

Rod Cutting Problem

- A company buys long steel rods (of length n), and cuts them into shorter one to sell
- integral length only
- cutting is free
- rods of diff lengths sold for diff. price, e.g.,

$$
\begin{array}{l|llllcccccc}
\text { length } i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \text { price } p_{i} & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 30
\end{array}
$$

- Best way to cut the rods?
- n=4: no cutting: \$9, 1 and 3: $1+8=\$ 9$, 2 and 2 : $5+5=\$ 10$
- $\mathrm{n}=5$: ?

Rod Cutting Problem Formulation

- // return r n: max. revenue
- int Cut_Rod (int p[1...n], int n)
- Divide-and-conquer?
- how to divide it into smaller one?
- we don't know we want to cut in half...

Rod Cutting Problem Formulation

- Input:
- a rod of length n
- a table of prices $p[1 \ldots n]$ where $p[i]$ is price for rod of length i
- Output
- determine maximum revenue r_{n} obtained by cutting up the rod and selling all pieces
- Analysis solution space (how many possibilities?)
- how many ways to write n as sum of positive integers?
- $4=4,4=1+3,4=2+2$
- \# of ways to cut n : $e^{\pi \sqrt{2 n / 3}} / 4 n \sqrt{3}$.

Rod Cutting Problem

- // return r_{n} : max. revenue for rod of length n
- int Cut_Rod (int n, int p[1...n])

$$
\begin{array}{l|llllcccccc}
l \text { length } i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \text { price } p_{i} & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 30
\end{array}
$$

- Start from small
- $n=1, r_{1}=1 / / n o$ possible cutting
- $n=2, r_{2}=5 / /$ no cutting (if cut, revenue is 2)
- $n=3, r_{3}=8 / / n o$ cutting
- $r_{4}=9$ (max. of $\left.p[4], p[1]+r_{3}, p[2]+r_{3}, p[3]+r_{1}\right)$
- $r_{5}=\max \left(p[5], p[1]+r_{4}, p[2]+r_{2}, p[3]+r_{2}, p[4]+r_{1}\right)$
- .

Optimal substructure

- // return r_{n} : max. revenue for rod size n
- int Cut_Rod (int n, int p[1...n])

$$
\begin{array}{l|llllcccccc}
\text { length } i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \text { price } p_{i} & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 30
\end{array}
$$

- $r_{n}=\max \left(p[n], p[1]+r_{n-1}, p[2]+r_{n-2}, \ldots, p[n-1]+r_{1}\right)$
- Optimal substructure: Optimal solution to a problem of size n incorporates optimal solutions to problems of smaller size (1, 2, 3, $\ldots n-1$).

Rod Cutting Problem

- // return r_{n} : max. revenue for rod size n
- int Cut_Rod (int n, int p[1...n])

$$
\begin{array}{l|llllcccccc}
\text { length } i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \text { price } p_{i} & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 30
\end{array}
$$

- Given a rod of length n, consider first rod to cut out
- if we don't cut it at all, max. revenue is $p[n]$
- if first rod to cut is1: max. revenue is $p[1]+r_{n-1}$
- if first rod to cut out is 2 : max. revenue is $p[2]+r_{n-2}$,
- max. revenue is given by maximum among all the above options
- $r_{n}=\max \left(p[n], p[1]+r_{n-1}, p[2]+r_{n-2}, \ldots, p[n-1]+r_{1}\right)$

Rod Cutting Problem

- // return r n: max. revenue for rod size n
- int Cut_Rod (int $\mathrm{p}[1 \ldots \mathrm{n}]$, int n)

$$
\begin{array}{l|llllcccccc}
\text { length } i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \text { price } p_{i} & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 30
\end{array}
$$

- $r_{n}=\max \left(p[n], p[1]+r_{n-1}, p[2]+r_{n-2}, \ldots, p[n-1]+r_{1}\right)$

Cut-Rod (p, n)
1 if $n=0$
2 return 0
$3 q=-\infty$
4 for $i=1$ to n
6 return q

Recursive Rod Cutting

Cut-Rod (p, n)	Running time $\mathrm{T}(\mathrm{n})$
1	if $n==0$
2	return 0
3	$q=-\infty$
4	for $i=1$ to $n \quad$ Closed formula: $\mathrm{T}(\mathrm{n})=2^{\mathrm{n}}$
5	$q=\max (q, p[i]+\operatorname{Cut}-\operatorname{Rod}(p, n-i))$
6	return q

- Avoid recomputing subproblems again and again by storing subproblems solutions in memory/table (hence "programming")
- trade-off between space and time
- Overlapping of subproblems

Subproblems Graph

\qquad

Dynamic Programming

- Avoid recomputing subproblems again and again by storing subproblems solutions in memory/ table (hence "programming")
- trade-off between space and time
- Two-way to organize
- top-down with memoization
- Before recursive function call, check if subproblem has been solved before
- After recursive function call, store result in table
- bottom-up method
- Iteratively solve smaller problems first, move the way up to larger problems

Memoized Cut-Rod

```
Memoized-Cut-Rod \((p, n)\)
    let \(r[0 \ldots n]\) be a new array // stores solutions to all problems
    for \(i=0\) to \(n\)
        \(r[i]=-\infty \quad / /\) initialize to an impossible negative value
    return MEMOIZED-CuT-ROD-AUX \((p, n, r)\)
MEMOIZED-CUT-ROD-AUX \((p, n, r)\) // A recursive function
    if \(r[n] \geq 0 \quad\) // If problem of given size \((n)\) has been
        return \(r[n]\) solved before, just return the stored result
    if \(n=0\)
        \(q=0\)
    else \(q=-\infty\)
            for \(i=1\) to \(n\)
                \(q=\max (q, p[i]+\operatorname{MEMOIZED}-\operatorname{CuT}-\operatorname{Rod}-\operatorname{AUX}(p, n-i, r))\)
    \(r[n]=q\)
    return \(q\)
```


Memoized Cut-Rod: running time

```
MEMOIZED-CUT-ROD ( }p,n
1 let r[0 . n] be a new array // stores solutions to all problems
for i=0 to n
            r[i]=-\infty
                // initialize to an impossible negative value
4return Memoized-CuT-Rod-AUX ( }p,n,r\mathrm{ )
MEMOIZED-CUT-ROD-AUX ( }p,n,r)\quad// A recursive functio
    if r[n]\geq0 // If problem of given size (n) has been
        return r[n] solved before, just return the stored result
    if }n==
        q=0
    else q=-\infty
        for }i=1\mathrm{ to }
        |l same as before
    q}=\mathrm{ max( }q,p[i]+\operatorname{MEMOIZED-CuT-Rod-AUX ( }p,n-i,r)
    r[n]=q
    return}
```


Bottom-up Cut-Rod

BотTOM-UP-CUT-ROD (p, n)
1 let $r[0 \ldots n]$ be a new array $/ /$ stores solutions to all problems
$r[0]=0$
for $j=1$ to n
$q=-\infty$
for $i=1$ to j
$q=\max (q, p[i]+r[j-i]) \quad$ solution to smaller subproblems
$r[j]=q$
return $r[n]$

Running time: $1+2+3+. .+n-1=0\left(n^{2}\right)$

Bottom-up Cut-Rod (2)

Вотtom-Up-Cut-Rod (p, n)

```
let \(r[0 \ldots n]\) be a new array 1 let \(r[0 \ldots n]\) and \(s[0 \ldots n]\) be new arrays
    \(r[0]=0\)
    for \(j=1\) to \(n\)
            \(q=-\infty\)
            for \(i=1\) to \(j \quad\) if \(q<p[i]+r[j-i]\)
            \(q=\max (q, p[i]+r[j-i]) \quad \begin{aligned} & q=p[j]=i\end{aligned}\)
            \(r[j]=q\)
return \(r[n]\)
```


What if we want to know who to achieve r[n]?

i.e., how to cut?
i.e., $n=n _1+n _2+\ldots n _k$, such that $p\left[n _1\right]+p\left[n _2\right]+\ldots+p\left[n _k\right]=r_{n}$

Recap

- We analyze rod cutting problem
- Optimal way to cut a rod of size n is found by
- 1) comparing optimal revenues achievable after cutting out the first rod of varying len,
- This relates solution to larger problem to solutions to subproblems
- 2) choose the one yield largest revenue

maximum (contiguous) subarray

- Problem: find the contiguous subarray within an array (containing at least one number) which has largest sum (midterm lab)
- If given the array $[-2,1,-3,4,-1,2,1,-5,4]$,
- contiguous subarray $[4,-1,2,1]$ has largest sum $=6$
- Solution to midterm lab
- brute-force: n^{2} or n^{3}
- Divide-and-conquer: $T(n)=2 T(n / 2)+O(n), T(n)=n l o g n$
- Dynamic programming?

Analyze optimal solution

- Problem: find contiguous subarray with largest sum

A

Index

- MSE(k), max. subarray ending at pos k, among all subarray ending at k (A[i...k] where $\mathrm{i}<=\mathrm{k}$), the one with largest sum
- MSE(1), max. subarray ending at pos 1 , is $\mathrm{A}[1 . .1]$, sum is -2
- MSE(2), max. subarray ending at pos 2 , is A[2..2], sum is 1
- MSE(3) is $A[2 . .3]$, sum is -2
- MSE(4)?

Analyze optimal solution

- Problem: find contiguous subarray with largest sum
- Sample Input: [-2,1,-3,4,-1,2,1,-5,4] (array of size n=9)
- How does solution to this problem relates to smaller subproblem?
- If we divide-up array (as in midterm)
- [-2,1,-3,4,-1,2,1,-5,4] //find MaxSub in this array

$$
[-2,1,-3,4,-1] \quad[2,1,-5,4]
$$

still need to consider subarray that spans both halves
This does not lead to a dynamic programming sol.

- Need a different way to define smaller subproblems!

Analyze optimal solution

- A
- Index

- MSE(k) and optimal substructure
- MSE(3): A[2..3], sum is -2 (red box)
- MSE(4): two options to choose
- (1) either grow MSE(3) to include pos 4 How a problem's optimal
- subarray is then $\mathrm{A}[2 . .4]$, sum is solution can be derived from $\operatorname{MSE}(3)+A[4]=-2+A[4]=2 \quad$ problem
- (2) or start afresh from pos 4
- subarray is then $A[4 \ldots 4]$, sum is $A[4]=4$ (better)
- Choose the one with larger sum, i.e.,
- MSE(4) $=\max (A[4], \operatorname{MSE}(3)+A[4])$

Analyze optimal solution

- A
- Index

- $\quad \begin{array}{r}\text { MSE(4) }=4 \text {, array is } A[4 \ldots 4]\end{array}$
- MSE(k) and optimal substructure
- Max. subarray ending at k is the larger between A[k...k] and Max. subarray ending at $k-1$ extended to include $A[k]$

$$
\operatorname{MSE}(k)=\max (A[k], \operatorname{MSE}(k-1)+A[k])
$$

- MSE(5)=
, subarray is
- MSE(6)
- MSE(7)
- MSE(8)
- MSE(9)

Analyze optimal solution

\section*{- A
 - Index
 | -2 | 1 | -3 | 4 | -1 | 2 | 1 | -5 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| | 2 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |}

- Once we calculate MSE(1) ... MSE(9)
- MSE(1)=-2, the subarray is A[1..1]
- $\operatorname{MSE}(2)=1$, the subarray is $A[2 . .2]$
- $\operatorname{MSE}(3)=-2$, the subarray is $A[2.3]$
- MSE(4)=4, the subarray is A[4...4]
- ... MSE(7)=6, the subarray is $\mathrm{A}[4 \ldots 7]$
- $\operatorname{MSE}(9)=4$, the subarray is $\mathrm{A}[9 \ldots 9]$
- What's the maximum subarray of A ?
- well, it either ends at 1 , or ends at $2, \ldots$, or ends at 9
- Whichever yields the largest sum!

Idea to Pseudocode

Running time Analysis

```
int MaxSubArray (int A[1...n], int & start,
        int & end)
    // Use array MSE to store the MSE(i)
    MSE[1]=A[1];
    max_MSE = MSE[1];
    for (int i=2;i<=n;i++)
        MSE[i] = ??
        if (MSE[i] > max_MSE) {
            max_MSE = MSE[i];
            end = i;
        }
    return max_MSE;
```

It's easy to see that running time is $\mathrm{O}(\mathrm{n})$

- a loop that iterates for n -1 times
Recall other solutions:
- brute-force: n^{2} or n^{3}
- Divide-and-conquer: nlogn
Dynamic programming wins!

What is DP? When to use?

- We have seen several optimization problems
- brute force solution
- divide and conquer
- dynamic programming
- To what kinds of problem is DP applicable?
- Optimal substructure: Optimal solution to a problem of size n incorporates optimal solution to problem of smaller size (1, 2, 3, $\ldots \mathrm{n}-1$).
- Overlapping subproblems: small subproblem space and common subproblems

Optimal substructure

- Optimal substructure: Optimal solution to a problem of size n incorporates optimal solution to problem of smaller size (1, 2, 3, $\ldots n-1$).
- Rod cutting: find r_{n} (max. revenue for rod of len n) $\begin{gathered}\text { Sol to problem } \\ \text { instance of size } n \\ r_{n}\end{gathered}=\max \left(p[1]+r_{n-1}, p[2]+r_{n-2}, p[3]+r_{n-3}, \ldots, p[n-1]+r_{1}, p[n]\right)$
- => Dynamic Programming: Build an optimal solution to the problem from solutions to subproblems
- We solve a range of sub-problems as needed

Optimal substructure in Max. Subarray

- Optimal substructure: Optimal solution to a problem of size n incorporates optimal solution to problem of smaller size ($1,2,3, \ldots n-1$).
- Max. Subarray Problem:

- $\operatorname{MSE}(\mathrm{i})=\max (\mathrm{A}[\mathrm{i}], \operatorname{MSE}(\mathrm{i}-1)+\mathrm{A}[\mathrm{i}])$

$$
\begin{aligned}
& \text { Max. Subarray Ending at position } i \\
& \text { is the either the max. subarray ending at pos } \mathrm{i}-1 \\
& \text { extended to pos } \mathrm{i} \text {; or just made up of } \mathrm{A}[\mathrm{i}] \\
& \hline
\end{aligned}
$$

- Max Subarray $=\max (\operatorname{MSE}(1), \operatorname{MSE}(2), \ldots$ MSE(n))

Overlapping Subproblems

- space of subproblems must be "small"
- total number of distinct subproblems is a polynomial in input size (n)
- a recursive algorithm revisits same problem repeatedly, i.e., optimization problem has overlapping subproblems.
- DP algorithms take advantage of this property
- solve each subproblem once, store solutions in a table
- Look up table for sol. to repeated subproblem using constant time per lookup.
- In contrast: divide-and-conquer solves new subproblems at each step of recursion

Longest Increasing Subsequence

- Input: a sequence of numbers given by an array a
- Output: a longest subsequence (a subset of the numbers taken in order) that is increasing (ascending order)
- Example, given a sequence
- $5,2,8,6,3,6,9,7$
- There are many increasing subsequence: $5,8,9$; or 2,9 ; or 8
- The longest increasing subsequence is: $2,3,6,9$ (length is 4)

Graph Traversal for LIS

- Find longest increasing subsequence of a sequence of numbers given by an array a

$$
5,2,8,6,3,6,9,7
$$

Observation:

- LIS corresponds to longest path in the graph.
- Can we use graph traversal algorithms here?
- BFS or DFS?
- Running time

LIS as a DAG

- Find longest increasing subsequence of a sequence of numbers given by an array a

$$
5,2,8,6,3,6,9,7
$$

Observation:

- If we add directed edge from smaller number to larger one, we get a DAG.
- A path (such as $2,6,7$) connects nodes in increasing order
- LIS corresponds to longest path in the graph.

Dynamic Programming Sol: LIS

- Find Longest Increasing Subsequence of a sequence of numbers given by an array a

Let $\mathrm{L}(\mathrm{n})$ be the length of LIS ending at n -th number
$L(1)=1$, LIS ending at pos 1 is 5
$L(2)=1$, LIS ending at pos 2 is 2
$L(7)=/ /$ how to relate to $L(1), \ldots L(6)$?

- Consider LIS ending at a[7] (i.e., 9). What's the number before 9 ?
... ? ,9

Dynamic Programming Sol: LIS

- Given a sequence of numbers given by an array a

Let $\mathrm{L}(\mathrm{n})$ be length of LIS ending at n -th number
Consider all increasing subsequence ending at a[7] (i.e., 9).

- What's the number before 9 ?
- It can be either NULL, or 6 , or 3 , or $6,8,2,5$ (all those numbers pointing to 9)
- If the number before 9 is 3 (a[5]), what's max. length of this seq? $L(5)+1$ where the seq is 3,9

LIS ending at pos 5

Dynamic Programming Sol: LIS

- Given a sequence of numbers given by an array a

Let $\mathrm{L}(\mathrm{n})$ be length of LIS ending at n -th number
Consider all increasing subsequence ending at a[7] (i.e., 9).

- It can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers pointing to 9)
- $L(7)=\max (1, L(6)+1, L(5)+1, L(4)+1, L(3)+1, L(2)+1, L(1)+1)$
- $\mathrm{L}(8)=$?

Dynamic Programming Sol: LIS

- Given a sequence of numbers given by an array a

Let $L(n)$ be length of LIS ending at n-th number.
Recurrence relation:

$$
L(j)=1+\max \{L(i):(i, j) \in E\}
$$

Note that the i's in RHS is always smaller than the j

- How to implement? Running time?
- LIS of sequence $=\operatorname{Max}(\mathrm{L}(\mathrm{i}), 1<=\mathrm{i}<=\mathrm{n})$ // the longest among all

Next, łwo-dimensional subproblem space
i.e., expect to use two-dimensional table

Longest Common Subseq.

- Given two sequences

$$
\begin{aligned}
& X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \\
& Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle
\end{aligned}
$$

find a maximum length common subsequence (LCS) of X and Y

- E.g.:

$$
X=\langle A, B, C, B, D, A, B\rangle
$$

- Subsequence of X :
- A subset of elements in the sequence taken in order but not necessarily consecutive
$\langle A, B, D\rangle,\langle B, C, D, B\rangle$, etc

Brute-Force Solution

- Check every subsequence of $X[1$. . m] to see if it is also a subsequence of $Y[1$.. $n]$.
- There are 2^{m} subsequences of X to check
- Each subsequence takes $O(n)$ time to check
- scan Y for first letter, from there scan for second, and so on
- Worst-case running time: $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{m}}\right)$
- Exponential time too slow
neme

Example

$\langle B, C, B, A\rangle$ and $\langle B, D, A, B\rangle$ are longest common subsequences of X and Y (length $=4$)

- $\mathrm{BCBA}=\mathrm{LCS}(\mathrm{X}, \mathrm{Y})$: functional notation, but is it not a function
- $\langle B, C, A\rangle$, however is not a LCS of X and Y

Towards a better algorithm

Simplification:

1. Look at length of a longest-common subsequence
2. Extend algorithm to find the LCS itself later

Notation:

- Denote length of a sequence s by $|s|$
- Given a sequence $X=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right\rangle$ we define the i-th prefix of X as (for $i=0,1,2, \ldots, m$)
$X_{i}=\left\langle x_{1}, x_{2}, \ldots, x_{i}\right\rangle$
- Define:
$c[i, j]=\left|\operatorname{LCS}\left(X_{i}, Y_{j}\right)=|\operatorname{LCS}(X[1 . . i], Y[1 . . j])|:\right.$
the length of a LCS of sequences $X_{i}=\left\langle x_{1}, x_{2}, \ldots, x_{i}\right\rangle$ and $Y_{j}=$
$\left\langle y_{1}, y_{2}, \ldots, y_{j}\right\rangle$
$-|\operatorname{LCS}(\mathrm{X}, \mathrm{Y})|=\mathrm{c}[\mathrm{m}, \mathrm{n}] / /$ this is the problem we want to solve

Find Optimal Substructure

- Given a sequence $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle, Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$
- To find LCS (X, Y) is to find $c[m, n]$

```
c[i, j] = | LCS ( }\mp@subsup{\textrm{X}}{\textrm{i}}{\mathbf{,},\mp@subsup{Y}{j}{})
    //length LCS of i-th prefix of X and j-th prefix of Y
    // X[1..i], Y[1..j]
```

- How to solve c[i,j] using sol. to smaller problems?
- what's the smallest (base) case that we can answer right away?
- How does $c[i, j]$ relate to $c[i-1, j-1], c[i, j-1]$ or $c[i-1, j]$?

Recursive Solution. Case 1

Case 1: $\mathrm{X}[\mathrm{i}]==\mathrm{Y}[\mathrm{j}]$

$$
\begin{array}{ll}
\text { e.g.: } & \mathrm{X}_{4}=\langle\mathrm{A}, \mathrm{~B}, \mathrm{D}, \mathrm{E}\rangle \\
& \mathrm{Y}_{3}=\langle\mathrm{Z}, \mathrm{~B}, \mathrm{E}\rangle
\end{array}
$$

- Choice: include one element into common sequence (E) and solve resulting subproblem

$$
\begin{gathered}
c[4,3]=\mathrm{c}[4-1,3-1]+1 \\
L C S \text { of } X_{3}=\langle A, B, D\rangle \text { and } Y_{2}=\langle Z, B\rangle
\end{gathered}
$$

- Append $X[i]=Y[j]$ to the LCS of X_{i-1} and Y_{j-1}
- Must find a LCS of X_{i-1} and Y_{j-1}

Recursive Formulation

Base case: c[i, j] = 0 if $\mathrm{i}=0$ or $\mathrm{j}=0$
LCS of an empty sequence, and any sequence is empty

General case:

```
c[i,j]={{llici,j-1]+1 if X[i]=Y[j] 
X: 1 2
i m
Y:
    1 2 j compåre X[i], Y[j]
```


Recursive Solution. Case 2

Case 2: $\mathrm{X}[i] \neq \mathrm{Y}[j]$
e.g.: $\quad \mathrm{X}_{4}=\langle\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{G}\rangle$

Either the G or the D
$Y_{3}=\langle Z, B, D\rangle \quad$ (they cannot be both in LCS)
$c[i, j]=\max \{\underline{c[i-1, j]} \underline{\underline{c}[i, j-1]}\}$
If we ignore last element in Xi
If we ignore last element in Yj

- Must solve two problems
- find a LCS of X_{i-1} and $Y_{j}: X_{i-1}=\langle A, B, D\rangle$ and $Y_{j}=\langle Z, B, D\rangle$
- find a LCS of X_{i} and $Y_{j-1}: X_{i}=\langle A, B, D, G\rangle$ and $Y_{j-1}=\langle Z, B\rangle$

Recursive algorithm for LCS

// X, Y are sequences, i, j integers
//return length of LCS of $\mathrm{X}[1 \ldots \mathrm{i}], \mathrm{Y}[1 \ldots \mathrm{j}]$
LCS(X, Y, i, j)

```
if i==0 or j ==0
    return 0;
if X[i] == Y[ j] // if last element match
then
    c[i, j] \leftarrowLCS(X, Y, i-1, j-1) + 
else
    c[i, j] \leftarrowmax{LCS(X, Y, i-1, j),
        LCS(X, Y, i, j-1)}
```


Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

$\operatorname{LCS}(\mathrm{X}, \mathrm{Y}, \mathrm{i}, \mathrm{j})$

if c[i, j] = NIL // LCS(i,j) has not been solved yet then if $x[i]=y[j]$
then $c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1$
else c[i, j] $\leftarrow \max \{\operatorname{LCS}(x, y, i-1, j)$,
$\operatorname{LCS}(x, y, i, j-1)\}$

Optimal substructure \& Overlapping Subproblems

- A recursive solution contains a "small" number of distinct subproblems repeated many times.
- e.g., $C[5,5]$ depends on $C[4,4], C[4,5], C[5,4]$
- Exercise: Draw there subproblem dependence graph
- each node is a subproblem
- directed edge represents "calling", "uses solution of" relation
- Small number of distinct subproblems:
- total number of distinct LCS subproblems for two strings of lengths m and n is $m n$.

Dynamic-Programming Algorithm

Reconstruct LCS

 tracing backward:how do we get value of $C[i, j]$ from? (either $C[i-1, j-1]+1, C[i-1, j]$,
$\mathrm{C}[\mathrm{i}, \mathrm{j}-1)$
as red arrow indicates...

$\underset{\text { B }}{\text { Output }} \underset{\text { Output }}{\text { Output }} \underset{\text { B }}{\text { Output }}$

Matrix

Matrix: a 2D (rectangular) array of numbers, symbols, or expressions, arranged in rows and columns.
e.g., a 2×3 matrix (there are two rows and three columns)

$$
\left[\begin{array}{ccc}
1 & 9 & -13 \\
20 & 5 & -6
\end{array}\right] .
$$

Each element of a matrix is denoted by a variable with two subscripts, $a_{2,1}$ element at second row and first column of a matrix A.
an $m \times n$ matrix $A: \quad \mathbf{A}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$

Multiplying a chain of Matrix

Given a sequence/chain of matrices, e.g., $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ there are different ways to calculate $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$

1. $\left.\left(A_{1} A_{2}\right) A_{3}\right)$
2. $\left(A_{1}\left(A_{2} A_{3}\right)\right)$

Dimension of $A_{1}: 10 \times 100$

$$
\begin{aligned}
& A_{2}: 100 \times 5 \\
& A_{3}: 5 \times 50
\end{aligned}
$$

all yield the same result
But not same efficiency

Matrix Chain Multiplication

Given a chain $<A_{1}, A_{2}, \ldots A_{n}>$ of matrices, where matrix A_{i} has dimension $p_{i-1} \times p_{i}$, find optimal fully parenthesize product A1A2...An that minimizes number of scalar multiplications.

Chain of matrices $<A_{1}, A_{2}, A_{3}, A_{4}>$: five distinct ways
$\mathbf{A}_{1}: p_{1} \times p_{2}$
$\mathbf{A}_{\mathbf{2}}: \mathrm{p}_{2} \times \mathrm{p}_{3}$ $A_{3}: p_{3} \times p_{4}$
$A_{4}: p_{4} \times p_{5}$
$\left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)$
$\left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right)$
$\left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right)$
$\left(\left(A_{1}\left(A_{2} A_{3}\right)\right) A_{4}\right)$ F of multiplication: $p_{3} p_{4} p_{4} p_{5}+\mathrm{p}_{2} \mathrm{p}_{3} \mathrm{p}_{5}+$
$\left(\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)$

Summary

- Keys to DP
- Optimal Substructure
- overlapping subproblems
- Define the subproblem: r(n), MSE(i), LCS(i,j) LCS of prefixes ...
- Write recurrence relation for subproblem: i.e., how to calculate solution to a problem using sol. to smaller subproblems
- Implementation:
- memoization (table+recursion)
- bottom-up table based (smaller problems first)
- Insights and understanding comes from practice! ${ }_{55}$

Matrix Chain Multiplication

- Given a chain <A1, $A_{2}, \ldots A_{n}>$ of matrices, where matrix A_{i} has dimension $\mathrm{p}_{\mathrm{i}-1} \mathrm{x} \mathrm{p}_{\mathrm{i}}$, find optimal fully parenthesize product A1A2...An that minimizes number of scalar multiplications.
- Let m[i, j] be the minimal \# of scalar multiplications needed to calculate $A_{i} A_{i+1} \ldots A_{j}(m[1 \ldots n])$ is what we want to calculate)
- Recurrence relation: how does m[i...j] relate to smaller problem
- First decision: pick k (can be $\mathrm{i}, \mathrm{i}+1, \ldots \mathrm{j}-1$) where to divide $\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}+1} \ldots \mathrm{~A}_{\mathrm{j}}$ into two groups: $\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)$
- $\left(A_{i} \ldots A_{k}\right)$ dimension is $p_{i-1} \times p_{k},\left(A_{k+1} \ldots A_{j}\right)$ dimension is $p_{k} \times p_{j}$

$$
m[i, j]= \begin{cases}0 & \text { if } i=j, \\ \min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j .\end{cases}
$$

