
Graph: representation and traversal 
CISC5835, Computer Algorithms

CIS, Fordham Univ.

Instructor: X. Zhang

Acknowledgement
• The set of slides have use materials from the

following resources
• Slides for textbook by Dr. Y. Chen from

Shanghai Jiaotong Univ.
• Slides from Dr. M. Nicolescu from UNR
• Slides sets by Dr. K. Wayne from Princeton

• which in turn have borrowed materials
from other resources

2

Outline
• Graph Definition

• Graph Representation

• Path, Cycle, Tree, Connectivity

• Graph Traversal Algorithms

• Breath first search/traversal

• Depth first search/traversal

• …

• Minimal Spaning Tree algorithms

• Dijkstra algorithm: shortest path a
3

Graphs
• Applications that involve not only a set of items, but

also the connections between them

Computer networks

Circuits

Schedules

Hypertext

Maps

4

5

6

Graphs - Background
Graphs = a set of nodes (vertices) with edges

(links) between them.
Notations:
• G = (V, E) - graph
• V = set of vertices (size of V = n)
• E = set of edges (size of E = m)

1 2

3 4

1 2

3 4

Directed
graph

Undirected
graph

1 2

3 4

Acyclic
graph

7

Other Types of Graphs
• A graph is connected if there

is a path between every two
vertices

• A bipartite graph is an
undirected graph G = (V, E) in
which V = V1 + V2 and there
are edges only between
vertices in V1 and V2

1 2

3 4

Connected

1 2

3 4

Not connected

1 2

3

4

4
9

7
6

8

8

Graph Representation
• Adjacency list representation of G = (V, E)

– An array of n lists, one for each vertex in V
– Each list Adj[u] contains all the vertices v such that

there is an edge between u and v
• Adj[u] contains the vertices adjacent to u (in arbitrary order)

– Can be used for both directed and undirected graphs

1 2

5 4

3

2 5 /

1 5 3 4 /

1

2

3

4

5

2 4

2 5 3 /

4 1 2
Undirected graph

9

Properties of Adjacency List Representation

• Sum of the lengths of all the

adjacency lists

– Directed graph:

• Edge (u, v) appears only once in u’s list

– Undirected graph:

• u and v appear in each other’s adjacency

lists: edge (u, v) appears twice

1 2

5 4

3

Undirected graph

1 2

3 4

Directed graph
size of E (m)

2* size of E (2m)

10

Properties of Adjacency List Representation

• Memory required
– Θ(m+n)

• Preferred when
– the graph is sparse: m << n2

• Disadvantage
– no quick way to determine whether there is

an edge between node u and v

– Time to determine if (u, v) exists:
O(degree(u))

• Time to list all vertices adjacent to u:
– Θ(degree(u))

1 2

5 4

3

Undirected graph

1 2

3 4

Directed graph

11

Graph Representation
• Adjacency matrix representation of G = (V, E)

– Assume vertices are numbered 1, 2, … n
– The representation consists of a matrix Anxn
– aij = 1 if (i, j) belongs to E, if there is edge (i,j)

 0 otherwise

1 2

5 4

3

Undirected graph

1

2

3

4

5

1 2 3 4 5

0 1 10 0

1 1 1 10

1 10 0 0

1 1 10 0

1 1 10 0

For undirected
graphs matrix A is
symmetric:
 aij = aji

 A = AT

12

Properties of Adjacency Matrix Representation

• Memory required
– Θ(n2), independent on the number of edges in G

• Preferred when
– The graph is dense: m is close to n2
– need to quickly determine if there is an edge

between two vertices

• Time to list all vertices adjacent to u:
– Θ(n)

• Time to determine if (u, v) belongs to E:
– Θ(1)

13

Weighted Graphs
• Weighted graphs = graphs for which each edge

has an associated weight w(u, v)

 w: E -> R, weight function

• Storing the weights of a graph
– Adjacency list:

• Store w(u,v) along with vertex v in u’s adjacency list

– Adjacency matrix:

• Store w(u, v) at location (u, v) in the matrix

14

NetworkX: a Python graph library
• http://networkx.github.io/
• Node: any hashable object as a node. Hashable objects

include strings, tuples, integers, and more.
• Arbitrary edge attributes: weights and labels can be associated

with an edge.
• internal data structures: based on an adjacency list

representation and uses Python dictionary.
• adjacency structure: implemented as a dictionary of

dictionaries
• top-level (outer) dictionary: keyed by nodes to values

that are themselves dictionaries keyed by neighboring
node to edge attributes associated with that edge.

• Support: fast addition, deletion, and lookup of nodes and
neighbors in large graphs.

• underlying datastructure is accessed directly by methods
15

http://networkx.github.io/

Graphs Everywhere

• Prerequisite graph for CIS undergrad courses

• Three jugs of capacity 8, 5 and 3 liters, initially
filled with 8, 0 and 0 liters respectively. How to
pour water between them so that in the end we
have 4, 4 and 0 liters in the three jugs?

• what’s this graph
representing?

16

Outline
• Graph Definition

• Graph Representation

• Path, Cycle, Tree, Connectivity

• Graph Traversal Algorithms

• basis of other algorithms

17

Paths
• A Path in an undirected graph G=(V,E) is a

sequence of nodes v1,v2,…,vk with the property
that each consecutive pair vi-1, vi is joined by an
edge in E.

• A path is simple if all nodes in the path are distinct.

• A cycle is a path v1,v2,…,vk where v1=vk, k>2, and
the first k-1 nodes are all distinct

• An undirected graph is connected if for every pair
of nodes u and v, there is a path between u and v

18

Trees

19

• A undirected graph is a tree if it is connected
and does not contain a cycle.

• Theorem: Let G be an undirected graph on n
nodes. Any two of the following imply the
third.
• G is connected

• G does not contain a cycle

• G has n-1 edges

Rooted Trees

20

• Given a tree T, choose a root node r and
orient each edge away from r.

• Importance: models hierarchy structure

Outline
• Graph Definition

• Graph Representation

• Path, Cycle, Tree, Connectivity

• Graph Traversal Algorithms

• basis of other algorithms

21

• Graph searching = systematically follow the
edges of the graph to visit all vertices of the
graph
• Graph algorithms are typically elaborations

of the basic graph-searching algorithms
• e.g. puzzle solving, maze walking…

• Two basic graph searching algorithms:
– Breadth-first search
– Depth-first search

• Difference: the order in which they explore
unvisited edges of the graph

Searching in a Graph

22

Breadth-First Search (BFS)
• Input:

– A graph G = (V, E) (directed or undirected)
– A source vertex s from V

• Goal:
– Explore the edges of G to “discover” every vertex

reachable from s, taking the ones closest to s first
• Output:

– d[v] = distance (smallest # of edges) from s to v, for
all v from V

– A “breadth-first tree” rooted at s that contains all
reachable vertices

23

Breadth-First Search (cont.)
• Keeping track of progress:

– Color each vertex in either white,
gray or black

– Initially, all vertices are white
– When being discovered a vertex

becomes gray
– After discovering all its adjacent

vertices the node becomes black
– Use FIFO queue Q to maintain the

set of gray vertices

1 2

5 4

3

1 2

5 4

3

source

1 2

5 4

3

24

Breadth-First Tree
• BFS constructs a breadth-first tree

– Initially contains root (source vertex s)

– When vertex v is discovered while scanning adjacency list

of a vertex u ⇒ vertex v and edge (u, v) are added to the

tree

– A vertex is discovered only once ⇒ it has only one

parent

– u is the predecessor (parent) of v in the breadth-first tree

• Breath-first tree contains nodes that are reachable from
source node, and all edges from each node’s predecessor to
the node

1 2

5 4

3

source

25

BFS Application
• BFS constructs a breadth-first tree

• BFS finds shortest (hop-count) path from src node to

all other reachable nodes

• E.g., What’s shortest path from 1 to 3?

– perform BFS using node 1 as source node

– Node 2 is discovered while exploring 1’s adjacent
nodes => pred. of node 2 is node 1

– Node 3 is discovered while exploring node 2’s
adjacent nodes => pred. of node 3 is node 2

– so shortest hop count path is: 1, 2, 3

• Useful when we want to find minimal steps to reach a state

1 2

5 4

3

source

26

BFS: Implementation Detail
• G = (V, E) represented using adjacency lists

• color[u] – color of vertex u in V

• pred[u] – predecessor of u

– If u = s (root) or node u has not yet been

discovered then pred[u] = NIL

• d[u] – distance (hop count) from source s to

vertex u

• Use a FIFO queue Q to maintain set of gray
vertices

1 2

5 4

3

d=1
pred =1

d=1
pred =1

d=2
pred=5

d=2
pred =2

source

27

BFS(V, E, s)
1. for each u in V - {s}

2. do color[u] = WHITE

3. d[u] ← ∞

4. pred[u] = NIL

5. color[s] = GRAY

6. d[s] ← 0

7. pred[s] = NIL

8. Q = empty

9. Q ← ENQUEUE(Q, s) Q: s

∞ 0 ∞ ∞

∞ ∞ ∞ ∞

r s t u

v w x y

∞ ∞ ∞

∞ ∞ ∞ ∞

r s t u

v w x y

r s t u

v w x y

28

BFS(V, E, s)
10. while Q not empty

11. do u ← DEQUEUE(Q)

12. for each v in Adj[u]

13. do if color[v] = WHITE

14. then color[v] =
GRAY

15. d[v] ← d[u] + 1

16. pred[v] = u

17. ENQUEUE(Q, v)

18. color[u] = BLACK

∞ 0 ∞ ∞

∞ 1 ∞ ∞

r s t u

v w x y

Q: w

Q: s
∞ 0 ∞ ∞

∞ ∞ ∞ ∞

r s t u

v w x y

1 0 ∞ ∞

∞ 1 ∞ ∞

r s t u

v w x y

Q: w, r

29

CS 477/677 - Lecture 19

Example

1 0 ∞ ∞

∞ 1 ∞ ∞

r s t u

v w x y
Q: s

∞ 0 ∞ ∞

∞ ∞ ∞ ∞

r s t u

v w x y
Q: w, r

v w x y

1 0 2 ∞

∞ 1 2 ∞

r s t u

Q: r, t, x

1 0 2 ∞

2 1 2 ∞

r s t u

v w x y
Q: t, x, v

1 0 2 3

2 1 2 ∞

r s t u

v w x y
Q: x, v, u

1 0 2 3

2 1 2 3

r s t u

v w x y
Q: v, u, y

1 0 2 3

2 1 2 3

r s t u

v w x y
Q: u, y

1 0 2 3

2 1 2 3

r s t u

v w x y
Q: y

r s t u

1 0 2 3

2 1 2 3
v w x y
Q: ∅ 30

Analysis of BFS
1. for each u ∈ V - {s}

2. do color[u] ← WHITE

3. d[u] ← ∞

4. pred[u] = NIL
5. color[s] ← GRAY

6. d[s] ← 0

7. pred[s] = NIL
8. Q ← ∅

9. Q ← ENQUEUE(Q, s)

O(|V|)

Θ(1)

31

Analysis of BFS

Θ(1)

Θ(1)

Scan Adj[u] for all vertices
u in the graph
• Each vertex u is processed
only once, when the vertex is
dequeued

• Sum of lengths of all
adjacency lists = Θ(|E|)
• Scanning operations:
O(|E|)

• Total running time for BFS = O(|V| + |E|) 32

10. while Q not empty

11. do u ← DEQUEUE(Q)

12. for each v in Adj[u]

13. do if color[v] = WHITE

14. then color[v] =
GRAY

15. d[v] ← d[u] + 1

16. pred[v] = u

17. ENQUEUE(Q, v)

18. color[u] = BLACK

Shortest Paths Property
• BFS finds the shortest-path distance from the source

vertex s ∈ V to each node in the graph
• Shortest-path distance = d(s, u)

– Minimum number of edges in any path from s to u

r s t u

1 0 2 3

2 1 2 3

v w x y

source

33

Outline
• Graph Definition

• Graph Representation

• Path, Cycle, Tree, Connectivity

• Graph Traversal Algorithms

• Breath first search/traversal

• Depth first search/traversal

• …

34

Depth-First Search

35

• Input:
– G = (V, E) (No source vertex given!)

• Goal:
– Explore edges of G to “discover” every vertex in V starting

at most current visited node
– Search may be repeated from multiple sources

• Output:
– 2 timestamps on each vertex:

• d[v] = discovery time (time when v is first reached)

• f[v] = finishing time (done with examining v’s adjacency list)

– Depth-first forest

Depth-First Search: idea
• Search “deeper” in graph whenever

possible
• explore edges of most recently discovered

vertex v (that still has unexplored edges)

• After all edges of v have been explored, “backtracks” to
parent of v

• Continue until all vertices reachable from original
source have been discovered

• If undiscovered vertices remain, choose one of them as
a new source and repeat search from that vertex

• different from BFS!!!
• DFS creates a “depth-first forest”

36

37

DFS Additional Data Structures
• Global variable: time-step

– Incremented when nodes are discovered/finished
• color[u] – color of node u

– White not discovered, gray discovered and being processing and
black when finished processing

• pred[u] – predecessor of u (from which node we discover u)

• d[u]– discovery (time when u turns gray)

• f[u] – finish time (time when u turns black)

GRAYWHITE BLACK

0 2|V|d[u] f[u]

1 ≤ d[u] < f [u] ≤ 2 |V|

38

DFS(V, E): top level
1. for each u ∈ V
2. do color[u] ← WHITE

3. pred[u] ← NIL
4. time ← 0
5. for each u ∈ V
6. do if color[u] = WHITE

7. then DFS-VISIT(u)

• Every time DFS-VISIT(u) is called, u becomes the root of
a new tree in the depth-first forest

u v w

x y z

39

DFS-VISIT(u): DFS exploration from u
1. color[u] ← GRAY
2. time ← time+1
3. d[u] ← time
4. for each v ∈ Adj[u]
5. do if color[v] = WHITE

6. then pred[v] ← u
7. DFS-VISIT(v)
8. color[u] ← BLACK //done with u

9. time ← time + 1
10. f[u] ← time //finish time

1/

u v w

x y z

u v w

x y z

time = 1

1/ 2/

u v w

x y z
40

Example

1/ 2/

u v w

x y z

1/

u v w

x y z

1/ 2/

3/

u v w

x y z

1/ 2/

4/ 3/

u v w

x y z

1/ 2/

4/ 3/

u v w

x y z

B
1/ 2/

4/5 3/

u v w

x y z

B

1/ 2/

4/5 3/6

u v w

x y z

B
1/ 2/7

4/5 3/6

u v w

x y z

B
1/ 2/7

4/5 3/6

u v w

x y z

BF

41

Example (cont.)

1/8 2/7

4/5 3/6

u v w

x y z

BF
1/8 2/7 9/

4/5 3/6

u v w

x y z

BF
1/8 2/7 9/

4/5 3/6

u v w

x y z

BF
C

1/8 2/7 9/

4/5 3/6 10/

u v w

x y z

BF
C 1/8 2/7 9/

4/5 3/6 10/

u v w

x y z

BF
C

B

1/8 2/7 9/

4/5 3/6 10/11

u v w

x y z

BF
C

B

1/8 2/7 9/12

4/5 3/6 10/11

u v w

x y z

BF
C

B

The results of DFS may depend on:
• The order in which nodes are
explored in procedure DFS
• The order in which the neighbors of a
vertex are visited in DFS-VISIT

42

Properties of DFS
• u = pred[v] ⟺ DFS-VISIT(v) was called

during a search of u’s adjacency list

• u is the predecessor (parent) of v

• More generally, vertex v is a

descendant of vertex u in depth first

forest ⟺ v is discovered while u is gray

1/ 2/

3/

u v w

x y z

43

undershorts

• Directed acyclic graphs (DAGs)

– Used to represent precedence of events or
processes that have a partial order

DAG

Topological sort helps us establish a total order/
linear order. Useful for task scheduling. 44

pants

belt

socks

shoes

watch

shirt

tie

jacket

Put on socks before put on shoes

No precedence between belts and shoes

Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

jackettiebeltshirtwatchshoespantsundershortssocks

Topological sort:
an ordering of vertices so that
all directed edges go from left to right. 45

Topological sort of a
directed acyclic graph G
= (V, E): a linear order of
vertices such that if there
exists an edge (u, v), then
u appears before v in the
ordering.

Topological Sort via DFS

undershort

pants

belt

socks

shoes

watch

shirt

tie

jacket

46

TS requires that we put u before
v if there is a path from u to v

e.g., socks before shoes
 undershorts before jacket
Observation: If we perform DFS

on a DAG, if there is a path
from u to v, then f[u]>f[v]

So arrange nodes in reverse
order of their finish time

Consider when DFS_visit(undershorts) is called, jacket is either
* white: then jacket will be discovered in DFS_visit(undershorts), turn black, before eventually
 undershorts finishes. f[jacket] < f[undershorts]
* black (if DFS_visit(jacket) was called): then f[jacket] < f[undershorts]
* node jacket cannot be gray (which would mean that DFS_visit(jacket) is ongoing …)

Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

TOPOLOGICAL-SORT(V, E)
1. Call DFS(V, E) (to compute

finishing times f[v] for each
vertex v): when a node is
finished, push it on to a
stack

2. pop nodes in stack and
arrange them in a list

1/

2/

3/4

5

6/7
8

9/10

11/

12/
13/14

15

16 17/18

jackettiebeltshirtwatchshoespantsundershortssocks

Running time: Θ(|V| + |E|)

47

Edge Classification*
• Via DFS traversal, graph edges can

be classified into four types.
• When in DFS_visit (u), we follow

edge (u,v) and find node, if v is:
• WHITE vertex: then (u,v) is a tree edge

– v was first discovered by exploring
edge (u, v)

• GRAY node: then (u,v) is a Back edge

– (u, v) connects u to an ancestor v in
a depth first tree

– Self loops (in directed graphs) are
also back edges

1/ 2/

4/ 3/

u v w

x y z

B

48

(x,v) is a back edge

1/

u v w

x y z
(u,v) is a tree edge

Edge Classification*
• if v is black vertex, and d[u]<d[v], (u,v) is a

Forward edge (u,v):
– Non-tree edge (u, v) that connects a vertex

u to a descendant v in a depth first tree

• if v is black vertex, and d[u] > d[v], (u,v) is a
Cross edge (u,v):
– go between vertices in same depth-first tree

(as long as there is no ancestor /
descendant relation) or between different
depth-first trees

1/ 2/7

4/5 3/6

u v w

x y z

BF

1/8 2/7 9/

4/5 3/6

u v w

x y z

BF
C

49

(u,x) is a forward edge

(w,y) is a cross edge

Analysis of DFS(V, E)
1. for each u ∈ V

2. do color[u] ← WHITE

3. pred[u] ← NIL
4. time ← 0
5. for each u ∈ V

6. do if color[u] = WHITE

7. then DFS-VISIT(u)

Θ(|V|)

Θ(|V|) – without
counting the time
for
DFS-VISIT

50

Analysis of DFS-VISIT(u)
1. color[u] ← GRAY
2. time ← time+1
3. d[u] ← time
4. for each v ∈ Adj[u]

5. do if color[v] = WHITE

6. then pred[v] ← u
7. DFS-VISIT(v)
8. color[u] ← BLACK

9. time ← time + 1
10. f[u] ← time

Each loop takes
|Adj[u]|

DFS-VISIT is called exactly
once for each vertex

Total: Σu∈V |Adj[u]| + Θ(|V|) =

Θ(|E|) = Θ(|V| + |E|)
51

DFS without recursion*

52

Data Structure: use stack (Last In First Out!)
to store all gray nodes

Pseudocode:
1. Start by push source node to stack
2. Explore node at stack top, i.e.,

 * push its next white adj. node to stack)
 * if all its adj nodes are black, the node turns black, pop it from stack

3. Continue (go back 2) until stack is empty

4. If there are white nodes remaining, go back to 1 using another white node
as source node

Parenthesis Theorem*
In any DFS of a graph G, for all

u, v, exactly one of the

following holds:
1. [d[u], f[u]] and [d[v], f[v]] are

disjoint, and neither of u and v is a

descendant of the other

2. [d[v], f[v]] is entirely within [d[u],

f[u]] and v is a descendant of u

3. [d[u], f[u]] is entirely within [d[v],

f[v]] and u is a descendant of v

3/6 2/9 1/10

4/5 7/8 12/13
uvwx

y z s

11/16

14/15

t

1 2 3 4 5 6 7 8 9 10 1311 12 14 15 16

s

z

t

v u

y w

x

(s (z (y (x x) y) (w w) z) s) v)(t (v (u u) t)

Well-formed expression: parenthesis are
properly nested

53

Other Properties of DFS*
Corollary
 Vertex v is a proper descendant of u

 ⟺ d[u] < d[v] < f[v] < f[u]

Theorem (White-path Theorem)

 In a depth-first forest of a graph G,
vertex v is a descendant of u if and only
if at time d[u], there is a path u ! v
consisting of only white vertices.

1/ 2/

u

v

1/8 2/7 9/12

4/5 3/6 10/11

u

v

BF
C

B

54

Cycle detection via DFS
 A directed graph is acyclic ⟺ a DFS on G yields no

back edges.

Proof:

“⇒”: acyclic ⇒ no back edge

– Assume back edge ⇒ prove cycle

– Assume there is a back edge (u, v)

⇒ v is an ancestor of u

⇒ there is a path from v to u in G (v ! u)

⇒ v ! u + the back edge (u, v) yield a cycle

v

u

(u, v)

55

three graph algorithms

56

Shortest Distance Paths
Distance/Cost of a path in weighted graph

sum of weights of all edges on the path
path A,B,E, cost is 2+3=5
path A, B, C, E, cost is 2+1+4=7

How to find shortest distance path from a node, A, to all another node?
assuming: all weights are positive
This implies no cycle in the shortest distance path

Why? Prove by contradiction.
If A->B->C->..->B->D is shortest path, then A->B->D is a shorter!

d[u]: the distance of the shortest-distance path from A to u
d[A] = 0
d[D] = min {d[B]+2, d[E]+2}
 because B, E are the two only possible previous node in path to D

Dijkstra Algorithm
Input: positive weighted graph G, source node s
Output: shortest distance path from s to all other nodes
that is reachable from s

S

Expanding frontier (one hop a time)
1). Starting from A:
We can go to B with cost B, go to C with cost 1

going to all other nodes (here D, E) has to pass B or C
are there cheaper paths to go to C?
are there cheaper paths to B?

2). Where can we go from C? B, E
 Two new paths: (A,C,B), (A,C,E)
 Better paths than before? => update current optimal path
 Are there cheaper paths to B?
3). Where can we go from B?
…

for each node u, keep track pred[u] (previous node in the path leading to u),
 d[u] current shortest distance

Dijkstra Alg
Demo

dist pred
A: null
B: A
C: A
D: null,
E: null

A: null
B: C
C: A
D: C,
E: C

A: null
B: C
C: A
D: B,
E: B

best paths to
each node via
nodes circled &
associated
distance

A: null
B: C
C: A
D: B,
E: B

Q: C(2), B(4), D, E

Q: B(3), D(6), E(7)

Q: D(5), E(6)

Q: E(6)

Dijkstra Alg
Demo

dist pred

A: null
B: C
C: A
D: B,
E: B

best paths to
each node via
nodes circled &
associated
distance

A: null
B: C
C: A
D: B,
E: B

Q: D(5), E(6)

Q: E(6)

Dijkstra’s algorithm & snapshot

s=A

prev=nil
dist=0

prev=A
dist=2

prev=A
dist=1

prev=nil
dist=inf

prev=nil
dist=inf

H: priority queue (min-heap in this case)
C(dist=1), B(dist=2), D(dist=inf), E (dist=inf)

Minimum Spanning Trees

Minimum Spanning Tree Problem: Given a weighted
graph, choose a subset of edges so that resulting
subgraph is connected, and the total weights of edges
is minimized

to minimize total weights, it never pays to have cycles, so
resulting connection graph is connected, undirected, and
acyclic, i.e., a tree.

Applications:
– Communication networks
– Circuit design
– Layout of highway systems

62

Formal Definition of MST

• Given a connected, undirected, weighted graph G = (V, E), a
spanning tree is an acyclic subset of edges T ⊆ E that connects all
vertices together.

• cost of a spanning tree T : the sum of edge weights in the spanning
tree

w(T) = ∑(u,v)∈T w(u,v)

• A minimum spanning tree (MST) is a spanning tree of minimum
weight.

63

Minimum Spanning Trees
• Given: Connected, undirected, weighted graph, G
• Find: Minimum - weight spanning tree, T

Notice: there are many spanning trees for a graph
We want to find the one with the minimum cost

Such problems are optimization problems: there are multiple
 viable solutions, we want to find best (lowest cost, best perf) one.

Acyclic subset of edges(E) that
connects all vertices of G.

64

Greedy Algorithms

A problem solving strategy (like divide-and-conquer)
Idea: build up a solution piece by piece, in each step
always choose the option that offers best immediate
benefits (a myopic approach)

Local optimization: choose what seems best
right now
not worrying about long term benefits/global
benefits

Sometimes yield optimal solution, sometimes yield
suboptimal (i.e., not optimal)
Sometimes we can bound difference from optimal…

65

Minimum Spanning Trees
• Given: Connected, undirected, weighted graph, G
• Find: Minimum - weight spanning tree, T

How to greedily build a spanning tree?
 * Always choose lightest edge? Might lead to cycle.
 * Repeat for n-1 times:
 find next lightest edge that does not introduce cycle,
 add the edge into tree
 => Kruskal’s algorithm 66

Kruskal’s Algorithm

Implementation detail:
* Maintain sets of nodes that are connected by tree edges
* find(u): return the set that u belongs to
* find(u)=find(v) means u, v belongs to same group (i.e., u and v
are already connected)

Minimum Spanning Trees
• Given: Connected, undirected, weighted graph, G
• Find: Minimum - weight spanning tree, T

How to greedily build a spanning tree?
 * Grow the tree from a node (any node),
 * Repeat for n-1 times:
 * connect one node to the tree by choosing
 node with lightest edge connecting to tree nodes

This is Prim algorithm.

68

Example:
Suppose we start grow tree from C,
 step 1. A has lightest edge to tree, add A
and the edge (A-C) to tree
 // tree is now A-C
 step 2: D has lightest edge to tree
add D and the edge (C-D) to tree
 ….

Prim’s Algorithm

cost[u]: stores weight of lightest edge
connecting u to current tree

It will be updated as the tree grows

deletemin() takes node v with lowest
cost out
 * this means node v is done(added to
tree) // v, and edge v - prev(v) added to
tree

H is a priority queue (usually implemented as heap,
here it’s min-heap: node with lostest cost at root)

Summary
• Graph everywhere: represent binary relation

• Graph Representation

• Adjacent lists, Adjacent matrix

• Path, Cycle, Tree, Connectivity

• Graph Traversal Algorithm: systematic way to explore graph
(nodes)

• BFS yields a fat and short tree

• App: find shortest hop path from a node to other nodes

• DFS yields forest made up of lean and tall tree

• App: detect cycles and topological sorting (for DAG)

70

