
Dynamic Programming

CISC5835, Algorithms for Big Data

CIS, Fordham Univ.

Instructor: X. Zhang

Rod Cutting Problem

• A company buys long steel rods (of length n),
and cuts them into shorter one to sell
• integral length only
• cutting is free
• rods of diff lengths sold for diff. price, e.g.,

• Best way to cut the rods?
• n=4: no cutting: $9, 1 and 3: 1+8=$9, 2 and 2:

5+5=$10
• n=5: ?

2

Rod Cutting Problem Formulation

• Input:
• a rod of length n
• a table of prices p[1…n] where p[i] is price for rod of

length i
• Output

• determine maximum revenue rn obtained by cutting up
the rod and selling all pieces

• Analysis solution space (how many possibilities?)
• how many ways to write n as sum of positive

integers?
• 4=4, 4=1+3, 4=2+2

• # of ways to cut n:
3

Rod Cutting Problem Formulation

• // return r_n: max. revenue
• int Cut_Rod (int p[1…n], int n)

• Divide-and-conquer?
• how to divide it into smaller one?
• we don’t know we want to cut in half…

4

Rod Cutting Problem

• // return rn: max. revenue for rod of length n
• int Cut_Rod (int n, int p[1…n])

• Start from small
• n=1, r1=1 //no possible cutting
• n=2, r2=5 // no cutting (if cut, revenue is 2)
• n=3, r3=8 //no cutting
• r4=9 (max. of p[4], p[1]+r3, p[2]+r3, p[3]+r1)
• r5 = max (p[5], p[1]+r4, p[2]+r2, p[3]+r2, p[4]+r1)
• …

5

Rod Cutting Problem

• // return rn: max. revenue for rod size n
• int Cut_Rod (int n, int p[1…n])

• Given a rod of length n, consider first rod to cut out
• if we don’t cut it at all, max. revenue is p[n]
• if first rod to cut is1: max. revenue is p[1]+rn-1

• if first rod to cut out is 2: max. revenue is p[2]+rn-2, …

• max. revenue is given by maximum among all the
above options

• rn = max (p[n], p[1]+rn-1, p[2]+rn-2, …, p[n-1]+r1)

6

Optimal substructure

• // return rn: max. revenue for rod size n
• int Cut_Rod (int n, int p[1…n])

• rn = max (p[n], p[1]+rn-1, p[2]+rn-2, …, p[n-1]+r1)

• Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solutions
to problems of smaller size (1, 2, 3, … n-1).

7

Rod Cutting Problem

• // return r_n: max. revenue for rod size n
• int Cut_Rod (int p[1…n], int n)

• rn = max (p[n], p[1]+rn-1, p[2]+rn-2, …, p[n-1]+r1)

8

• // return r_n: max. revenue for rod size n
• int Cut_Rod (int p[1…n], int n)

Recursive Rod Cutting

9

Running time T(n)

Closed formula: T(n)=2n

Recursive calling tree: n=4

Subproblems Graph

10

• Avoid recomputing subproblems
again and again by storing
subproblems solutions in
memory/table (hence
“programming”)
• trade-off between space and

time
• Overlapping of subproblems

• Avoid recomputing subproblems again and again
by storing subproblems solutions in memory/
table (hence “programming”)
• trade-off between space and time

• Two-way to organize
• top-down with memoization

• Before recursive function call, check if subproblem
has been solved before

• After recursive function call, store result in table
• bottom-up method

• Iteratively solve smaller problems first, move
the way up to larger problems

Dynamic Programming

11

Memoized Cut-Rod

12

// stores solutions to all problems

// initialize to an impossible negative value

// A recursive function

// If problem of given size (n) has been
solved before, just return the stored result

// same as before…

Memoized Cut-Rod: running time

13

// stores solutions to all problems

// initialize to an impossible negative value

// A recursive function

// If problem of given size (n) has been
solved before, just return the stored result

// same as before…

Bottom-up Cut-Rod

14

// stores solutions to all problems

// Solve subproblem j, using
solution to smaller subproblems

Running time: 1+2+3+..+n-1=O(n2)

Bottom-up Cut-Rod (2)

15

// stores solutions to all problems

What if we want to know who to achieve r[n]?
i.e., how to cut?
i.e., n=n_1+n_2+…n_k, such that p[n_1]+p[n_2]+…+p[n_k]=rn

Recap

• We analyze rod cutting problem
• Optimal way to cut a rod of size n is found by

• 1) comparing optimal revenues achievable
after cutting out the first rod of varying len,
• This relates solution to larger problem to

solutions to subproblems

• 2) choose the one yield largest revenue

16

maximum (contiguous) subarray

• Problem: find the contiguous subarray within an
array (containing at least one number) which has
largest sum (midterm lab)
• If given the array [-2,1,-3,4,-1,2,1,-5,4],
• contiguous subarray [4,-1,2,1] has largest sum = 6

• Solution to midterm lab
• brute-force: n2 or n3

• Divide-and-conquer: T(n)=2 T(n/2)+O(n), T(n)=nlogn
• Dynamic programming?

17

Analyze optimal solution

• Problem: find contiguous subarray with largest sum
• Sample Input: [-2,1,-3,4,-1,2,1,-5,4] (array of size n=9)
• How does solution to this problem relates to smaller

subproblem?
• If we divide-up array (as in midterm)
• [-2,1,-3,4,-1,2,1,-5,4] //find MaxSub in this array

[-2,1,-3,4,-1] [2,1,-5,4]
still need to consider subarray that spans both halves
This does not lead to a dynamic programming sol.

• Need a different way to define smaller subproblems!

18

• Problem: find contiguous subarray with largest sum

A

Index

• MSE(k), max. subarray ending at pos k, among all
subarray ending at k (A[i…k] where i<=k), the one with
largest sum
• MSE(1), max. subarray ending at pos 1, is A[1..1], sum is -2
• MSE(2), max. subarray ending at pos 2, is A[2..2], sum is 1
• MSE(3) is A[2..3], sum is -2
• MSE(4)?

Analyze optimal solution

19

• A

• Index
• MSE(k) and optimal substructure

• MSE(3): A[2..3], sum is -2 (red box)
• MSE(4): two options to choose

• (1) either grow MSE(3) to include pos 4
• subarray is then A[2..4], sum is

MSE(3)+A[4]=-2+A[4]=2
• (2) or start afresh from pos 4

• subarray is then A[4…4], sum is A[4]=4 (better)
• Choose the one with larger sum, i.e.,

• MSE(4) = max (A[4], MSE(3)+A[4])

Analyze optimal solution

20

How a problem’s optimal
solution can be derived from
optimal solution to smaller
problem

• A

• Index
•
• MSE(k) and optimal substructure

• Max. subarray ending at k is the larger between A[k…k] and
Max. subarray ending at k-1 extended to include A[k]

 MSE(k) = max (A[k], MSE(k-1)+A[k])
• MSE(5)= , subarray is
• MSE(6)
• MSE(7)
• MSE(8)
• MSE(9)

Analyze optimal solution

21

MSE(4)=4, array is A[4…4]

• A
• Index

• Once we calculate MSE(1) … MSE(9)
• MSE(1)=-2, the subarray is A[1..1]
• MSE(2)=1, the subarray is A[2..2]
• MSE(3)=-2, the subarray is A[2..3]
• MSE(4)=4, the subarray is A[4…4]
• … MSE(7)=6, the subarray is A[4…7]
• MSE(9)=4, the subarray is A[9…9]

• What’s the maximum subarray of A?
• well, it either ends at 1, or ends at 2, …, or ends at 9
• Whichever yields the largest sum!

Analyze optimal solution

22

23

• A
• Index

• Calculate MSE(1) … MSE(n)
• MSE(1)= A[1]
• MSE(i) = max (A[i], A[i]+MSE(i-1));

• Return maximum among all MSE(i),
for i=1, 2, …n

Idea to Pseudocode

(int, start,end) MaxSubArray (int A[1…n])
{
 // Use array MSE to store the MSE(i)
 MSE[1]=A[1];
 max_MSE = MSE[1];

 for (int i=2;i<=n;i++)
 {
 MSE[i] = ??

 if (MSE[i] > max_MSE) {
 max_MSE = MSE[i];
 end = i;
 }
 }
 return (max_MSE, start, end)
}

Practice:
1) fill in ??
2) How to find out the starting index of
the max. subarray, i.e., the start parameter?

24

Running time Analysis
int MaxSubArray (int A[1…n], int & start,
 int & end)
{
 // Use array MSE to store the MSE(i)
 MSE[1]=A[1];
 max_MSE = MSE[1];

 for (int i=2;i<=n;i++)
 {
 MSE[i] = ??

 if (MSE[i] > max_MSE) {
 max_MSE = MSE[i];
 end = i;
 }
 }
 return max_MSE;
}

• It’s easy to see that
running time is O(n)
• a loop that iterates

for n-1 times
• Recall other solutions:

• brute-force: n2 or n3

• Divide-and-conquer:
nlogn

• Dynamic programming
wins!

What is DP? When to use?

• We have seen several optimization problems
• brute force solution
• divide and conquer
• dynamic programming

• To what kinds of problem is DP applicable?
• Optimal substructure: Optimal solution to a

problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, … n-1).

• Overlapping subproblems: small subproblem
space and common subproblems

25

Optimal substructure

• Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, … n-1).

• Rod cutting: find rn (max. revenue for rod of len n)

 rn = max (p[1]+rn-1, p[2]+rn-2, p[3]+rn-3,…, p[n-1]+r1, p[n])
• A recurrence relation (recursive formula)

• => Dynamic Programming: Build an optimal solution
to the problem from solutions to subproblems

• We solve a range of sub-problems as needed

26

Sol to problem
instance of size n

Sol to problem
instance of size n-1, n-2, … 1

Optimal substructure in Max. Subarray

• Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, … n-1).
• Max. Subarray Problem:

• MSE(i) = max (A[i], MSE(i-1)+A[i])

• Max Subarray = max (MSE(1), MSE(2), …MSE(n))

27

Max. Subarray Ending at position i
is the either the max. subarray ending at pos i-1
extended to pos i; or just made up of A[i]

Overlapping Subproblems

• space of subproblems must be “small”
• total number of distinct subproblems is a polynomial in

input size (n)
• a recursive algorithm revisits same problem

repeatedly, i.e., optimization problem has
overlapping subproblems.

• DP algorithms take advantage of this property
• solve each subproblem once, store solutions in a table
• Look up table for sol. to repeated subproblem using

constant time per lookup.
• In contrast: divide-and-conquer solves new

subproblems at each step of recursion.

28

Longest Increasing Subsequence

• Input: a sequence of numbers given by an array a
• Output: a longest subsequence (a subset of the

numbers taken in order) that is increasing
(ascending order)

• Example, given a sequence
• 5, 2, 8, 6, 3, 6, 9, 7
• There are many increasing subsequence: 5, 8, 9;

or 2, 9; or 8
• The longest increasing subsequence is:

 2, 3, 6, 9 (length is 4)

29

LIS as a DAG
• Find longest increasing subsequence of a

sequence of numbers given by an array a
 5, 2, 8, 6, 3, 6, 9, 7

 Observation:
• If we add directed edge from smaller number to larger one, we get

a DAG.
• A path (such as 2,6,7) connects nodes in increasing order
• LIS corresponds to longest path in the graph. 30

Graph Traversal for LIS
• Find longest increasing subsequence of a

sequence of numbers given by an array a
 5, 2, 8, 6, 3, 6, 9, 7

 Observation:
• LIS corresponds to longest path in the graph.
• Can we use graph traversal algorithms here?

• BFS or DFS?
• Running time 31

• Find Longest Increasing Subsequence of a
sequence of numbers given by an array a

Let L(n) be the length of LIS ending at n-th number
 L(1) = 1, LIS ending at pos 1 is 5
 L(2) = 1, LIS ending at pos 2 is 2
 L(7)= // how to relate to L(1), …L(6)?
• Consider LIS ending at a[7] (i.e., 9). What’s the number before 9?
 .… ? ,9

Dynamic Programming Sol: LIS

32

1 2 3 4 5 6 7 8

• Given a sequence of numbers given by an array a

Let L(n) be length of LIS ending at n-th number
 Consider all increasing subsequence ending at a[7] (i.e., 9).
• What’s the number before 9?

• It can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers
pointing to 9)

• If the number before 9 is 3 (a[5]), what’s max. length of this
seq? L(5)+1 where the seq is …. 3, 9

Dynamic Programming Sol: LIS

33

1 2 3 4 5 6 7 8

LIS ending at pos 5

• Given a sequence of numbers given by an array a

Let L(n) be length of LIS ending at n-th number
 Consider all increasing subsequence ending at a[7] (i.e., 9).
• It can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers

pointing to 9)
• L(7)=max(1, L(6)+1, L(5)+1, L(4)+1, L(3)+1, L(2)+1, L(1)+1)

• L(8)=?

Dynamic Programming Sol: LIS

34

Pos: 1 2 3 4 5 6 7 8

• Given a sequence of numbers given by an array a

Let L(n) be length of LIS ending at n-th number.
Recurrence relation:

 Note that the i’s in RHS is always smaller than the j
• How to implement? Running time?
• LIS of sequence = Max (L(i), 1<=i<=n) // the longest

among all

Dynamic Programming Sol: LIS

35

Pos: 1 2 3 4 5 6 7 8

Next, two-dimensional subproblem space
i.e., expect to use two-dimensional table

36

Longest Common Subseq.

• Given two sequences
 X = 〈x1, x2, …, xm〉
 Y = 〈y1, y2, …, yn〉
 find a maximum length common subsequence (LCS) of X and

Y
• E.g.:
 X = 〈A, B, C, B, D, A, B〉

• Subsequence of X:
– A subset of elements in the sequence taken in order but not necessarily

consecutive
 〈A, B, D〉, 〈B, C, D, B〉, etc

37

Example

X = 〈A, B, C, B, D, A, B〉 X = 〈A, B, C, B, D, A, B〉

Y = 〈B, D, C, A, B, A〉 Y = 〈B, D, C, A, B, A〉

• 〈B, C, B, A〉 and 〈B, D, A, B〉 are longest common
subsequences of X and Y (length = 4)

• BCBA = LCS(X,Y): functional notation, but is it not a function

• 〈B, C, A〉, however is not a LCS of X and Y

38

Brute-Force Solution
• Check every subsequence of X[1 . . m] to see if it is

also a subsequence of Y[1 .. n].
• There are 2m subsequences of X to check
• Each subsequence takes O(n) time to check

– scan Y for first letter, from there scan for second,

and so on

• Worst-case running time: O(n2m)

– Exponential time too slow

39

Towards a better algorithm
Simplification:

1. Look at length of a longest-common subsequence
2. Extend algorithm to find the LCS itself later

Notation:
– Denote length of a sequence s by |s|
– Given a sequence X = 〈x1, x2, …, xm〉 we define the i-th prefix

of X as (for i = 0, 1, 2, …, m)
 Xi = 〈x1, x2, …, xi〉

– Define:
 c[i, j] = | LCS (Xi, Yj) = |LCS(X[1..i], Y[1..j])|:
 the length of a LCS of sequences Xi = 〈x1, x2, …, xi〉 and Yj =
〈y1, y2, …, yj〉

– |LCS(X,Y)| = c[m,n] //this is the problem we want to solve
40

Find Optimal Substructure
• Given a sequence X = 〈x1, x2, …, xm〉, Y = 〈y1, y2, …, yn〉
• To find LCS (X,Y) is to find c[m,n]

 c[i, j] = | LCS (Xi, Yj) |
 //length LCS of i-th prefix of X and j-th prefix of Y
 // X[1..i], Y[1..j]

• How to solve c[i,j] using sol. to smaller problems?
• what’s the smallest (base) case that we can answer right

away?
• How does c[i,j] relate to c[i-1,j-1], c[i,j-1] or c[i-1,j]?

41

Recursive Formulation

 c[i-1, j-1] + 1 if X[i]= Y[j]
c[i, j] =

 max(c[i, j-1], c[i-1, j]) otherwise (i.e., if X[i] ≠ Y[j])

X: 1 2 i m

Y: 1 2 j n

 …

…
compare X[i], Y[j]

Base case: c[i, j] = 0 if i = 0 or j = 0
 LCS of an empty sequence, and any sequence is empty
General case:

42

Recursive Solution. Case 1

Case 1: X[i] ==Y[j]
e.g.: X4 = 〈A, B, D, E〉

 Y3 = 〈Z, B, E〉

• Choice: include one element into common sequence (E)
and solve resulting subproblem

 LCS of X3 = 〈A, B, D〉 and Y2 = 〈Z, B〉

– Append X[i] = Y[j] to the LCS of Xi-1 and Yj-1

– Must find a LCS of Xi-1 and Yj-1

c[4, 3] = c[4 - 1, 3 - 1] + 1

43

Recursive Solution. Case 2
Case 2: X[i] ≠ Y[j]
e.g.: X4 = 〈A, B, D, G〉

 Y3 = 〈Z, B, D〉

• Must solve two problems

• find a LCS of Xi-1 and Yj: Xi-1 = 〈A, B, D〉 and Yj = 〈Z, B, D〉

• find a LCS of Xi and Yj-1 : Xi = 〈A, B, D, G〉 and Yj-1 = 〈Z, B〉

c[i, j] = max { c[i - 1, j], c[i, j-1] }

44

Either the G or the D
 is not in the LCS

(they cannot be both in LCS)

If we ignore last element in Xi If we ignore last element in Yj

Recursive algorithm for LCS

// X, Y are sequences, i, j integers
//return length of LCS of X[1…i], Y[1…j]
LCS(X, Y, i, j)

if i==0 or j ==0
 return 0;
if X[i] == Y[j] // if last element match
then
 c[i, j] ←LCS(X, Y, i–1, j–1) + 1
else
 c[i, j] ←max{LCS(X, Y, i–1, j),
 LCS(X, Y, i, j–1)}

45

Optimal substructure &
Overlapping Subproblems

• A recursive solution contains a “small” number of distinct
subproblems repeated many times.
• e.g., C[5,5] depends on C[4,4], C[4,5], C[5,4]
• Exercise: Draw there subproblem dependence graph

• each node is a subproblem
• directed edge represents “calling”, “uses solution

of” relation
• Small number of distinct subproblems:

• total number of distinct LCS subproblems for two
strings of lengths m and n is mn.

46

Memoization algorithm
 Memoization: After computing a solution to a

subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

LCS(X, Y, i, j)
 if c[i, j] = NIL // LCS(i,j) has not been solved yet
 then if x[i] = y[j]
 then c[i, j] ←LCS(x, y, i–1, j–1) + 1
 else c[i, j] ←max{LCS(x, y, i–1, j),
 LCS(x, y, i, j–1)}

Same as
before

47

Bottom-Up

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y A B C B D A B
X

B

D

C

A

B

A

Initialization: base case
c[i,j] = 0 if i=0, or j=0

//Fill table row by row
// from left to right
for (int i=1; i<=m;i++)
 for (int j=1;j<=n;j++)
 update c[i,j]

return c[m, n]

Running time = Θ(mn)

48

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6 C[3,4]= length of LCS (X3, Y4)
= Length of LCS (BDC, ABCB)

i-th row, 4-th column element

Dynamic-Programming Algorithm
A B C B D A B

B

D

C
A

B

A

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

1 1 1 2 2 20 0

1 2 2 2 2 20 0

1 2 2 2 3 30 1

2 2 3 3 3 40 1

2 2 3 3 4 40 1

Reconstruct LCS
tracing backward:

how do we get value
of C[i,j] from? (either
C[i-1,j-1]+1, C[i-1,j],
C[i, j-1)

 as red arrow
indicates…

49Output
A

Output
B

Output
C

Output
B

Matrix
Matrix: a 2D (rectangular) array of numbers, symbols, or
expressions, arranged in rows and columns.

 e.g., a 2 × 3 matrix (there are two rows and three columns)

Each element of a matrix is denoted by a variable with two
subscripts, a2,1 element at second row and first column of a
matrix A.

 an m × n matrix A:

50

Matrix Multiplication:

Matrix Multiplication

51

Dimension of A, B, and A x B?

Total (scalar) multiplication: 4x2x3=24

Total (scalar) multiplication: n2xn1xn3

Multiplying a chain of Matrix
Given a sequence/chain of matrices, e.g., A1, A2, A3, there are
different ways to calculate A1A2A3

1. (A1A2)A3)

2. (A1(A2A3))

Dimension of A1: 10 x 100

 A2: 100 x 5

 A3: 5 x 50

all yield the same result

But not same efficiency

52

Matrix Chain Multiplication
Given a chain <A1, A2, … An> of matrices, where matrix Ai
has dimension pi-1x pi, find optimal fully parenthesize product
A1A2…An that minimizes number of scalar multiplications.

Chain of matrices <A1, A2, A3, A4>: five distinct ways

 A1: p1 x p2 A2: p2 x p3 A3: p3 x p4 A4: p4 x p5

53

of multiplication: p3p4p5+ p2p3p5+
p1p2p5

Find the one with minimal multiplications?

Matrix Chain Multiplication
• Given a chain <A1, A2, … An> of matrices, where matrix Ai

has dimension pi-1x pi, find optimal fully parenthesize product
A1A2…An that minimizes number of scalar multiplications.

• Let m[i, j] be the minimal # of scalar multiplications needed to
calculate AiAi+1…Aj (m[1…n]) is what we want to calculate)

• Recurrence relation: how does m[i…j] relate to smaller
problem

• First decision: pick k (can be i, i+1, …j-1) where to divide AiAi+1…Aj
into two groups: (Ai…Ak)(Ak+1…Aj)

• (Ai…Ak) dimension is pi-1 x pk, (Ak+1…Aj) dimension is pk x pj

54

Summary

• Keys to DP
• Optimal Substructure
• overlapping subproblems

• Define the subproblem: r(n), MSE(i), LCS(i,j) LCS
of prefixes …

• Write recurrence relation for subproblem: i.e.,
how to calculate solution to a problem using sol.
to smaller subproblems

• Implementation:
• memoization (table+recursion)
• bottom-up table based (smaller problems first)

• Insights and understanding comes from practice! 55

