): A[2..3], sum is -2 (red box)
« MSE(4): two options to choose
(1) either grow MSE(3) to include pos 4 How a problem’s optimal

_ solution can be derived from
* subarray is then A[2..4], sum is optimal solution to smaller

MSE(3)+A[4]=-2+A[4]=2 problem
* (2) or start afresh from pos 4
» subarray is then A[4...4], sum is A[4]=4 (better)
« Choose the one with larger sum, i.e.,
e MSE(4) = max (A[4], MSE(3)+A[4])

20

Analyze optimal solution

MSE(4)=4, array is A[4...4]

 MSE(k) and optimal substructure
Max. subarray ending at k is the larger between A[k...k] and

Max. subarray ending at k-1 extended to include A[k]
MSE(k) = max (A[Kk], MSE(k-1)+A[K])

MSE(5)= , subarray is

MSE(6)

MSE(7)

MSE(8)

MSE(9)

21

Analyze optimal solution

e Once we calculate MSE(1) ... MSE(9)
MSE(1)=-2, the subarray is A[1..1]
MSE(2)=1, the subarray is A[2..2]
MSE(3)=-2, the subarray is A[2..3]
MSE(4)=4, the subarray is A[4...4]

... MSE(7)=6, the subarray is A[4...7]
MSE(9)=4, the subarray is A[9...9]

« What's the maximum subarray of A?
well, it either ends at 1, orends at 2, ..., orends at 9
* Whichever yields the largest sum!

22

|ldea to Pseudocode

N EEEEEERE
« Index : | .

(int, start,end) MaxSubArray (int A[1...n])
e Calculate MSE(1) ... MSE(n) {
MSE(1)= A[1] {\/Agz?ﬁ_rf[);]MSE to store the MSE(i)
« MSE(i) = max (A[i], A[i]+MSE(i-1)); max MSE =,MSE[1];
* Return maximum among all MSE(i),
fori=1,2, ...n EOF (int i=2;i<=n;i++)
MSET[i] = ??
if (MSE[i] > max_MSE) {
Practice: max_MSE = MSE]i];
1) fill in ?7? end =i
2) How to find out the starting index of }
the max. subarray, i.e., the start parameter? }
return (max_MSE, start, end)
}

Running time Analysis

int MaxSubArray (int A[1...n], int & start,
int & end)
{

// Use array MSE to store the MSE(i)
MSE[1]=A[1];
max_MSE = MSE[1];

for (int i=2;i<=n;i++)
{
MSE[i] = ?7?

if (MSE[i] > max_MSE) {
max_MSE = MSE[i];
end =i;
}
}

return max_MSE;

It's easy to see that
running time is O(n)
* aloop that iterates
for n-1 times
Recall other solutions:
 brute-force: n? or n?
« Divide-and-conquer:
nlogn
Dynamic programming
wins!

24

What is DP? When to use?

* \We have seen several optimization problems
 brute force solution
* divide and conquer
* dynamic programming

* To what kinds of problem is DP applicable?

* Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, ... n-1).

* Overlapping subproblems: small subproblem
space and common subproblems

25

Optimal substructure

* Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, ... n-1).

* Rod cutting: find rn (max. revenue for rod of len n)

Sol to problem Sol to problem
instance of size n instance of size n-1, n-2, ... 1

rn = max (p[1]+rn-1, p[2]*+rm-2, P[3]+rn-3,-.., p[n-1]+r41, p[n])
« Arecurrence relation (recursive formula)

« => Dynamic Programming: Build an optimal solution
to the problem from solutions to subproblems

* We solve a range of sub-problems as needed

26

Optimal substructure in Max. Subarray

* Optimal substructure: Optimal solution to a

problem of size n incorporates optimal

solution to

problem of smaller size (1, 2, 3, ... n-1).

« Max. Subarray Problem:
: 1 2 e 4

5 6 7 8 9:

ooooooooooooooooooooo

Max. Subarray Ending at position i
is the either the max. subarray ending at pos i-1
extended to pos i; or just made up of A[i]

 Max Subarray = max (MSE(1), MSE(2), ...MSE(n))

27

Overlapping Subproblems

* space of subproblems must be “small”

 total number of distinct subproblems is a polynomial in
input size (n)

* arecursive algorithm revisits same problem
repeatedly, i.e., optimization problem has
overlapping subproblems.

« DP algorithms take advantage of this property

* solve each subproblem once, store solutions in a table

« Look up table for sol. to repeated subproblem using
constant time per lookup.

* In contrast: divide-and-conquer solves new
subproblems at each step of recursion.

28

Longest Increasing Subsequence

Input: a sequence of numbers given by an array a

Output: a longest subsequence (a subset of the
numbers taken in order) that is increasing
(ascending order)

Example, given a sequence
e 5 2,8 6, 3, 6, 9, 7

 There are many increasing subsequence: 5, 8, 9;
or2,9:or8

* The longest increasing subsequence is:
2,3,6,9 (lengthis 4)

29

LIS as a DAG

* Find longest increasing subsequence of a
sequence of numbers given by an array a

5 2,8 6,3, 6, 9 7

Observation:

 If we add directed edge from smaller number to larger one, we get
a DAG.

« Apath (such as 2,6,7) connects nodes in increasing order
« LIS corresponds to longest path in the graph. 30

Graph Traversal for LIS

* Find longest increasing subsequence of a
sequence of numbers given by an array a

5 2,8 6,3, 6, 9 7

Observation:
LIS corresponds to longest path in the graph.
« Can we use graph traversal algorithms here?
 BFS or DFS?
* Running time

31

Dynamic Programming Sol: LIS

* Find Longest Increasing Subsequence of a

sequence of numbers given by an array a
1 2 3 4 5 6 7 8

Let L(n) be the length of LIS ending at n-th number
L(1) =1, LIS ending at pos 1is 5
L(2) =1, LIS ending at pos 2 is 2
L(7)=// how to relate to L(1), ...L(6)?
« Consider LIS ending at a[7] (i.e., 9). What's the number before 97?
.79

32

Dynamic Programming Sol: LIS

« Given a sequence of numbers given by an array a

Let L(n) be length of LIS ending at n-th number
Consider all increasing subsequence ending at a[7] (i.e., 9).

¢ What's the number before 97

» |t can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers
pointing to 9)

« |If the number before 9 is 3 (a[5]), what's max. length of this
seq? L(5)+1 where theseqis....3,9

LIS endi t 5
ending at pos 33

Dynamic Programming Sol: LIS

« Given a sequence of numbers given by an array a

Let L(n) be length of LIS ending at n-th number
Consider all increasing subsequence ending at a[7] (i.e., 9).

® |t can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers
pointing to 9)

e L(7)=max(1, L(6)+1, L(5)+1, L(4)+1, L(3)+1, L(2)+1, L(1)+1)

. L(8)=" y

Dynamic Programming Sol: LIS

« Given a sequence of numbers given by an array a

Let L(n) be length of LIS ending at n-th number.
Recurrence relation:

L(j) = 1+ max{L(i) : (i,j) € E}

Note that the i's in RHS is always smaller than the |
« How to implement? Running time?

« LIS of sequence = Max (L(i), 1<=i<=n) // the longest
among all 35

Next, two-dimensional subproblem space

l.e., expect to use two-dimensional table

36

Longest Common Subseq.

« Given two sequences
X = (Xqy Xgy «eny X))

Y =Yy, Yo oo Vi)

{i{nd a maximum length common subsequence (LCS) of X and

e Lg.:
X = <A, B, C, B, D, A, B>

« Subsequence of X:

— Asubset of elements in the sequence taken in order but not necessarily
consecutive

(A, B, D), (B, C, D, B), etc

37

Example

=(A,B,C,B,D,A,BY X=(AB,C,B,D,A, B

(BD,A,\B,I ///

A) Y = (B, D;C, A, B/A)

- (B, C,B,A)and (B, D, A, B) are longest common

subsequences of Xand Y (length = 4)

« BCBA=LCS(X,Y): functional notation, but is it not a function

- (B, C, A), howeverisnota LCS of Xand Y

Brute-Force Solution

Check every subsequence of X[7 .. m]/to see ifitis
also a subsequence of Y/[7 .. n].

There are 2™ subsequences of X to check
Each subsequence takes O(n) time to check

— scan Y for first letter, from there scan for second,

and so on
Worst-case running time: O(n2m)

— Exponential time too slow

Towards a better algorithm

Simplification:
1. Look at length of a longest-common subsequence
2. Extend algorithm to find the LCS itself later

Notation:
— Denote length of a sequence s by |s|

— Given a sequence X = (X, X,, ..., X.,) we define the i-th prefix
of Xas (fori=0,1,2, ..., m)
Xi = (Xq, Xoy «eny X;)
— Define:
cli, j1 = LCS (X, Y;) = [LCS(X[1..i], Y[1..]]I:
the length of a LCS of sequences X; = (x;, X,, ..., x) and Y, =
Y, You -0 ¥

— |LCS(X,Y)| = c[m,n] //this is the problem we want to solve
40

Find Optimal Substructure

« Given a sequence X = (X;, X5, .oy X0, Y = (Vs Yor ooy Yy
* To find LCS (X,Y) is to find c[m,n]

cfi, jl = LCS (X, Y)) |
//length LCS of i-th prefix of X and j-th prefix of Y
Il X[1..i], Y[1..]]

« How to solve cf[i,j] using sol. to smaller problems?

« what's the smallest (base) case that we can answer right
away?
« How does c]i,j] relate to cfi-1,j-1], c[i,j-1] or c[i-1,j]?

41

Recursive Formulation

Base case: c[i,j] =0 ifi=0orj=0
LCS of an empty sequence, and any sequence is empty
General case:

cli-1, j-1] + 1 if X[i]= YI[j]
cli, J] = {

max(c[i, j-1], c[i-1, j]) otherwise (i.e., if X[i] # Y[j])

X: 1 2 i m

Y. 2 J 4:omp§re X[i], Y[

Recursive Solution. Case 1

Case 1: X][i] ==Y]j]
e.q.: X4={(A, B, D,
Y3=(Z, B

* Choice: include one element into common sequence (E)
and solve resulting subproblem

c[4,3]=c[4-1,3-1]+ 1
LCS of X3= (A, B, D)and Y2 =(Z, B)
— Append X[i] = Y[]] to the LCS of X, and Y|,
— Must find a LCS of X ;and Y,

Recursive Solution. Case 2
Case 2: X]i] = Y][j]

eq: X4={(A, B, D, G) Either the G or the D
is not in the LCS
Y,=(Z, B, D) (they cannot be both in LCS)

cli,j]= max{c[i-1.,]l], cli.]-1] }

If we ignore last element in Xi If we ignore last element in Yj
* Must solve two problems
- findaLCSof X, ;andY: X =(A,B,D) andY,=(Z, B, D)
- findaLCS of X; and Y, : X;=(A,B,D,G)and Y, =(Z, B)

Recursive algorithm for LCS

// X, Y are sequences, i, | integers
//return length of LCS of X[1...i], Y[1...]]

LCS(X, Y, i, j)
if i==0 orj==
return O;
if X[i] ==Y[j]// if last element match
then
c[i, j] <LCS(X, Y, i-1, j-1) + 1
else

cli, j] «—max{LCS(X, Y, i-1, j),
LCS(X, Y, i, j-1)}

Optimal substructure &
Overlapping Subproblems

A recursive solution contains a “small” number of distinct
subproblems repeated many times.

* e.g., C[5,5] depends on C[4,4], C[4,5], C[5,4]
« Exercise: Draw there subproblem dependence graph
e each node is a subproblem

« directed edge represents “calling”, “uses solution
of” relation

« Small number of distinct subproblems:

 total number of distinct LCS subproblems for two
strings of lengths m and nis mn.

46

Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

LCS(X, Y, i, j)
if c[i, j] = NIL // LCS(i,j) has not been solved yet
then if x[i] = y][j]
then cfi,] —LCS(x, y, i-1,}-1) +1 | oame as
else cli, j] «—max{LCS(x, vy, i-1,),
LCS(x, v, i, j—1)}

Initialization: base case
c[i,j] = 0if i=0, or j=0

/IFill table row by row
Il from left to right
for (int i=1; i<=m;i++)
for (int j=1;j<=n;j++)
update cfi,j]

return c[m, n]

Running time = O(mn)

Bottom-Up

0 X
1 B
2 D
3 C
4 A
5 B
6 A

Y

A

3 4 5 6 7
B C B D A B

C[2,3] C[:4]

C[3,3]
C[3,4]

C[3,4]= length of LCS (X3, Y4)
= Length of LCS (BDC, ABCB)

i-th row, 4-th column element

Dynamic-Programming Algorithm

Reconstruct LCS
tracing backward:

how do we get value
of C[i,j] from? (either
C[i-1,j-1]+1, C[i-1,]],
C[Iv 1-1)

as red arrow
Indicates...

Output Output Output Output
B C B A

Matrix

Matrix: a 2D (rectangular) array of numbers, symbols, or
expressions, arranged in rows and columns.

e.g., a 2 x 3 matrix (there are two rows and three columns)

[1 9 -—-13
20 5 —6 |
Each element of a matrix is denoted by a variable with two

subscripts, az1 element at second row and first column of a
matrix A.

an m x n matrix A: A

L Am1 AQm2 *** Qmn _

50

Matrix Multiplication

Dimension of A, B, and Ax B?

Matrix Multiplication:
Matrix A Matrix B Product
[1 4 6 1°] [1 4 6 [93 a2 92]
2 7 5 3|12 7 5 \|*=
s 0 31 70 60 102
13 1 o)

€ raresvioee (e

AB|;; = A;1B1j + Ai2Bayj+ -+ AinBnj = Z A, B, ;,
r=1

MATRIX-MULTIPLY (4, B) Total (scalar) multiplication: 4x2x3=24

1 if A.columns # B.rows

2 error “incompatible dimensions”

3 else let C be a new A.rows x B.columns matrix

4 fori = 1to A.rows

5 for j = 1 to B.columns

6 Cij = 0

7 for kK = 1 to A.columns

8 cij = ¢jj +ajx-by; Total (scalar) multiplication: n2xnixns
9 return C

51

Multiplying a chain of Matrix

Given a sequence/chain of matrices, e.qg., A,, A,, A, there are
different ways to calculate A A A,

1. (A1A2)A3)

2. (A1(A2A3))

Dimension of A1: 10 x 100
A2: 100 x 5
A3z 5 x 50

all yield the same result

But not same efficiency

52

Matrix Chain Multiplication

Given a chain <A1, A2, ... An> of matrices, where matrix Aj
has dimension p;.1x p;, find optimal fully parenthesize product
A1A2...An that minimizes number of scalar multiplications.

Chain of matrices <A, A,, A,, A>: five distinct ways

A1:p1xp2 A2 p2xps As:p3Xps A4 paX ps

(A 1 (A2 (A3A4))) # of multiplication: papaps+ p2psps+
(A1((A243)A4)) T
((A142)(A4344))

((Al(AzAB))A4) Find the one with minimal multiplications?
(((A142)A3)Aq)

53

Matrix Chain Multiplication

« Given a chain <A1, A2, ... An> of matrices, where matrix A
has dimension p;_{x p;, find optimal fully parenthesize product
A1A2...An that minimizes number of scalar multiplications.

* Let mJi, j] be the minimal # of scalar multiplications needed to
calculate AlAi+1...A; (m[1...n]) is what we want to calculate)

* Recurrence relation: how does m([i...j] relate to smaller
problem

» First decision: pick k (can be i, i+1, ...j-1) where to divide AiAi+1...A
into two groups: (Ai...Ak)(Ak+1...A))

* (Ai...Ax) dimension is pi-1 X Pk, (Ak+1...Aj) dimension is pk X p;

o 0 ifi =j,
mli, j] = min {mli,k] +mlk + 1, j] + picpep;} ifi <.
1=K<)

54

Summary

+ Keys to DP
* Optimal Substructure
« overlapping subproblems

* Define the subproblem: r(n), MSE(i), LCS(i,j) LCS
of prefixes ...

* Write recurrence relation for subproblem: i.e.,
how to calculate solution to a problem using sol.
to smaller subproblems

* Implementation:
* memoization (table+recursion)

* bottom-up table based (smaller problems first)
* Insights and understanding comes from practice! .,

