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Rod Cutting Problem

• A company buys long steel rods (of length n), 
and cuts them into shorter one to sell 
• integral length only 
• cutting is free 
• rods of diff lengths sold for diff. price, e.g., 

• Best way to cut the rods? 
• n=4: no cutting: $9, 1 and 3: 1+8=$9, 2 and 2: 

5+5=$10 
• n=5: ? 
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Rod Cutting Problem Formulation

• Input:  
• a rod of length n 
• a table of prices p[1…n] where p[i] is price for rod of 

length i 
• Output 

• determine maximum revenue rn obtained by cutting up 
the rod and selling all pieces  

• Analysis solution space (how many possibilities?) 
• how many ways to write n as sum of positive 

integers?  
• 4=4, 4=1+3, 4=2+2 

• # of ways to cut n:
3

Rod Cutting Problem Formulation

• // return r_n: max. revenue 
• int Cut_Rod (int p[1…n], int n)  

• Divide-and-conquer?  
• how to divide it into smaller one?  
• we don’t know we want to cut in half… 

4



Rod Cutting Problem

• // return rn: max. revenue for rod of length n 
• int Cut_Rod (int n, int p[1…n])  

• Start from small 
• n=1, r1=1  //no possible cutting  
• n=2, r2=5  // no cutting (if cut, revenue is 2) 
• n=3, r3=8 //no cutting 
• r4=9 (max. of p[4], p[1]+r3, p[2]+r3, p[3]+r1) 
• r5 = max (p[5], p[1]+r4, p[2]+r2, p[3]+r2, p[4]+r1) 
• … 
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Rod Cutting Problem

• // return rn: max. revenue for rod size n 
• int Cut_Rod (int n, int p[1…n])  

• Given a rod of length n, consider first rod to cut out 
• if we don’t cut it at all, max. revenue is p[n] 
• if first rod to cut is1: max. revenue is p[1]+rn-1 

• if first rod to cut out is 2: max. revenue is p[2]+rn-2, …  

• max. revenue is given by maximum among all the 
above options   

• rn = max (p[n], p[1]+rn-1, p[2]+rn-2, …, p[n-1]+r1)
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Optimal substructure

• // return rn: max. revenue for rod size n 
• int Cut_Rod (int n, int p[1…n])  

• rn = max (p[n], p[1]+rn-1, p[2]+rn-2, …, p[n-1]+r1) 

• Optimal substructure: Optimal solution to a 
problem of size n incorporates optimal solutions 
to problems of smaller size (1, 2, 3, … n-1). 
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Rod Cutting Problem

• // return r_n: max. revenue for rod size n 
• int Cut_Rod (int p[1…n], int n)  

• rn = max (p[n], p[1]+rn-1, p[2]+rn-2, …, p[n-1]+r1) 

8



• // return r_n: max. revenue for rod size n 
• int Cut_Rod (int p[1…n], int n)  

Recursive Rod Cutting
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Running time T(n) 

Closed formula: T(n)=2n

Recursive calling tree: n=4

Subproblems Graph 
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• Avoid recomputing subproblems 
again and again by storing 
subproblems solutions in 
memory/table (hence 
“programming”)  
• trade-off between space and 

time  
• Overlapping of subproblems

• Avoid recomputing subproblems again and again 
by storing subproblems solutions in memory/
table (hence “programming”)  
• trade-off between space and time  

• Two-way to organize 
• top-down with memoization 

• Before recursive function call, check if subproblem 
has been solved before 

• After recursive function call, store result in table  
• bottom-up method  

• Iteratively solve smaller problems first, move 
the way up to larger problems 

Dynamic Programming
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Memoized Cut-Rod
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// stores solutions to all problems 

// initialize to an impossible negative value  

// A recursive function  

// If problem of given size (n) has been 
solved before, just return the stored result 

// same as before…  



Memoized Cut-Rod: running time
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// stores solutions to all problems 

// initialize to an impossible negative value  

// A recursive function  

// If problem of given size (n) has been 
solved before, just return the stored result 

// same as before…  

Bottom-up Cut-Rod
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// stores solutions to all problems 

// Solve subproblem j, using
solution to smaller subproblems

 

Running time: 1+2+3+..+n-1=O(n2)

Bottom-up Cut-Rod (2)
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// stores solutions to all problems 

What if we want to know who to achieve r[n]? 
i.e., how to cut? 
i.e., n=n_1+n_2+…n_k, such that p[n_1]+p[n_2]+…+p[n_k]=rn

Recap

• We analyze rod cutting problem 
• Optimal way to cut a rod of size n is found by 

•  1) comparing optimal revenues achievable 
after cutting out the first rod of varying len,  
• This relates solution to larger problem to 

solutions to subproblems  

• 2) choose the one yield largest revenue 
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maximum (contiguous) subarray 

• Problem: find the contiguous subarray within an 
array (containing at least one number) which has  
largest sum (midterm lab)  
• If given the array [-2,1,-3,4,-1,2,1,-5,4], 
• contiguous subarray [4,-1,2,1] has largest sum = 6 

• Solution to midterm lab 
• brute-force: n2 or n3 

• Divide-and-conquer: T(n)=2 T(n/2)+O(n), T(n)=nlogn 
• Dynamic programming?
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Analyze optimal solution

• Problem: find contiguous subarray with largest sum 
• Sample Input:  [-2,1,-3,4,-1,2,1,-5,4]  (array of size n=9)  
• How does solution to this problem relates to smaller 

subproblem?  
• If we divide-up array (as in midterm) 
• [-2,1,-3,4,-1,2,1,-5,4]  //find MaxSub in this array  

[-2,1,-3,4,-1]          [2,1,-5,4] 
still need to consider subarray that spans both halves 
This does not lead to a dynamic programming sol.  

• Need a different way to define smaller subproblems! 
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• Problem: find contiguous subarray with largest sum 
     
A 

Index  

• MSE(k), max. subarray ending at pos k, among all 
subarray ending at k (A[i…k] where i<=k), the one with 
largest sum  
• MSE(1), max. subarray ending at pos 1, is A[1..1], sum is -2 
• MSE(2), max. subarray ending at pos 2, is A[2..2], sum is 1 
• MSE(3) is A[2..3], sum is -2  
• MSE(4)? 

Analyze optimal solution
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•     A  

• Index  
•   MSE(k) and optimal substructure  

• MSE(3): A[2..3], sum is -2 (red box) 
•  MSE(4): two options to choose 

• (1) either grow MSE(3) to include pos 4 
• subarray is then A[2..4], sum is 

MSE(3)+A[4]=-2+A[4]=2 
• (2) or start afresh from pos 4  

• subarray is then A[4…4], sum is A[4]=4 (better)  
• Choose the one with larger sum, i.e.,  

• MSE(4) = max (A[4], MSE(3)+A[4])  

Analyze optimal solution
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How a problem’s optimal 
solution can be derived from 
optimal solution to smaller 
problem 



•     A  

• Index  
•    
• MSE(k) and optimal substructure  

• Max. subarray ending at k is the larger between A[k…k] and 
Max. subarray ending at k-1 extended to include A[k] 

               MSE(k) = max (A[k], MSE(k-1)+A[k])  
• MSE(5)=                     , subarray is   
• MSE(6) 
• MSE(7) 
• MSE(8) 
• MSE(9) 

Analyze optimal solution
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MSE(4)=4, array is A[4…4]

•     A  
• Index    

• Once we calculate MSE(1) … MSE(9)  
• MSE(1)=-2, the subarray is A[1..1] 
• MSE(2)=1, the subarray is A[2..2] 
• MSE(3)=-2, the subarray is A[2..3]  
• MSE(4)=4, the subarray is A[4…4]  
• … MSE(7)=6, the subarray is A[4…7] 
• MSE(9)=4, the subarray is A[9…9] 

• What’s the maximum subarray of A?  
• well, it either ends at 1, or ends at 2, …, or ends at 9 
• Whichever yields the largest sum!  

Analyze optimal solution

22

23

•     A  
• Index    

• Calculate MSE(1) … MSE(n) 
• MSE(1)= A[1] 
• MSE(i) = max (A[i], A[i]+MSE(i-1)); 

•  Return maximum among all MSE(i),  
for i=1, 2, …n  

Idea to Pseudocode

(int, start,end) MaxSubArray (int A[1…n]) 
{  
    // Use array MSE to store the MSE(i) 
    MSE[1]=A[1]; 
    max_MSE = MSE[1]; 
   
   for (int i=2;i<=n;i++) 
   { 
         MSE[i] = ?? 

         if (MSE[i] > max_MSE) { 
             max_MSE = MSE[i]; 
             end = i; 
         }  
    } 
   return (max_MSE, start, end) 
}

Practice: 
1) fill in ?? 
2) How to find out the starting index of 
the max. subarray, i.e., the start parameter? 

24

Running time Analysis
int MaxSubArray (int A[1…n], int & start, 
     int & end) 
{  
    // Use array MSE to store the MSE(i) 
    MSE[1]=A[1]; 
    max_MSE = MSE[1]; 
   
   for (int i=2;i<=n;i++) 
   { 
         MSE[i] = ??  

         if (MSE[i] > max_MSE) { 
             max_MSE = MSE[i]; 
             end = i; 
         }  
    } 
   return max_MSE; 
}

• It’s easy to see that 
running time is O(n) 
• a loop that iterates 

for n-1 times  
• Recall other solutions:  

• brute-force: n2 or n3 

• Divide-and-conquer: 
nlogn 

• Dynamic programming 
wins! 



What is DP? When to use? 

• We have seen several optimization problems 
• brute force solution 
• divide and conquer 
• dynamic programming  

• To what kinds of problem is DP applicable?  
• Optimal substructure: Optimal solution to a 

problem of size n incorporates optimal solution to 
problem of smaller size (1, 2, 3, … n-1).  

• Overlapping subproblems: small subproblem 
space and common subproblems 
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Optimal substructure

• Optimal substructure: Optimal solution to a 
problem of size n incorporates optimal solution to 
problem of smaller size (1, 2, 3, … n-1).  

• Rod cutting: find rn (max. revenue for rod of len n)  

 rn = max (p[1]+rn-1, p[2]+rn-2, p[3]+rn-3,…, p[n-1]+r1, p[n]) 
• A recurrence relation (recursive formula) 

• => Dynamic Programming: Build an optimal solution 
to the problem from solutions to subproblems  

• We solve a range of sub-problems as needed 
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Sol to problem
instance of size n

Sol to problem
instance of size n-1, n-2, … 1 

Optimal substructure in Max. Subarray 

• Optimal substructure: Optimal solution to a 
problem of size n incorporates optimal solution to 
problem of smaller size (1, 2, 3, … n-1).  
• Max. Subarray Problem: 

• MSE(i) = max (A[i], MSE(i-1)+A[i]) 

• Max Subarray = max (MSE(1), MSE(2), …MSE(n))
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Max. Subarray Ending at position i 
is the either the max. subarray ending at pos i-1 
extended to pos i; or just made up of A[i]

Overlapping Subproblems

• space of subproblems must be “small” 
• total number of distinct subproblems is a polynomial in 

input size (n) 
• a recursive algorithm revisits same problem 

repeatedly, i.e., optimization problem has 
overlapping subproblems. 

• DP algorithms take advantage of this property 
• solve each subproblem once, store solutions in a table 
• Look up table for sol. to repeated subproblem using 

constant time per lookup. 
• In contrast: divide-and-conquer solves new 

subproblems at each step of recursion.
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Longest Increasing Subsequence

• Input: a sequence of numbers given by an array a 
• Output: a longest subsequence (a subset of the 

numbers taken in order) that is increasing 
(ascending order)  

• Example,  given a sequence 
•  5,  2,  8,   6,   3,   6,   9,   7  
• There are many increasing subsequence: 5, 8, 9;  

or 2, 9; or 8  
• The longest increasing subsequence is: 

       2, 3, 6, 9   (length is 4)
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LIS as a DAG
• Find longest increasing subsequence of a 

sequence of numbers given by an array a 
       5,  2,  8,   6,   3,   6,   9,   7  

 Observation: 
•  If we add directed edge from smaller number to larger one, we get 

a DAG. 
•   A path (such as 2,6,7) connects nodes in increasing order 
•   LIS corresponds to longest path in the graph. 30

Graph Traversal for LIS
• Find longest increasing subsequence of a 

sequence of numbers given by an array a 
       5,  2,  8,   6,   3,   6,   9,   7  

 Observation: 
• LIS corresponds to longest path in the graph.  
• Can we use graph traversal algorithms here?  

• BFS or DFS?  
• Running time 31

• Find Longest Increasing Subsequence of  a 
sequence of numbers given by an array a 

       

Let L(n) be the length of LIS ending at n-th number 
        L(1) = 1, LIS ending at pos 1 is 5   
        L(2) = 1, LIS ending at pos 2 is 2  
        L(7)= // how to relate to L(1), …L(6)?  
•  Consider LIS ending at a[7] (i.e., 9). What’s the number before 9? 
                                          .… ? ,9 
           

Dynamic Programming Sol: LIS
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1            2          3          4          5           6         7          8



• Given a sequence of numbers given by an array a 
       

Let L(n) be length of LIS ending at n-th number 
  Consider all increasing subsequence ending at a[7] (i.e., 9).  
•    What’s the number before 9?  

•  It can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers 
pointing to 9) 

•  If the number before 9 is 3 (a[5]), what’s max. length of this 
seq?   L(5)+1 where the seq is …. 3, 9              

      

Dynamic Programming Sol: LIS
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1            2          3          4          5           6         7          8

LIS ending at pos 5

• Given a sequence of numbers given by an array a 
       

Let L(n) be length of LIS ending at n-th number 
  Consider all increasing subsequence ending at a[7] (i.e., 9).  
•  It can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers 

pointing to 9) 
• L(7)=max(1, L(6)+1, L(5)+1, L(4)+1, L(3)+1, L(2)+1, L(1)+1) 

• L(8)=?     

Dynamic Programming Sol: LIS
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Pos: 1       2          3          4          5         6         7        8

• Given a sequence of numbers given by an array a 
       

Let L(n) be length of LIS ending at n-th number. 
Recurrence relation:  

 Note that the i’s in RHS is always smaller than the j  
•  How to implement? Running time?  
•  LIS of sequence = Max (L(i), 1<=i<=n)   // the longest 

among all 

Dynamic Programming Sol: LIS
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Pos: 1       2          3          4          5         6         7        8

Next, two-dimensional subproblem space
i.e., expect to use two-dimensional table 

36



Longest Common Subseq.

•  Given two sequences 
  X = 〈x1, x2, …, xm〉 
  Y = 〈y1, y2, …, yn〉 
 find a maximum length common subsequence (LCS) of X and 

Y 
• E.g.:  
  X = 〈A, B, C, B, D, A, B〉

• Subsequence of X: 
– A subset of elements in the sequence taken in order but not necessarily 

consecutive 
 〈A, B, D〉, 〈B, C, D, B〉, etc 
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Example

X = 〈A, B, C, B, D, A, B〉       X = 〈A, B, C, B, D, A, B〉

Y = 〈B, D, C, A, B, A〉         Y = 〈B, D, C, A, B, A〉

• 〈B, C, B, A〉 and 〈B, D, A, B〉 are longest common 
subsequences of X and Y (length = 4)  

• BCBA = LCS(X,Y): functional notation, but is it not a function 

• 〈B, C, A〉, however is not a LCS of X and Y
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Brute-Force Solution
• Check every subsequence of X[1 . . m] to see if it is 

also a subsequence of Y[1 .. n].  
• There are 2m subsequences of X to check 
• Each subsequence takes O(n) time to check 

– scan Y for first letter, from there scan for second, 

and so on 

• Worst-case running  time: O(n2m) 

– Exponential time too slow
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Towards a better algorithm
Simplification: 

1. Look at length of a longest-common subsequence 
2. Extend algorithm to find the LCS itself later  

Notation: 
– Denote length of a sequence s by |s| 
– Given a sequence X = 〈x1, x2, …, xm〉 we define the i-th prefix 

of X as (for i = 0, 1, 2, …, m) 
  Xi = 〈x1, x2, …, xi〉 

– Define:  
           c[i, j] = | LCS (Xi, Yj) = |LCS(X[1..i], Y[1..j])|: 
        the length of a LCS of sequences  Xi = 〈x1, x2, …, xi〉 and Yj = 
〈y1, y2, …, yj〉 

– |LCS(X,Y)| = c[m,n]  //this is the problem we want to solve
40



Find Optimal Substructure
• Given a sequence X = 〈x1, x2, …, xm〉, Y = 〈y1, y2, …, yn〉 
• To find LCS (X,Y) is to find c[m,n]  

      c[i, j] = | LCS (Xi, Yj) | 
                  //length LCS of i-th prefix of X and j-th prefix of Y  
                  //  X[1..i], Y[1..j]   

• How to solve c[i,j] using sol. to smaller problems?  
• what’s the smallest (base) case that we can answer right 

away?  
• How does c[i,j] relate to c[i-1,j-1], c[i,j-1] or c[i-1,j]?  
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Recursive Formulation

  c[i-1, j-1] + 1  if X[i]= Y[j] 
c[i, j] = 

  max(c[i, j-1], c[i-1, j]) otherwise (i.e., if X[i] ≠ Y[j])

X:         1          2                            i                                  m

Y:         1          2                      j                    n

 …

…
compare X[i], Y[j]

Base case: c[i, j]  = 0  if i = 0 or j = 0 
 LCS of an empty sequence, and any sequence is empty  
General case: 
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Recursive Solution. Case 1

Case 1: X[i] ==Y[j] 
e.g.: X4 = 〈A, B, D, E〉

   Y3 = 〈Z, B, E〉

• Choice: include one element into common sequence (E) 
and solve resulting subproblem 

   

            LCS of X3 = 〈A, B, D〉 and Y2 = 〈Z, B〉

– Append X[i] = Y[j] to the LCS of Xi-1 and Yj-1 

– Must find a LCS of Xi-1 and Yj-1

c[4, 3] = c[4 - 1, 3 - 1] + 1
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Recursive Solution. Case 2
Case 2: X[i] ≠ Y[j] 
e.g.: X4 = 〈A, B, D, G〉

  Y3 = 〈Z, B, D〉

• Must solve two problems 

• find a LCS of Xi-1 and Yj:   Xi-1 = 〈A, B, D〉    and Yj = 〈Z, B, D〉 

• find a LCS of Xi    and Yj-1 : Xi = 〈A, B, D, G〉 and Yj-1 = 〈Z, B〉

c[i, j] = max { c[i - 1, j], c[i, j-1] } 
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Either the G or the D
 is not in the LCS

(they cannot be both in LCS)

If we ignore last element in Xi If we ignore last element in Yj



Recursive algorithm for LCS

// X, Y are sequences, i, j integers 
//return length of LCS of X[1…i], Y[1…j]  
LCS(X, Y, i, j) 

if i==0 or j ==0 
      return 0; 
if X[i] == Y[ j] // if last element match 
then  
       c[i, j] ←LCS(X, Y, i–1, j–1) + 1 
else  
    c[i, j] ←max{LCS(X, Y, i–1, j), 
                        LCS(X, Y, i, j–1)} 
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Optimal substructure &  
Overlapping Subproblems

• A recursive solution contains a “small” number of distinct 
subproblems repeated many times. 
• e.g., C[5,5] depends on C[4,4], C[4,5], C[5,4] 
• Exercise: Draw there subproblem dependence graph 

• each node is a subproblem 
• directed edge represents “calling”, “uses solution 

of” relation  
• Small number of distinct subproblems: 

• total number of distinct LCS subproblems for two 
strings of lengths m and n is mn.
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Memoization algorithm
 Memoization: After computing a solution to a 

subproblem, store it in a table. Subsequent calls check 
the table to avoid redoing work. 

LCS(X, Y, i, j) 
 if c[i, j] = NIL   // LCS(i,j) has not been solved yet  
  then if x[i] = y[j] 
   then c[i, j] ←LCS(x, y, i–1, j–1) + 1 
   else c[i, j] ←max{LCS(x, y, i–1, j),  
           LCS(x, y, i, j–1)} 

 

Same as 
before
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Bottom-Up 

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y      A      B    C     B    D    A     B   
X 

B     

D    

C   

A    

B 

A

Initialization: base case 
c[i,j] = 0 if i=0, or j=0 

//Fill table row by row 
//  from left to right 
for (int i=1; i<=m;i++) 
    for (int j=1;j<=n;j++) 
       update c[i,j]  

return c[m, n] 

Running time = Θ(mn) 
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0       1         2        3         4       5       6        7   

0 

1     

2    

3   

4    

5 

6 C[3,4]= length of LCS (X3, Y4) 
= Length of LCS (BDC, ABCB) 

i-th row, 4-th column element



Dynamic-Programming Algorithm
A    B    C   B   D   A   B   

B     

D    

C   
A    

B 

A

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

1 1 1 2 2 20 0

1 2 2 2 2 20 0

1 2 2 2 3 30 1

2 2 3 3 3 40 1

2 2 3 3 4 40 1

Reconstruct LCS 
tracing backward: 
  
how do we get value 
of C[i,j] from? (either 
C[i-1,j-1]+1, C[i-1,j], 
C[i, j-1) 
  
   as red arrow 
indicates… 
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A

Output
B

Output
C

Output
B

Matrix
Matrix:  a 2D (rectangular) array of numbers, symbols, or 
expressions, arranged in rows and columns. 

 e.g., a 2 × 3 matrix (there are two rows and three columns) 

Each element of a matrix is denoted by a variable with two 
subscripts, a2,1 element at second row and first column of a 
matrix A. 

   an m × n matrix A:  
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Matrix Multiplication:  

Matrix Multiplication
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Dimension of A, B, and A x B?

Total (scalar) multiplication: 4x2x3=24  

Total (scalar) multiplication: n2xn1xn3 

Multiplying a chain of Matrix 
Given a sequence/chain of matrices, e.g., A1, A2, A3,  there are 
different ways to calculate A1A2A3 

1. (A1A2)A3) 

2. (A1(A2A3)) 

Dimension of A1: 10 x 100 

                      A2: 100 x 5 

                      A3: 5 x 50 

all yield the same result  

But not same efficiency
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Matrix Chain Multiplication
Given a chain <A1, A2, … An> of matrices,  where matrix Ai 
has dimension pi-1x pi, find optimal fully parenthesize product 
A1A2…An that minimizes number of scalar multiplications. 

Chain of matrices  <A1, A2, A3, A4>: five distinct ways 

   A1: p1 x p2       A2: p2 x p3     A3: p3 x p4       A4: p4 x p5
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# of multiplication: p3p4p5+ p2p3p5+ 
p1p2p5

Find the one with minimal multiplications?

Matrix Chain Multiplication
• Given a chain <A1, A2, … An> of matrices,  where matrix Ai 

has dimension pi-1x pi, find optimal fully parenthesize product 
A1A2…An that minimizes number of scalar multiplications. 

• Let m[i, j] be the minimal # of scalar multiplications needed to 
calculate AiAi+1…Aj   (m[1…n]) is what we want to calculate)  

• Recurrence relation: how does m[i…j] relate to smaller 
problem  

• First decision: pick k (can be i, i+1, …j-1) where to divide AiAi+1…Aj 
into two groups: (Ai…Ak)(Ak+1…Aj) 

• (Ai…Ak) dimension is pi-1 x pk, (Ak+1…Aj) dimension is pk x pj
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Summary

• Keys to DP 
• Optimal Substructure 
• overlapping subproblems 

• Define the subproblem: r(n), MSE(i), LCS(i,j) LCS 
of prefixes … 

• Write recurrence relation for subproblem: i.e., 
how to calculate solution to a problem using sol. 
to smaller subproblems 

• Implementation:  
• memoization (table+recursion) 
• bottom-up table based (smaller problems first)  

• Insights and understanding comes from practice! 55


