Graph: representation and traversal

CISC5835, Computer Algorithms
CIS, Fordham Univ.

Instructor: X. Zhang

Acknowledgement

The set of slides have use materials from the
following resources

S

S
S
S

ides for textbook by Dr. Y. Chen from
nanghai Jiaotong Univ.

ides from Dr. M. Nicolescu from UNR

ides sets by Dr. K. Wayne from Princeton

which in turn have borrowed materials
from other resources

Outline

Graph Definition

Graph Representation

Path, Cycle, Tree, Connectivity
Graph Traversal Algorithms

e Breath first search/traversal
 Depth first search/traversal
Minimal Spaning Tree algorithms

Dijkstra algorithm: shortest path a

Graphs

e Applications that involve not only a set of items, but
also the connections between them

chedules Computer networks

Circuits

One week of Enron emails

KEY: (=] -ty bareaal
EMPLOYER (F-MAL ADORESS) - B I | l-—-l 1 vecy guaccone
AT LEAST ONE EMAR CONTACT -1y —I I q 49 o g Sy
BETWEEN EMLOYEES : o s -
P L e
.:u = O s
S Ly
.-.-u-v.i'. A ragean * @ Seehane e
davon gron 1 b
o) o p—ary @ w3
ot dmaray o O r.'-:-". e * r:_:_:-:.. @ Potey coman
sutrgee ——
- b4 P i, P © e fasiions
Cman g :.no“. JuCTSp—, @ iy tech
) — ":0 The analysia detected @y @ v wngw
+ rra g __n.’ an anomaly: & now o- P ——
iy madl address for this @ wean taa
hevee - ® o ric @ person. who had been S ek o rany
* haniche o . """'.. “philip. allen” for 131 D el sate © scherd sancens
_atet g g -y L @ ouse Mchen @ e ey
ndupt g Beomd® .."‘""" @ ireng pume
R) [< © oy v
ke g e ey @ a-:-- epeng O peifen
= o
et e @ oo bet @ S o m
Pepehaiey @ mm.. ® s L L g
Sokdon sakstery @ -'::"“ P O areia @ ~raa o
ek bl @ i rowy ® Pore ~atn O nlvw
® s perens
on, wikars @ Lo roncm @ ° ® wwa mocorvet
poonaeie @ m-..‘ @ s oy © ~armte rasy
e raspe @ ‘.-_.. ® s pummvacen © recren caw
oy - p— ® ¥ @ rtmert Saraen [Y.
ot shilling ® e a? o U O ® i
| e @ T | A LY
A‘-;. -.-.--n. - et = o sty
Company leaders e-mail - 0....:“:..
less requently, leaving | svpencvacs @ aatelessd Souces Or
SOMe communication 1o e ® o o ®imim Coroy & Poshe
subordinatos. e P o . o .-...:.* Pt .
' ! s ——"
b Bl
iy e
Finding Patterns Kenneth lay

Some graph applications

graph

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

node
telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Graphs - Background

Graphs = a set of nodes (vertices) with edges
(links) between them.

Notations:
= (V, E) - graph
e V =set of vertices (size of V= n)
e E=setof edges (size of E=m)
Directed Undirected Acycllc

graph graph graph

Other Types of Graphs

« A graphis connected if there
IS a path between every two @ e
vertices
& @ & I

Connected Not connected

e A bipartite graph is an
undirected graph G = (V, E) in /(1)— (2)
which V =V, +V, and there 0" e@
(&

are edges only between (3) 04
vertices in V, and V, e

Graph Representation

e Adjacency list representation of G = (V, E)
— An array of n lists, one for each vertex in V
— Each list Adj[u] contains all the vertices v such that

there is an edge between uand v
* Adj[u] contains the vertfices adjacent fo u (in arbitrary order)

— Can be used for both directed and undirected graph:

1 2 51 /

2 1 5 3 4|/
3 2 4

4 2 5 3/
> 4 : 21 |

Undirected graph

Properties of Adjacency List Representation

e Sum of the lengths of all the A
adjacency lists (D—A2

- Directed graph: size of E (m) 9 0

Directed graph
* Edge (u, v) appears only once in u’s list

2* size of E (2m) 0'e e
(D

— Undirected graph:

- uand v appear in each other's adjacency

lists: edge (u, v) appears twice
Undirected graph

Properties of Adjacency List Representation

e Memory required

— ©(mMm+n) 0 e
* Preferred when 2‘9
— the graph is sparse: m << n2 e a

e Disadvantage Undirected graph

— no quick way to determine whether there is

an edge between node u and v e.
— Time fo defermine if (u, v) exists: ‘
O(degree(u)) e e

* Time to list all vertices adjacent to u: Directed graph
— O(degree(u))

Graph Representation

 Adjacency matrix representation of G = (V, E)
— Assume verfices are numbered 1, 2, ... n
— The representation consists of a maftrix A,

- ;= {1 if (i, j) belongs to E, if there is edge (i,j)

0O oftherwise

e

Undirected graph

1 2 4 5
0 1 0 1
1 0 1 1
0 1 1 0
0 1 0 1
1 1 1 0

For undirected
graphs matrix A is
symmetric:

Q; = G

A=AT

12

Properties of Adjacency Matrix Representation
e ————————
e Memory required

- ©O(n?), independent on the number of edges in G
 Preferred when

— The graphis dense: m is close to n?

— need to quickly determine if there is an edge
between two vertices

e Time to list all vertices adjacent to u:
- O(n)

e Time to determine if (u, v) belongs to E:
- O(1)

13

Weighted Graphs

e Weighted graphs = graphs for which each edge

has an associated weight w(u, v)
w: E -> R, weight function
e Storing the weights of a graph
— Adjacency list:
o Store w(u,v) along with vertex vin u’'s adjacency list

— Adjacency matrix:

o Store w(u, v) at location (u, v) in the matrix

14

NetworkX: a Python graph library

http://networkx.qgithub.io/

* Node: any hashable object as a node. Hashable objects
include strings, tuples, intfegers, and more.

* Arbitrary edge attributes: weights and labels can be associated
with an edge.

e internal data structures: based on an adjacency list
representation and uses Python dictionary.

e adjacency structure: implemented as a dictionary of
dictionaries

e fop-level (outer) dictionary: keyed by nodes to values
that are themselves dictionaries keyed by neighboring
node to edge attributes associated with that edge.

e Support: fast addition, deletion, and lookup of nodes and
neighbors in large graphes.

e underlying datastructure is accessed directly by methods

15

http://networkx.github.io/

Graphs Everywhere

* Prerequisite graph for CIS undergrad courses

« Three jugs of capacity 8, 5 and 3 liters, initially
filled with 8, 0 and O liters respectively. How to
pour water between them so that in the end we
have 4, 4 and O liters in the three jugs?

undershorts socks

» what's this graph \—
. pants shoes
representing?

shirt

belt

watch

tie

jacket 16

Outline

Graph Definition

Graph Representation

Path, Cycle, Tree, Connectivity
Graph Traversal Algorithms

 basis of other algorithms

17

Paths

A Path in an undirected graph G=(V,E) is @
sequence of nodes vi,va,..., vk with the property
that each consecutive pair vi, viis joined by an
edge in E.

A path is simple if all nodes in the path are distinct.

A cycle is a path vi,va,...,viwhere vi=vg, k>2, and
the first k-1 nodes are all distinct

An undirected graph is connected if for every pair
of nodes u and v, there is a path between u and v

18

Trees

e A undirected graph is a tree if it is connected
and does not contain a cycle.

e Theorem: Let G be an undirected graph on n
nodes. Any two of the following imply the

third. (3)

e Gisconnected

e G doesnot contain a cy e °

e G hasn-1 edges ° °
(O—

Rooted Trees

Glven a free 1, choose a root node r and
orient each edge away fromr.

Importance: models hierarchy structure

rootr

l><entrofv
s

(s ' /
6 F— \._
(_> - (Z :) (@ G/. D child of v

a tree the same tree, rooted at 1

20

Outline

Graph Definition

Graph Representation

Path, Cycle, Tree, Connectivity
Graph Traversal Algorithms

 basis of other algorithms

21

Searching in a Graph

Graph searching = systematically follow the

edges of the graph to visit all vertices of the

graph

e Graph algorithms are typically elaborations
of the basic graph-searching algorithms

e e.g.puzzle solving, maze walking...
Two basic graph searching algorithms:

— Breadth-first search
— Depth-first search

Difference: the order in which they explore
unvisited edges of the graph

22

Breadth-First Search (BFS)

Input:
- A graph 6 = (V, E) (directed or undirected)
— A source vertex s from V

Goal:

— Explore the edges of G to “discover” every vertex
reachable from s, taking the ones closest to s first

Output:

- d[v] = distance (smallest # of edges) from s to v, for
all v from V

— A "breadth-first tree” rooted at s that contains all
reachable vertices

23

Breadth-First Search (cont.)

 Keeping frack of progress: source

— Color each vertex in either white,
gray or black

— Initially, all vertices are white

— When being discovered a vertex
becomes gray

— After discovering all its adjacent
vertices the node becomes black

— Use FIFO queue Q to maintain the
set of gray vertices ‘

Breadth-First Tree

e BFS constructs a breadth-first tree

— Initially contains root (source vertex s)

— When vertex v is discovered while scanning adjacency list
of a vertex u = vertex vand edge (u, v) are added to the source
tree
— A vertex is discovered only once = it has only one

parent

- uis the predecessor (parent) of vin the breadth-first treg

 Breath-first free contains nodes that are reachable from
source node, and all edges from each node’s predecessor to

the node

25

BFS Application

e BFS constructs a breadth-first tree

e BFS finds shortest (hop-count) path from src node to

all other reachable nodes

e E.g., What's shortest path from 1 to 3? source

— perform BFS using node 1 as source node

— Node 2 is discovered while exploring 1's adjacent

nodes => pred. of node 2 is node 1

— Node 3 is discovered while exploring node 2’s
adjacent nodes => pred. of node 3 is node 2

— so shortest hop count pathis: 1, 2, 3

» Useful when we want to find minimal steps to reach a state

26

BFS: Implementation Detall

e G =(V, E) represented using adjacency lists
color[u] — color of vertex u in V

pred[u] — predecessor of u

— If u = s (root) or node u has not yet been
discovered then pred[u] = NIL

. source
d[u] - distance (hop count) from source s ’ro/ d=1

vertex u

vertices

pred =1 pred=5

27

BFS(V, E, s)

1.

o o N o O AW D

foreachuinV - {s}
do color[u] = WHITE

dlu] « «
pred[u] = NIL

color[s] = GRAY

d[s] « O

pred[s] = NIL

Q = empty

Q «— ENQUEUE(Q, s)

v W X y

9.@9
99‘

y

Qs

28

BFS(V, E, s)

10.
1.
12.
13.
14.

15.
16.
17.
18.

while Q not empty
do u — DEQUEUE(Q)
for each v in Adj[u]
do if color[v] = WHITE

then color[v] =
GRAY

d[v] < d[u] + 1
pred[v] = u
ENQUEUE(Q, v)

color[u] = BLACK

OO C
ee"

29

1.
2
3
4
d.
6
/
3
9

Analysis of BFS

foreachu eV - {s}
do color[u] « WHITE

d[u] « =
pred[u] = NIL

color[s] « GRAY

d[s] < O

pred[s] = NIL

Q—J

Q «— ENQUEUE(Q), s)

\

J

. O(IVI)

r O(1)

31

Analysis of BFS

10. while Q not empty
11. do u «— DEQUEUE(®) o(1)

Scan Adj[u] for all vertices

12. for each v in Adj[u] 4 in the graph
. _ » Each vertex u is processed
13. do if color[v] = WHITE only once, when the vertex is
dequeued
14. then CO|OI"[V] = « Sum of lengths of all
GRAY adjacency lists = O(|E|)
« Scanning operations:
15. d[v] < d[u] + 1 O(IEl)
16. pred(v]=u o(1)
17. ENQUEUE(Q, v)

18, Tofcllortgnn_lr%\ ime for BFS = O(|V] + |E|)™

Shortest Paths Property

e BFS finds the shortest-path distance from the source
vertex s € V to each node in the graph

o Shortest-path distance = d(s, u)
— Minimum number of edges in any path from s to u

source
r J t u

33

Outline

Graph Definition

Graph Representation

Path, Cycle, Tree, Connectivity
Graph Traversal Algorithms

e Breath first search/traversal

 Depth first search/iraversal

34

Depth-First Search

e |nput:
— G =(V, E) (No source vertex given!)

e Goal;

— Explore edges of G to “discover” every vertex in V starting
at most current visited node

e Output:

— 2 timestamps on each vertex:
- d[v] = discovery time (time when v is first reache

- f[v] = finishing time (done with examining v's adja

— Depth-first forest

Depth-First Search: ideo

e Search “deeper” in graph whenever
possible

e explore edges of most recently discovered
vertex v (that still has unexplored edges)

o After all edges of v have been explored, “backtracks” to
parent of v
e Conftinue until all vertices reachable from original
source have been discovered

e |fundiscovered vertices remain, choose one of them as
a new source and repeat search from that vertex
e different from BFS!!!

e DFS creates a “depth-first forest” 2

DFS Additional Data Structures

e Global variable: time-step
— Incremented when nodes are discovered/finished

color[u] — color of node u

— White not discovered, gray discovered and being processing and
black when finished processing

- pred[u] — predecessor of u (from which node we discover u)
-+ d[u]- discovery (fime when u turns gray)

f[u] - finish time (time when u turns black)

1<dul<fu]l=2|V|

WHITE —— BLACK
0° aul fu] 21V

DFS(V, E): top level
1. foreachueV

do color[u] < WHITE \Q/Q Q
pred[u] < NIL @{{@

time «— O x y z

% W

foreachueV

do if color[u] = WHITE
then DFS-VISIT(u)

N o AW

e Everytime DFS-VISIT(u) is called, u becomes the root of
a new tree in the depth-first forest

39

DFS-VISIT(u): DFS exploration from u

© ©® N oL AW N

—
o

color[u] « GRAY
time « time+l
d[u] < time
for each v € Adj[u]
do if color[v] = WHITE
then pred[v] < u
DFS-VISIT(v)
color[u] < BLACK //done with u
time <« time + 1
f[u] « time //finish fime

u

5SS

X

time = 1

u

X

40

Example (cont.)

w

(%
- 9/
FT B .7
O-O© O
X v

W u % w

x y z

7 P (W

FTB .~ i | B
OO 5
X y z o

eg

meQ
w
éQ

<

X
u

u

% (19
FiB .- i | B
.. X0 §
v z

eg Re -ne
LY
< .

M
.

(€
é‘

X

w The results of DFS may depend on:
-@ @ * The order in which nodes are
211 B explored in procedure DFS

@ * The order in which the neighbors of @

vertex are visited in DFS-VISIT
42

Properties of DFS

u = pred[v] < DFS-VISIT(v) was called

during a search of u’'s adjacency list

U is the predecessor (parent) of v CP

* More generally, vertex v is a CD/ @

descendant of vertex u in depth first

forest < v is discovered while u is gray

43

DAG

e Directed acyclic graphs (DAGs)

— Used to represent precedence of events or
processes that have a partial order

undershorts socks
Put on socks before put on shoes
pants shoes
3 shirt No precedence between belts and shoes
belt | |
watch
tie
jacket

Topological sort helps us establish a total order/
linear order. Useful for task scheduling. A4

Topological Sort
m

undershorts socks
pa"nts shoes
b"elt watch
tie
[jacket

directed acyclic graph G
= (V, E): a linear order of
vertices such that if there

exists an edge (u, v), then

u appears before v in the
ordering.

T

socks| | undershorts [pants [shoes

watch | | shirt { belt]| | tie [{jacket

Topological sort:

an ordering of vertices so that
all directed edges go from left to right. 45

Topological Sort via DFS

socks

shoes

watch

undershort
pants
J shirt
belt b
tie
jacket

TS requires that we put u before
v if there is a path fromutov

e.g., socks before shoes
undershorts before jacket

Observation: If we perform DFS
on a DAG, if there is a path
from u to v, then f[u]>f[v]

So arrange nodes in reverse
order of their finish time

Consider when DFS_visit(undershorts) is called, jacket is either
* white: then jacket will be discovered in DFS_visit(undershorts), turn black, before eventually

undershorts finishes. fljacket] < flundershorts]

* black (if DFS_visit(jacket) was called): then f[jacket] < flundershorts]
* node jacket cannot be gray (which would mean that DFS_visit(jacket) is ongoing ...)

46

Topological Sort

indershorts 11716 17/18 [socks TOPOLOGICAL-SORT(V, E)
1. CallDFS(V, E) (to compute

{2/15

pants

shoes 13/14 finishing times f[v] for each
1/8 vertex v): when a node is
6/7 —toh b0 finished, push it on to @
D/5 stack
2. pop nhodes in stack and
[jacket /4 arrange them in a list

socks| | undershorts| | pants| |shoes| |watch| | shirt [belt tie | |jacket

Running time: O(|V| + |E|)

47

Edge Classification®

Via DFS traversal, graph edges can "
be classified into four types.

When in DFS_visit (u), we follow %D j ,>/

edge (v,v) and find node, if v is:

WHITE vertex: then (u,v) is a tree edge (un) is atree edge

- v was first discovered by exploring
edge (u, v)

GRAY node: then (u,v) is a Back edge

- (u, v) connects uto an ancesfor vin

a depth first tree

— Self loops (in directed graphs) are (x,v) is a back edge

also back edges
48

Edge Classification®

if v is black vertex, and d[u]<d[v], (u,v) is @
Forward edge (u,v):

— Non-tree edge (u, v) that connects a vertex
u to a descendant vin a depth first tree

if v is black vertex, and d[u] > d[v], (u,v) is @

Cross edge (u,v):

— go between verfices in same depth-first tree
(as long as there is no ancestor /
descendant relation) or between different
depth-first tfrees

(w,y) is a cross edge

49

Analysis of DFS(V, E)

foreachueV

do color[u] « WHITE
pred[u] < NIL

foreachueV

)

O(V])

O(|V|) — without
L counting the time

do if color[u] = WHITE |for

1.
2
3
4. time <0
5
6
/

then DFS-VISIT(u)

DFS-VISIT

50

Analysis of DFS-VISIT(u)

O ® N OO AW N e

—
o

color[u] < GRAY DFS-VISIT is called exactly

time « fime+1 once for each vertex

d[u] < time \
for each v e Adj[u]
do if color[v] = WHITE , Each loop takes
then pred[v] < u [Adju]]

DFS-VISIT(v)

color[u] < BLACK
Total: 2, |Adj[u]] + O(]|V]) =

~—

O(E|) = O(|V| + |E])

S1

time «— time + 1

f[u] < time

DFS without recursion™

Data Structure: use stack (Last In First Out!)
to store all gray nodes

Pseudocode:
1. Start by push source node to stack
2. Explore node at stack top, i.e.,
* push its next white adj. node to stack)
* if all its adj nodes are black, the node turns black, pop it from stack
3. Continue (go back 2) until stack is empty

4. If there are white nodes remaining, go back to 1 using another white node
as source node

52

Parenthesis Theorem*™

In any DFS of a graph G, for all

u, v, exactly one of the
following holds:
1. [d[u], f[u]] and [d[v], f[v]] are

disjoint, and neither of uand vis a

descendant of the other
2. [d[v], f[v]]is entirely within [d[u],
f[u]] and v is a descendant of u
3. [d[u], f[u]]is entirely within [d[v],

f[v]] and uis a descendant of v

1
(s

2
(z

Wellifo

o (

il

P

foperly nest

. par

11
(t

15 16

are

53

Other Properties of DFS*

Corollary
Vertex v is a proper descendant of u
< d[u] < d[v] < f[v] < f[u]

Theorem (White-path Theorem)
In a depth-first forest of a graph G, u

vertex v is a descendant of u if and only ?D/{ZP

if at time d[u], thereisapathu= v

consisting of only white vertices.

Cycle detection via DFS

A directed graph is acyclic < a DFS on G yields no
back edges.
Proof: v
“=": gcyclic = no back edge (u,v))
— Assume back edge = prove cycle
— Assume there is a back edge (u, v)

= v IS an ancestor of u

= there is a path fromviouin G (v u)

= v > u+ the back edge (u, v) yield a cycle

55

three graph algorithms

56

Shortest Distance Paths

Distance/Cost of a path in weighted graph
sum of weights of all edges on the path
path A,B,E, cost is 2+3=5
path A, B, C, E, cost is 2+1+4=7

How to find shortest distance path from a node, A, to all another node?
assuming: all weights are positive
This implies no cycle in the shortest distance path
Why? Prove by contradiction.
If A->B->C->..->B->D is shortest path, then A->B->D is a shorter!
d[u]: the distance of the shortest-distance path from Ato u
d[A] =0
d[D] = min {d[B]+2, d[E]+2}
because B, E are the two only possible previous node in path to D

Dijkstra Algorithm

Input: positive weighted graph G, source node s

Output: shortest distance path from s to all other nodes
that is reachable from s

Expanding frontier (one hop a time)
1). Starting from A:
We can go to B with cost B, go to C with cost 1

going to all other nodes (here D, E) has to pass B or C
are there cheaper paths to go to C?
are there cheaper paths to B?

2). Where can we go from C? B, E
Two new paths: (A,C,B), (A,C,E)
Better paths than before? => update current optimal path
Are there cheaper paths to B?

3). Where can we go from B?

for each node u, keep track pred[u] (previous node in the path leading to u),
d[u] current shortest distance

W A)
N, S _,411.

dist
A:0 | D:ex
B:4 | E: 0
C:2

Q: C(2), B(4), D, E

Qw>
(O
=9
-~ o

Q: B(3), D(6), E(7)

(v}

[

|

Q: D(5), E(6)

w o

D::
E:

=)

QWP
8o

E:null | pest paths to

moowz»

moowx

each node via

- null nodes circled &
associated
distance

C Dijkstra Alg
Demo

dist

(@]

=)

A: D::
B: E:
C:

WO

Q: D(5), E(6)

7 =D
TN AT
" [\ v .
i»(\ A) 1] 3 ':,j:-:: . Tl
E

mooOw >
Ww> O

moowr
Ww>O

pred

- null

*null

best paths to
each node via
nodes circled &
associated
distance

Dijkstra Alg
Demo

Dijkstra’s algorithm & snapshot

procedure dijkstra(G,l,s)
Input: Graph G = (V,FE), directed or undirected;
positive edge lengths {l.:e€ E}; vertex sV
Output: For all vertices u reachable from s, dist(u) is set
to the distance from s to u.

for all ueV:

dist(u) = 00 H: priority queue (min-heap in this case)
- prev(u) =nil C(dist=1), B(dist=2), D(dist=inf), E (dist=inf)
dist(s) =0
H = makequeue (V) (using dist-values as keys) prev=A prev=nil
while H is not empty: S= ' dist=inf

u = deletemin(H)
for all edges (u,v) € E:
if dist(v) > dist(u) + l(u,v):

dist(v) =dist(u) + l(u,v)
prev(v) =u
decreasekey(H,v)

prev=nil

dist=inf

Minimum Spanning Trees

Minimum Spanning Tree Problem: Given a weighted
graph, choose a subset of edges so that resulting
subgraph is connected, and the total weights of edges
IS minimized
to minimize total weights, it never pays to have cycles, so
resulting connection graph is connected, undirected, and

acyclic, i.e., a free.

Applications:
Communication networks
Circuit design
Layout of highway systems

Formal Definition of MST

« Given a connected, undirected, weighted graph G = (V, E), a
spanning tree is an acyclic subset of edges 7 C E that connects all

vertices together.

« cost of a spanning tree T : the sum of edge weights in the spanning
tree

w(T) = E(u, V)eTW(”’ V)

A minimum spanning tree (MST) is a spanning tree of minimum
weight.

63

Minimum Spanning Trees

» Given: Connected, undirected, weighted graph, G
* Find: Minimum - weight spanning tree, T

- /
V<

Acyclic subset of edges(E) that
connects all vertices of G.

Notice: there are many spanning trees for a graph
We want to find the one with the minimum cost

Such problems are optimization problems: there are multiple
viable solutions, we want to find best (lowest cost, best perf) one.

64

Greedy Algorithms

A problem solving strategy (like divide-and-conquer)

|ldea: build up a solution piece by piece, in each step
always choose the option that offers best immediate
benefits (a myopic approach)

Local optimization: choose what seems best
right now

not worrying about long term benefits/global
benefits

Sometimes yield optimal solution, sometimes yield
suboptimal (i.e., not optimal)

Sometimes we can bound difference from optimal...

65

Minimum Spanning Trees

» Given: Connected, undirected, weighted graph, G
* Find: Minimum - weight spanning tree, T

How to greedily build a spanning tree?
“Always choose lightest edge? Might lead to-cycle.
* Repeat for n-1 times:
find next lightest edge that does not introduce cycle,
add the edge into tree
=> Kruskal’s algorithm °0

Kruskal's Algorithm

Figure 5.4 Kruskal’s minimum spanning tree algorithm.

procedure kruskal(G,w)

Input: A connected undirected graph G = (V,E) with edge weights w,
Output: A minimum spanning tree defined by the edges X

for all ueV:
makeset(u)

X ={}
Sort the edges E by weight
for all edges {u,v} € E, in increasing order of weight:
if find(u) # find(v):
add edge {u,v} to X
union(u,v)

Implementation detail:

* Maintain sets of nodes that are connected by tree edges

* find(u): return the set that u belongs to

* find(u)=find(v) means u, v belongs to same group (i.e., uand v
are already connected)

Minimum Spanning Trees

» Given: Connected, undirected, weighted graph, G
« Find: Minimum - weight spanning tree, T

Example:
Suppose we start grow tree from C,
step 1. A has lightest edge to tree, add A
and the edge (A-C) to tree
// tree is now A-C
step 2: D has lightest edge to tree
add D and the edge (C-D) to tree

How to greedily build a spanning tree?
* Grow the tree from a node (any node),
* Repeat for n-1 times:
* connect one node to the tree by choosing
node with lightest edge connecting to tree nodes

This is Prim algorithm. s

Prim’s Algorithm

procedure prim(G,w)
Input: A connected undirected graph G = (V,FE) with edge weights w,
Output: A minimum spanning tree defined by the array prev

for all ueV:

cost(u) = o0

prev(u) = nil
Pick any initial node ug
cost(ug) =0

H = makequeue (V) (priority quéue, using cost-values as keys)
while H is not empty:
v =deletemin(H)
for each {v,z} € E:
if cost(z) > w(v,2):
cost(z) = w(v,2)
prev(z) =v
decreasekey(H, z)

Summary

Graph everywhere: represent binary relation
Graph Representation

e Adjacent lists, Adjacent matrix

Path, Cycle, Tree, Connectivity

Graph Traversal Algorithm: systematic way to explore graph
(nodes)

 BFS vyields a fat and short tree
e App: find shortest hop path from a node to other nodes
 DFS yields forest made up of lean and tall tree

e App: detect cycles and topological sorting (for DAG)

/70

