Dynamic Programming
CISC5835, Algorithms for Big Data
CIS, Fordham Univ.

Instructor: X. Zhang

Rod Cutting Problem

» A company buys long steel rods (of length n),
and cuts them into shorter one to sell

* integral length only
* cutting is free
+ rods of diff lengths sold for diff. price, e.g.,

5 6 7 8 9 10

lengthi | 4
9 10 17 17 20 24 30

1
price p; | 1

2 3
5 8

» Best way to cut the rods?
* n=4: no cutting: $9, 1 and 3: 1+8=$9, 2 and 2:
5+5=$10
e n=5:7?

Rod Cutting Problem Formulation

* Input:
* arod of length n

+ atable of prices p[1...n] where pli] is price for rod of
length i

* Output

» determine maximum revenue r, obtained by cutting up
the rod and selling all pieces

» Analysis solution space (how many possibilities?)
* how many ways to write n as sum of positive
integers?
© 4=4,4=1+3,4=2+2
+ # of ways to cut n: eﬂJZn/3/4nﬁ_ ’

Rod Cutting Problem Formulation

* /[return r_n: max. revenue
* int Cut_Rod (int p[1...n], int n)

» Divide-and-conquer?
* how to divide it into smaller one?
* we don’t know we want to cut in half...

Rod Cutting Problem

* // return ra: max. revenue for rod of length n
* int Cut_Rod (int n, int p[1...n])

2

5

length i | 1
1

4 5 6 7 8 9 10
price p; | 9

3
8 10 17 17 20 24 30

 Start from small
* n=1,r1=1 //no possible cutting
* n=2, r2=5 // no cutting (if cut, revenue is 2)
* n=3, r3=8 //no cutting
* r4=9 (max. of p[4], p[1]+r3, p[2]+r3, p[3]+r1)
* rs=max (p[5], p[1]+rs, p[2]+r2, p[3]+r2, p[4]+r1)

Rod Cutting Problem

e /[return rn: max. revenue for rod size n
* int Cut_Rod (int n, int p[1...n])

lengthi [1 2
5

4 5 6 7 8 9 10
price p; | 1 9

3
8 10 17 17 20 24 30

» Given a rod of length n, consider first rod to cut out
+ if we don’t cut it at all, max. revenue is p[n]
« if first rod to cut is1: max. revenue is p[1]+r-1
« if first rod to cut out is 2: max. revenue is p[2]+rn-2, ...

* max. revenue is given by maximum among all the
above options

* rm=max (p[n], p[1]+rn-1, p[2]+rn2, ..., p[n-1]+r1)

Optimal substructure

e [/ return rn: max. revenue for rod size n
e int Cut_Rod (int n, int p[1...n])

lengthi [1 2 3 4 5 6 7 8 9 10
picep; |1 5 8 9 10 17 17 20 24 30

* rn=max (p[n], p[1]+rn-1, p[2]+rn-2, ..., p[n-1]+r1)

* Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solutions
to problems of smaller size (1, 2, 3, ... n-1).

Rod Cutting Problem

/[return r_n: max. revenue for rod size n
* int Cut_Rod (int p[1...n], int n)

lengthi [1 2 3 4 5 6 7 8 9 10
pricep; |1 5 8 9 10 17 17 20 24 30

* rn=max (p[n], p[11+rn-1, P[2]*rn-2, ..., p[N-1]+r1)

CuT-ROD(p, n)
ifn ==
return 0
q = —o00
fori = 1ton
g = max(q, p[i] + CUT-ROD(p, n —i))
return g

AN AW -

Recursive Rod Cutting

Cut-RoD(p, 1) Running time T(n)
n—1

1 ifn==0 _)

2 return 0 T =1+ Z(:] T() -

3 g=—- =

4 fori =1ton Closed formula: T(n)=2"

5 q = max(q, p[i] + CUT-ROD(p, n — i)

6 return g

Recursive calling tree: n=4

Subproblems Graph

* Avoid recomputing subproblems

e again and again by storing
subproblems solutions in

o memory/table (hence
“programming”)

(2) * trade-off between space and

‘ time
) c » Overlapping of subproblems

Dynamic Programming

* Avoid recomputing subproblems again and again
by storing subproblems solutions in memory/
table (hence “programming”)

* trade-off between space and time

+ Two-way to organize

* top-down with memoization

» Before recursive function call, check if subproblem
has been solved before

< After recursive function call, store result in table
* bottom-up method

* lteratively solve smaller problems first, move
the way up to larger problems

Memoized Cut-Rod

MEMOIZED-CUT-ROD(p, n)

1 letr[0..n] be a new array / stores solutions to all problems
2 fori =0ton

3 r[i] = —© /l'initialize to an impossible negative value
4 return MEMOIZED-CUT-ROD-AUX(p,n,r)

MEMOIZED-CUT-ROD-AUX(p, n,7) // A recursive function

1 ifr[r] >0 //'1f problem of given size (n) has been

2 return r[n] solved before, just return the stored result

3 ifn==

4 q=0

5 elseqg = —

6 fori = 1ton // same as before...

7 g = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))
8 r[nl=g¢q

9 returng

Memoized Cut-Rod: running time Bottom-up Cut-Rod
MEMOIZED-CUT-ROD(p, n) BotToM-UP-CUT-ROD(p, n)
1 letr[0..n] be anew array / stores solutions to all problems 1 letr[0..n]be anew array J/ stores solutions to all problems
2 fori =0ton 2 r[0]=0
3 rfi] = —oo /initialize to an impossible negative value 3 forj =1ton
4 return MEMOIZED-CUT-ROD-AUX (p,n,r) 4 g = —o0
MEMOIZED-CUT-ROD-AUX(p,,7) /A recursve funcion S e L0] e s
. o 6 q = max(q, p[i] +r[j —i])
1 ifr[n]>0 /I If problem of given size (n) has been 7 o
2 return r[n] solved before, just return the stored result r[J] =9
3 ifn == 8 return r[n]
4 q=0
5 elseqg = —oc0 Running time: 1+2+3+..4+n-1=0(n2)
6 fori = 1ton // same as before...
7 q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))
8 rln]=g¢q
9 returng 14
Bottom-up Cut-Rod (2) Recap

BoTTOoM-UP-CUT-ROD(p, 1) * We analyze rod cutting problem

1 letr[0..n]beanewarray 1 letr[0..n]ands[0..n] be new arrays » Optimal way to cut a rod of size n is found by
§ ;ES] .=_01 ton * 1) comparing optimal revenues achievable
4]q_: oo after cutting out the first rod of varying len,
5 fori=1toj ol - This relates solution to larger problem to
6 q = max(q, plil +r[j —il) slj1=i solutions to subproblems

7 rljl=q

8 return r[n])

» 2) choose the one yield largest revenue

What if we want to know who to achieve r[n]?

i.e., how to cut?

i.e., n=n_1+n_2+...n_k, such that p[n_1]+p[n_2]+...+p[n_k]=rn

15 16

maximum (contiguous) subarray

* Problem: find the contiguous subarray within an
array (containing at least one number) which has
largest sum (midterm lab)

 If given the array [-2,1,-3/4,-1,2,1,-5,4],
+ contiguous subarray [4,-1,2,1] has largest sum = 6
+ Solution to midterm lab
* brute-force: n? or n3
+ Divide-and-conquer: T(n)=2 T(n/2)+O(n), T(n)=nlogn
* Dynamic programming?

Analyze optimal solution

Problem: find contiguous subarray with largest sum
Sample Input: [-2,1,-3,4,-1,2,1,-5,4] (array of size n=9)

How does solution to this problem relates to smaller
subproblem?

 If we divide-up array (as in midterm)
* [-2,1,-3,4,-1,2,1,-5,4] //find MaxSub in this array

[-2,1,-3,4,-1] [2,1,-5,4]

still need to consider subarray that spans both halves
This does not lead to a dynamic programming sol.
Need a different way to define smaller subproblems!

Analyze optimal solution

* Problem: find contiguous subarray with largest sum

A

Index 51234567895

» MSE(k), max. subarray ending at pos k, among all
subarray ending at k (A[i...k] where i<=k), the one with
largest sum

* MSE(1), max. subarray ending at pos 1, is A[1..1], sum is -2
* MSE(2), max. subarray ending at pos 2, is A[2..2], sum is 1
« MSE(3)is A[2..3], sum is -2

« MSE(4)?

Analyze optimal solution

A -2||1-34-121-54

|ndexg1'—2—3—4567 8 9:

MSE(k) and optimal substructure
* MSE(3): A[2..3], sum is -2 (red box)
* MSE(4): two options to choose
+ (1) either grow MSE(3) to include pos 4 How a problem’s optimal
) X solution can be derived from
* subarray is then A[2..4], sum is optimal solution to smaller
MSE(3)+A[4]=-2+A[4]=2 problem
e (2) or start afresh from pos 4
» subarray is then A[4...4], sum is A[4]=4 (better)
« Choose the one with larger sum, i.e.,
* MSE(4) = max (A[4], MSE(3)+A[4])

20

Analyze optimal solution

——— Sr—
" A 2| 1] 3] af-1]2] 1] 5] 4

« |ndex 1 2 3 4 5 6 7 8 9 :

T index Ll IR

* MSE(k) and optimal substructure

* Max. subarray ending at k is the larger between A[k...k] and
Max. subarray ending at k-1 extended to include A[K]

MSE(k) = max (A[k], MSE(k-1)+A[K])
e MSE(5)= , subarray is
e MSE(6)
* MSE(7)
* MSE(8)
* MSE(9)

21

Analyze optimal solution

P—
.« A 21| 8] 4] -1]2] 1] -5]4
cIndex : 1 2 3 4 56 7 8 9:

* Once we calculate MSE(1) ... MSE(9)
* MSE(1)=-2, the subarray is A[1..1]
* MSE(2)=1, the subarray is A[2..2]
* MSE(3)=-2, the subarray is A[2..3]
* MSE(4)=4, the subarray is A[4...4]
¢ ... MSE(7)=6, the subarray is A[4...7]
« MSE(9)=4, the subarray is A[9...9]
* What’s the maximum subarray of A?
« well, it eitherends at 1, orends at 2, ..., orends at 9
* Whichever yields the largest sum!

22

Idea to Pseudocode

© A e ef] 2] 0] s]4]

cdndex iy 2 3 4 56 7 8 o

(int, start,end) MaxSubArray (int A[1...n])
» Calculate MSE(1) ... MSE(n) {

« MSE(1)=A[1]
MSE(i) = max (A[i], Afi]+MSE(i-1));
* Return maximum among all MSE(i),

/I Use array MSE to store the MSE(i)
MSE[1]=A[1];
max_MSE = MSE[1];

for i=1, 2, .n for (int i=2;i<=n;i++)

MSE[i] = ??

if (MSE[i] > max_MSE) {
Practice: max_MSE = MSE[i];
1) fillin ?2? end =1i;
2) How to find out the starting index of }

the max. subarray, i.e., the start parameter?
return (max_MSE, start, end)

}

Running time Analysis

int MaxSubArray (int A[1...n], int & start, b It's easy to see that
int & end)

{ running time is O(n)
/I Use array MSE to store the MSE(i) I |00p that iterates

MSE[1]=A[1]; .
max_MSE = MSE[1]; for n-1 times

» Recall other solutions:
 brute-force: n2 or n3

for (int i=2;i<=n;i++)

MSE[i] = ?? o
+ Divide-and-conquer:
if (MSE[i] > max_MSE) {
max_MSE = MSE[il; nlogn
end =i; » Dynamic programming
} wins!

return max_MSE;

24

What is DP? When to use?

* We have seen several optimization problems
* brute force solution
 divide and conquer
+ dynamic programming

» To what kinds of problem is DP applicable?

» Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, ... n-1).

* Overlapping subproblems: small subproblem
space and common subproblems

25

Optimal substructure

* Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, ... n-1).

* Rod cutting: find rn (max. revenue for rod of len n)

Sol to problem Sol to problem
instance of size n instance of size n-1, n-2, ... 1

r = max (p[1]+rn-1, p[2]+rn-2, p[3]+n-3,..., p[n-1]+r1, p[n])
» Arecurrence relation (recursive formula)

« => Dynamic Programming: Build an optimal solution
to the problem from solutions to subproblems

» We solve a range of sub-problems as needed

26

Optimal substructure in Max. Subarray

* Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, ... n-1).

* Max. Subarray Problem: | _2| 1|_3| 4| » | 2| 1I _5| 4|

i 2 3 4 5 6 7 8 9:

* MSE(i) = max (A[i], MSE(i-1)+A[i])

Max. Subarray Ending at position i
is the either the max. subarray ending at pos i-1
extended to pos i; or just made up of A[i]

- Max Subarray = max (MSE(1), MSE(2), ...MSE(n))

27

Overlapping Subproblems

» space of subproblems must be “small’
« total number of distinct subproblems is a polynomial in
input size (n)
* arecursive algorithm revisits same problem

repeatedly, i.e., optimization problem has
overlapping subproblems.

* DP algorithms take advantage of this property
» solve each subproblem once, store solutions in a table

* Look up table for sol. to repeated subproblem using
constant time per lookup.

* In contrast: divide-and-conquer solves new
subproblems at each step of recursion

28

Longest Increasing Subsequence

* Input: a sequence of numbers given by an array a

» Output: a longest subsequence (a subset of the
numbers taken in order) that is increasing
(ascending order)

» Example, given a sequence
« 52,8, 6, 3 6, 9 7

« There are many increasing subsequence: 5, 8, 9;
or2,9;or8

« The longest increasing subsequence is:
2,3,6,9 (lengthis 4)

29

LIS as a DAG

* Find longest increasing subsequence of a
sequence of numbers given by an array a
5 2.8 6,3 _6_9 7

Observation:

» If we add directed edge from smaller number to larger one, we get
a DAG.

» Anpath (such as 2,6,7) connects nodes in increasing order
LIS corresponds to longest path in the graph. 30

Graph Traversal for LIS

» Find longest increasing subsequence of a
sequence of numbers given by an array a
5 2 8 6,3 69 7

Observation:
* LIS corresponds to longest path in the graph.
» Can we use graph traversal algorithms here?
* BFS or DFS?
* Running time 31

Dynamic Programming Sol: LIS

» Find Longest Increasing Subsequence of a
sequence of numbers given by an array a

Let L(n) be the length of LIS ending at n-th number
L(1) =1, LIS ending at pos 1is 5
L(2) =1, LIS ending at pos 2 is 2
L(7)=// how to relate to L(1), ...L(6)?
» Consider LIS ending at a[7] (i.e., 9). What's the number before 9?
.. 7.9

32

Dynamic Programming Sol: LIS

+ Given a sequence of numbers given by an array a

Let L(n) be length of LIS ending at n-th number
Consider all increasing subsequence ending at a[7] (i.e., 9).

®* What's the number before 9?
* |t can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers
pointing to 9)
» If the number before 9 is 3 (a[5]), what's max. length of this
seq? L(5)+1 where the seqis....3,9

LIS endi it 5
ending at pos 33

Dynamic Programming Sol: LIS

+ Given a sequence of numbers given by an array a

Pos: 1 2 3 4 5 6 7 8

Let L(n) be length of LIS ending at n-th number
Consider all increasing subsequence ending at a[7] (i.e., 9).

® |t can be either NULL, or 6, or 3, or 6, 8, 2, 5 (all those numbers
pointing to 9)
e L(7)=max(1, L(6)+1, L(5)+1, L(4)+1, L(3)+1, L(2)+1, L(1)+1)

. L(8)=? 34

Dynamic Programming Sol: LIS

» Given a sequence of numbers given by an array a

FOSTT (] 4 ko] [o] 7 [}

Let L(n) be length of LIS ending at n-th number.
Recurrence relation:

L(j) = 1+ max{L(3) : (i,5) € E}

Note that the i’s in RHS is always smaller than the j
+ How to implement? Running time?

+ LIS of sequence = Max (L(i), 1<=i<=n) // the longest
among all 35

Next, two-dimensional subproblem space
i.e., expect to use two-dimensional table

36

Longest Common Subseq.

+ Given two sequences
X= (Xqy Xy ey Xp)

Y = (Y1 Yo o Vo)
f\i(nd a maximum length common subsequence (LCS) of X and

. Eg.:
X=(A,B,C,B,D,A, B)

» Subsequence of X:

— Asubset of elements in the sequence taken in order but not necessarily
consecutive

(A, B,D), (B, C, D, B), etc

37

Example
<A B, ,B, D,A,B) X=(AB,C,B, D,A}
Y= <B AXA/L Y=<B,/D%>

« (B,C,B,A)and (B, D, A, B) are longest common
subsequences of X and Y (length = 4)

* BCBA = LCS(X,Y): functional notation, but is it not a function

+ (B, C, A), however is nota LCS of X and Y

Brute-Force Solution

» Check every subsequence of X[7.. m]to see ifitis
also a subsequence of Y[7 .. n].

» There are 2™ subsequences of X to check
» Each subsequence takes O(n) time to check

— scan Y for first letter, from there scan for second,
and so on
* Worst-case running time: O(n2M)

— Exponential time too slow

Towards a better algorithm

Simplification:
1. Look at length of a longest-common subsequence
2. Extend algorithm to find the LCS itself later

Notation:
— Denote length of a sequence s by |s|

— Given a sequence X = (X, Xy, ..., X,,) we define the i-th prefix

of Xas (fori=0,1,2,...,m)

X = (Xp Xgr ooes X))
— Define:
cli, jl = | LCS (X, Yj) = |LCS(X[1...i], Y[1..J])I:
the length of a LCS of sequences X; = (x, X,, ..., x)and Y; =
Vi Yor -0 V)

— |[LCS(X,Y)| = c[m,n] //this is the problem we want to solve

40

Find Optimal Substructure

+ Given a sequence X = (Xq, Xg, -« X)s Y = (Y1, Yoo -, Vi)
» To find LCS (X,Y) is to find c[m,n]

cfi, 1=1LCS (X;, Y)) |
/Nlength LCS of i-th prefix of X and j-th prefix of Y
I X100, Y[1..4]

* How to solve c[i,j] using sol. to smaller problems?

» what's the smallest (base) case that we can answer right
away?
» How does cfi,j] relate to c[i-1,j-1], c[i,j-1] or c[i-1,j]?

Recursive Formulation

Base case: c[i,j] =0 ifi=0orj=0
LCS of an empty sequence, and any sequence is empty
General case:

cfi-1, j-11 +1 if X[i]= Y[j]
cfi, j1 = {
max(cli, j-1], c[i-1, j]) otherwise (i.e., if X[i] # Y[j])
X: 1 2 i m
ve.t1r 2 J “/(;ompé“re X[il, YIil

Recursive Solution. Case 1

Case 1: X[i] ==YI[j]
e.qg.: X4 = (A, B, D,

» Choice: include one element into common sequence (E)
and solve resulting subproblem

cl4,3]=¢cl4-1,3-1]+1
LCS of X3= (A, B, D) and Y2 =(Z, B)

— Append X[i] = Y[j] to the LCS of Xy and Y}
— Must find a LCS of X;;and Y},

43

Recursive Solution. Case 2
Case 2: X[i] = Y[j]

eg: X4=(A, B, D, G) Either the G or the D
is not in the LCS
Y, =(Z, B, D) (they cannot be both in LCS)

cli,jl]= max{cli-1.jl, cli.j-11}

If we ignore last element in Xi If we ignore last element in Yj

* Must solve two problems
- findaLCSof X,;and Y: X.4,=(A,B,D) andY;=(Z B,D)
- findaLCS of X; and Y;,: X;=(A,B, D, Gyand Y, =(Z, B)

44

Recursive algorithm for LCS

II'X, Y are sequences, i, j integers
/Ireturn length of LCS of X[1...i], Y[1...]]

LCS(X, Y, i,))
ifi==0orj==
return O;
if X[i] == Y[j] /I if last element match
then
cfi, j] <LCS(X, Y, i-1,j-1) +1
else

cli, j] =max{LCS(X, Y, i~1,),
LCS(X, Y, i, j~1)}

Optimal substructure &
Overlapping Subproblems

» Arecursive solution contains a “small” number of distinct
subproblems repeated many times.

* e.g., C[5,5] depends on C[4,4], C[4,5], C[5,4]
+ Exercise: Draw there subproblem dependence graph
» each node is a subproblem

+ directed edge represents “calling”, “uses solution
of” relation

» Small number of distinct subproblems:

« total number of distinct LCS subproblems for two
strings of lengths m and n is mn.

Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

LCS(X, Y, i, J)
if fi, j] = NIL // LCS(i,j) has not been solved yet
then if x[i] = y[j]
then cfi, j] «<LCS(x, y, i~1, j-1) + 1 ?f;?:;?eas
else c[i, j] —max{LCS(x, y, i-1, j),
LCS(x, y, i, j-1)}

Bottom-Up
0 1 2 3 4 5
y A B C B D

>
w\l

Initialization: base case 0 X
c[i,j] = 0if i=0, or j=0

IIFill table row by row 1 B
Il from left to right

for (int i=1: i<=m;i++) 2 D el
for (int j=1;j<=n;j++) s
update c[i,j] 3 C |
return c[m, n] 4 A
Running time =©mn) 5 B
6 A CI3,4]= length of LCS (X3, Ya)

= Length of LCS (BDC, ABCB)

48

i-th row, 4-th column element

Dynamic-Programming Algorithm

Reconstruct LCS
tracing backward:

how do we get value
of CJ[i,j] from? (either
C[i-1,j-1]+1, CIi-1,]],
Cli, j-1)

as red arrow

B

D

C

A
indicates... @
®

Output Output Output Output
B C B A

Matrix

Matrix: a 2D (rectangular) array of numbers, symbols, or
expressions, arranged in rows and columns.

e.g., a 2 x 3 matrix (there are two rows and three columns)

1 9 -13
20 5 —6 |
Each element of a matrix is denoted by a variable with two

subscripts, az,1 element at second row and first column of a
matrix A.

api; a1z Qa1n
anmxnmatrixA: G21 G2 °cc Oon
Am1 Qm2 *** Qmp

50

Matrix Multiplication

Dimension of A, B, and A x B?

Matrix Multiplication:

Matrix A Matrix B Product
_;4 : _[9342 92]
~ |70 60 102
9 1
3

n
[AB;j = Ai1B1j + AiaBoj+ -+ AinBnj = ZAi,rBr,jv
r=1

MATRIX-MULTIPLY (4, B)

1 if A.columns # B.rows

2 error “incompatible dimensions”
3 elselet C be anew A.rows X B.columns matrix
4 fori = 1to A.rows

5 for j = 1to B.columns

6 cj =0
7

8

9

Total (scalar) multiplication: 4x2x3=24

for k = 1to A.columns
¢ij = ¢ij + ik - by Total (scalar) multiplication: n2xnixns
return C

51

Multiplying a chain of Matrix

Given a sequence/chain of matrices, e.g., A,, A,, A, there are
different ways to calculate A AA,

1. (A1A2)A3)

2. (A1(A2A3))

Dimension of A1: 10 x 100
A2:100x 5
As: 5 x 50

all yield the same result

But not same efficiency

52

Matrix Chain Multiplication

Given a chain <A1, A2, ... An> of matrices, where matrix Aj
has dimension p;.1x p;, find optimal fully parenthesize product
A1A2...An that minimizes number of scalar multiplications.

Chain of matrices <A, A,, A,, A>: five distinct ways

A prxp2 Az p2xps Az p3Xps As4: pax ps

Matrix Chain Multiplication

« Given a chain <A1 A2, ... An> of matrices, where matrix Aj
has dimension p;.4x p;, find optimal fully parenthesize product
A1A2...An that minimizes number of scalar multiplications.

 Let m[i, j] be the minimal # of scalar multiplications needed to
calculate AiAi+1...A; (m[1...n]) is what we want to calculate)

» Recurrence relation: how does m[i...j] relate to smaller
problem

« First decision: pick k (can be i, i+1, ...j-1) where to divide AiAi+1...Aj
into two groups: (Ai...A)(Ak+1...A))
* (Ai...Ax) dimension is pi-1 X pk, (Ak+1...A;) dimension is pk x pj
o 0 ifi =j,
mli, j]= min {mli,K] +mlk + 1, /) + pioapeps} i<

54

(A41(A2(A4344))) # of multiplication: papsps+ pzpsps+
(A1((A243)A4)) PiPzPs
((AIAZ) (A3A4))
((A](AzAs))A4) Find the one with minimal multiplications?
(((A 1 AZ)A3)A4)
53
Summary
» Keys to DP

» Optimal Substructure
» overlapping subproblems

+ Define the subproblem: r(n), MSE(i), LCS(i,j) LCS
of prefixes ...

» Write recurrence relation for subproblem: i.e.,
how to calculate solution to a problem using sol.
to smaller subproblems

* Implementation:
* memoization (table+recursion)
* bottom-up table based (smaller problems first)
* Insights and understanding comes from practice! ,,

