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Outline
• Graph Definition 

• Graph Representation  

• Path, Cycle, Tree, Connectivity  

• Graph Traversal Algorithms 

• Breath first search/traversal 

• Depth first search/traversal 

• … 

• Minimal Spaning Tree algorithms 

• Dijkstra algorithm: shortest path a
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Graphs
• Applications that involve not only a set of items, but 

also the connections between them

Computer networks

Circuits

Schedules

Hypertext

Maps
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Graphs - Background
Graphs = a set of nodes (vertices) with edges 

(links) between them. 
Notations: 
• G = (V, E) - graph 
• V = set of vertices (size of V = n) 
• E = set of edges  (size of E = m)
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Other Types of Graphs
• A graph is connected if there 

is a path between every two 
vertices 

• A bipartite graph is an 
undirected graph G = (V, E) in 
which V = V1 + V2 and there 
are edges only between 
vertices in V1 and V2
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Graph Representation
• Adjacency list representation of G = (V, E) 

– An array of n lists, one for each vertex in V 
– Each list Adj[u] contains all the vertices v such that 

there is an edge between u and v 
• Adj[u] contains the vertices adjacent to u (in arbitrary order) 

– Can be used for both directed and undirected graphs

1 2

5 4

3

2 5 /

1 5 3 4 /
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Undirected graph
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Properties of Adjacency List Representation

• Sum of the lengths of all the 

adjacency lists 

– Directed graph: 

• Edge (u, v) appears only once in u’s list 

– Undirected graph: 

• u and v appear in each other’s adjacency 

lists: edge (u, v) appears twice

1 2

5 4

3

Undirected graph

1 2

3 4

Directed graph
size of E (m)

2* size of E (2m)
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Properties of Adjacency List Representation

• Memory required 
– Θ(m+n) 

• Preferred when 
– the graph is sparse: m << n2 

• Disadvantage 
– no quick way to determine whether there is 

an edge between node u and v 

– Time to determine if (u, v) exists: 
O(degree(u)) 

• Time to list all vertices adjacent to u: 
– Θ(degree(u))
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Undirected graph
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Directed graph
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Graph Representation
• Adjacency matrix representation of G = (V, E) 

– Assume vertices are numbered 1, 2, … n 
– The representation consists of a matrix Anxn  
– aij =   1    if (i, j) belongs to E, if there is edge (i,j) 

                    0    otherwise

1 2

5 4

3

Undirected graph

1

2

3

4

5

1 2 3 4 5

0 1 10 0

1 1 1 10

1 10 0 0

1 1 10 0

1 1 10 0

For undirected 
graphs matrix A is 
symmetric: 
   aij = aji 

   A = AT
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Properties of Adjacency Matrix Representation

• Memory required 
– Θ(n2), independent on the number of edges in G 

• Preferred when 
– The graph is dense: m is close to n2 
– need to quickly determine if there is an edge 

between two vertices 

• Time to list all vertices adjacent to u: 
– Θ(n) 

• Time to determine if (u, v) belongs to E: 
– Θ(1)
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Weighted Graphs
• Weighted graphs = graphs for which each edge 

has an associated weight w(u, v) 

   w: E -> R, weight function 

• Storing the weights of a graph 
– Adjacency list:  

• Store w(u,v) along with vertex v in u’s adjacency list 

– Adjacency matrix: 

• Store w(u, v) at location (u, v) in the matrix
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NetworkX: a Python graph library
• http://networkx.github.io/ 
• Node: any hashable object as a node. Hashable objects 

include strings, tuples, integers, and more. 
• Arbitrary edge attributes: weights and labels can be associated 

with an edge. 
• internal data structures: based on an adjacency list 

representation and uses Python dictionary. 
• adjacency structure: implemented as a dictionary of 

dictionaries 
• top-level (outer) dictionary: keyed by nodes to values 

that are themselves dictionaries keyed by neighboring 
node to edge attributes associated with that edge.  

• Support: fast addition, deletion, and lookup of nodes and 
neighbors in large graphs.  

• underlying datastructure is accessed directly by methods
15
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Graphs Everywhere

• Prerequisite graph for CIS undergrad courses 

• Three jugs of capacity 8, 5 and 3 liters, initially 
filled with 8, 0 and 0 liters respectively. How to 
pour water between them so that in the end we 
have 4, 4 and 0 liters in the three jugs? 

• what’s this graph 
representing?
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Outline
• Graph Definition 

• Graph Representation  

• Path, Cycle, Tree, Connectivity  

• Graph Traversal Algorithms 

• basis of other algorithms 
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Paths
• A Path in an undirected graph G=(V,E) is a 

sequence of nodes v1,v2,…,vk with the property 
that each consecutive pair vi-1, vi is joined by an 
edge in E.  

• A path is simple if all nodes in the path are distinct. 

• A cycle is a path v1,v2,…,vk where v1=vk, k>2, and 
the first k-1 nodes are all distinct 

• An undirected graph is connected if for every pair 
of nodes u and v, there is a path between u and v
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Trees

19

• A undirected graph is a tree if it is connected 
and does not contain a cycle.  

• Theorem: Let G be an undirected graph on n 
nodes. Any two of the following imply the 
third. 
• G is connected  

• G does not contain a cycle 

• G has n-1 edges



Rooted Trees

20

• Given a tree T, choose a root node r and 
orient each edge away from r. 

• Importance: models hierarchy structure 



Outline
• Graph Definition 

• Graph Representation  

• Path, Cycle, Tree, Connectivity  

• Graph Traversal Algorithms 

• basis of other algorithms 
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• Graph searching = systematically follow the 
edges of the graph to visit all vertices of the 
graph 
• Graph algorithms are typically elaborations 

of the basic graph-searching algorithms 
• e.g. puzzle solving, maze walking…  

• Two basic graph searching algorithms: 
– Breadth-first search 
– Depth-first search 

• Difference: the order in which they explore 
unvisited edges of the graph

Searching in a Graph
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Breadth-First Search (BFS)
• Input: 

– A graph G = (V, E) (directed or undirected) 
– A source vertex s from V 

• Goal: 
– Explore the edges of G to “discover” every vertex 

reachable from s, taking the ones closest to s first 
• Output: 

– d[v] = distance (smallest # of edges) from s to v, for 
all v from V 

– A “breadth-first tree” rooted at s that contains all 
reachable vertices
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Breadth-First Search (cont.)
• Keeping track of progress: 

– Color each vertex in either white, 
gray or black 

– Initially, all vertices are white 
– When being discovered a vertex 

becomes gray 
– After discovering all its adjacent 

vertices the node becomes black 
– Use FIFO queue Q to maintain the 

set of gray vertices
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3
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Breadth-First Tree
• BFS constructs a breadth-first tree 

– Initially contains root (source vertex s) 

– When vertex v is discovered while scanning  adjacency list 

of a vertex u ⇒ vertex v and edge (u, v) are added to the 

tree 

– A vertex is discovered only once ⇒ it has only one 

parent  

– u is the predecessor (parent) of v in the breadth-first tree 

• Breath-first tree contains nodes that are reachable from 
source node, and all edges from each node’s predecessor to 
the node

1 2

5 4

3

source
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BFS Application
• BFS constructs a breadth-first tree 

• BFS finds shortest (hop-count) path from src node to 

all other reachable nodes 

• E.g., What’s shortest path from 1 to 3? 

– perform BFS using node 1 as source node 

– Node 2 is discovered while exploring 1’s adjacent 
nodes => pred. of node 2 is node 1 

– Node 3 is discovered while exploring node 2’s 
adjacent nodes => pred. of node 3 is node 2 

– so shortest hop count path is:  1, 2, 3  

• Useful when we want to find minimal steps to reach a state

1 2

5 4

3

source
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BFS: Implementation Detail
• G = (V, E) represented using adjacency lists 

• color[u] – color of vertex u in V 

• pred[u] – predecessor of u 

– If u = s (root) or node u has not yet been 

discovered then pred[u] = NIL 

• d[u] – distance (hop count) from source s to 

vertex u 

• Use a FIFO queue Q to maintain set of gray 
vertices

1 2

5 4

3

d=1 
pred =1

d=1 
pred =1

d=2 
pred=5

d=2 
pred =2

source
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BFS(V, E, s)
1. for each u in V - {s}  

2.   do color[u] = WHITE 

3.         d[u] ← ∞ 

4.         pred[u] = NIL 

5. color[s] = GRAY 

6. d[s] ← 0 

7. pred[s] = NIL 

8. Q = empty 

9. Q ←  ENQUEUE(Q, s) Q: s

∞ 0 ∞ ∞

∞ ∞ ∞ ∞

r s t u

v w x y

∞ ∞ ∞

∞ ∞ ∞ ∞

r s t u

v w x y

r s t u

v w x y
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BFS(V, E, s)
10.  while Q not empty 

11.     do u ← DEQUEUE(Q) 

12.         for each v in Adj[u] 

13.               do if color[v] = WHITE  

14.                   then color[v] = 
GRAY 

15.                        d[v] ← d[u] + 1 

16.            pred[v] = u 

17.                        ENQUEUE(Q, v) 

18.        color[u] = BLACK

∞ 0 ∞ ∞

∞ 1 ∞ ∞

r s t u

v w x y

Q: w

Q: s
∞ 0 ∞ ∞

∞ ∞ ∞ ∞

r s t u

v w x y

1 0 ∞ ∞

∞ 1 ∞ ∞

r s t u

v w x y

Q: w, r
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CS 477/677 - Lecture 19

Example

1 0 ∞ ∞

∞ 1 ∞ ∞

r s t u

v w x y
Q: s

∞ 0 ∞ ∞

∞ ∞ ∞ ∞

r s t u

v w x y
Q: w, r

v w x y

1 0 2 ∞

∞ 1 2 ∞

r s t u

Q: r, t, x

1 0 2 ∞

2 1 2 ∞

r s t u

v w x y
Q: t, x, v

1 0 2 3

2 1 2 ∞

r s t u

v w x y
Q: x, v, u

1 0 2 3

2 1 2 3

r s t u

v w x y
Q: v, u, y

1 0 2 3

2 1 2 3

r s t u

v w x y
Q: u, y

1 0 2 3

2 1 2 3

r s t u

v w x y
Q: y

r s t u

1 0 2 3

2 1 2 3
v w x y
Q: ∅ 30



Analysis of BFS
1. for each u ∈ V - {s}  

2.   do color[u] ← WHITE 

3.         d[u] ← ∞ 

4.         pred[u] = NIL 
5. color[s] ← GRAY 

6. d[s] ← 0 

7. pred[s] = NIL 
8. Q ← ∅ 

9. Q ←  ENQUEUE(Q, s)

O(|V|)

Θ(1)
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Analysis of BFS

Θ(1)

Θ(1)

Scan Adj[u] for all vertices 
u in the graph 
• Each vertex u is processed 
only once, when the vertex is 
dequeued 

• Sum of lengths of all 
adjacency lists = Θ(|E|) 
• Scanning operations: 
O(|E|)

• Total running time for BFS = O(|V| + |E|) 32

10.  while Q not empty 

11.     do u ← DEQUEUE(Q) 

12.         for each v in Adj[u] 

13.               do if color[v] = WHITE  

14.                   then color[v] = 
GRAY 

15.                        d[v] ← d[u] + 1 

16.            pred[v] = u 

17.                        ENQUEUE(Q, v) 

18.        color[u] = BLACK



Shortest Paths Property
• BFS finds the shortest-path distance from the source 

vertex s ∈ V to each node in the graph 
• Shortest-path distance = d(s, u) 

– Minimum number of edges in any path from s to u

r   s   t  u

1 0 2 3

2 1 2 3

v w x  y

source
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Outline
• Graph Definition 

• Graph Representation  

• Path, Cycle, Tree, Connectivity  

• Graph Traversal Algorithms 

• Breath first search/traversal 

• Depth first search/traversal 

• …
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Depth-First Search

35

• Input: 
– G = (V, E) (No source vertex given!) 

• Goal: 
– Explore edges of G to “discover” every vertex in V starting 

at most current visited node 
– Search may be repeated from multiple sources 

• Output:  
– 2 timestamps on each vertex: 

• d[v] = discovery time (time when v is first reached)  

• f[v] = finishing time (done with examining v’s adjacency list) 

– Depth-first forest



Depth-First Search: idea
• Search “deeper” in graph whenever 

possible 
• explore edges of most recently discovered 

vertex v (that still has unexplored edges)

• After all edges of v have been explored, “backtracks” to 
parent of v 

• Continue until all vertices reachable from original 
source have been discovered 

• If undiscovered vertices remain, choose one of them as 
a new source and repeat search from that vertex 

• different from BFS!!!  
• DFS creates a “depth-first forest”
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DFS Additional Data Structures
• Global variable: time-step 

– Incremented when nodes are discovered/finished 
• color[u] – color of node u  

– White not discovered, gray discovered and being processing and 
black when finished processing 

• pred[u] – predecessor of u (from which node we discover u) 

• d[u]– discovery (time when u turns gray) 

• f[u] – finish time (time when u turns black) 

GRAYWHITE BLACK

0 2|V|d[u] f[u]

1 ≤ d[u] < f [u] ≤ 2 |V|
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DFS(V, E): top level
1. for each u ∈ V 
2.       do color[u] ← WHITE 

3.             pred[u] ← NIL 
4. time ← 0 
5. for each u ∈ V 
6.       do if color[u] = WHITE 

7.                then DFS-VISIT(u) 

• Every time DFS-VISIT(u) is called, u becomes the root of 
a new tree in the depth-first forest

 

u v w

x y z
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DFS-VISIT(u): DFS exploration from u
1. color[u] ← GRAY             
2. time ← time+1 
3. d[u] ← time 
4. for each v ∈ Adj[u]          
5.       do if color[v] = WHITE 

6.                then pred[v] ← u 
7.                         DFS-VISIT(v) 
8. color[u] ← BLACK //done with u 

9. time ← time + 1 
10. f[u] ← time  //finish time  

1/  

u v w

x y z

 

u v w

x y z

time = 1

1/  2/   

u v w

x y z
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Example

1/  2/   

u v w

x y z

1/  

u v w

x y z

1/  2/   

3/  

u v w

x y z

1/  2/   

4/  3/  

u v w

x y z

1/  2/   

4/  3/  

u v w

x y z

B
1/  2/   

4/5 3/  

u v w

x y z

B

1/  2/   

4/5 3/6

u v w

x y z

B
1/  2/7

4/5 3/6

u v w

x y z

B
1/ 2/7

4/5 3/6

u v w

x y z

BF
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Example (cont.)

1/8 2/7

4/5 3/6

u v w

x y z

BF
1/8 2/7 9/ 

4/5 3/6

u v w

x y z

BF
1/8 2/7 9/ 

4/5 3/6

u v w

x y z

BF
C

1/8 2/7 9/ 

4/5 3/6 10/ 

u v w

x y z

BF
C 1/8 2/7 9/ 

4/5 3/6 10/ 

u v w

x y z

BF
C

B

1/8 2/7 9/ 

4/5 3/6 10/11 

u v w

x y z

BF
C

B

1/8 2/7 9/12 

4/5 3/6 10/11 

u v w

x y z

BF
C

B

The results of DFS may depend on: 
• The order in which nodes are 
explored in procedure DFS 
• The order in which the neighbors of a 
vertex are visited in DFS-VISIT
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Properties of DFS
• u = pred[v] ⟺ DFS-VISIT(v) was called 

during a search of u’s adjacency list 

• u is the predecessor (parent) of v 

• More generally, vertex v is a 

descendant of vertex u in depth first 

forest ⟺ v is discovered while u is gray

1/  2/   

3/  

u v w

x y z
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undershorts

• Directed acyclic graphs (DAGs) 

– Used to represent precedence of events or 
processes that have a partial order 

    

DAG

Topological sort helps us establish a total order/
linear order. Useful for task scheduling. 44

pants

belt

socks

shoes

watch

shirt

tie

jacket

Put on socks before put on shoes

No precedence between belts and shoes



Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

jackettiebeltshirtwatchshoespantsundershortssocks

Topological sort: 
an ordering of vertices so that  
all directed edges go from left to right. 45

Topological sort of a 
directed acyclic graph G 
= (V, E): a linear order of 
vertices such that if there 
exists an edge (u, v), then 
u appears before v in the 
ordering.



Topological Sort via DFS

undershort

pants

belt

socks

shoes

watch

shirt

tie

jacket

46

TS requires that we put u before 
v if there is a path from u to v 

e.g., socks before shoes 
  undershorts before jacket 
Observation: If we perform DFS 

on a DAG, if there is a path 
from u to v, then f[u]>f[v] 

So arrange nodes in reverse 
order of their finish time

Consider when DFS_visit(undershorts) is called, jacket is either 
* white: then jacket will be discovered in DFS_visit(undershorts), turn black, before eventually 
   undershorts finishes.   f[jacket] < f[undershorts] 
* black (if DFS_visit(jacket) was called):  then f[jacket] < f[undershorts] 
* node jacket cannot be gray (which would mean that DFS_visit(jacket) is ongoing …) 



Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

TOPOLOGICAL-SORT(V, E) 
1. Call DFS(V, E) (to compute 

finishing times f[v] for each 
vertex v): when a node is 
finished, push it on to a 
stack 

2. pop nodes in stack and 
arrange them in a list

1/

2/

3/4

5

6/7
8

9/10

11/

12/
13/14

15

16 17/18

jackettiebeltshirtwatchshoespantsundershortssocks

Running time: Θ(|V| + |E|)
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Edge Classification*
• Via DFS traversal, graph edges can 

be classified into four types.  
• When in DFS_visit (u), we follow 

edge (u,v) and find node, if v is: 
• WHITE vertex: then (u,v) is a tree edge  

– v was first discovered by exploring 
edge (u, v) 

• GRAY node: then (u,v) is a Back edge 

– (u, v) connects u to an ancestor v in 
a depth first tree 

– Self loops (in directed graphs) are 
also back edges

1/  2/   

4/  3/  

u v w

x y z

B
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(x,v) is a back edge

1/  

u v w

x y z
(u,v) is a tree edge



Edge Classification*
• if v is black vertex, and d[u]<d[v], (u,v) is a 

Forward edge (u,v):  
– Non-tree edge (u, v) that connects a vertex 

u to a descendant v in a depth first tree 

• if v is black vertex, and d[u] > d[v], (u,v) is a 
Cross edge (u,v):  
– go between vertices in same depth-first tree 

(as long as there is no ancestor / 
descendant relation) or between different 
depth-first trees

1/ 2/7

4/5 3/6

u v w

x y z

BF

1/8 2/7 9/ 

4/5 3/6

u v w

x y z

BF
C
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(u,x) is a forward edge

(w,y) is a cross edge



Analysis of DFS(V, E)
1. for each u ∈ V 

2.       do color[u] ← WHITE 

3.             pred[u] ← NIL 
4. time ← 0 
5. for each u ∈ V 

6.       do if color[u] = WHITE 

7.                then DFS-VISIT(u)

Θ(|V|)

Θ(|V|) – without 
counting the time 
for  
DFS-VISIT
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Analysis of DFS-VISIT(u)
1. color[u] ← GRAY             
2. time ← time+1 
3. d[u] ← time 
4. for each v ∈ Adj[u]          

5.       do if color[v] = WHITE 

6.                then pred[v] ← u 
7.                         DFS-VISIT(v) 
8. color[u] ← BLACK 

9. time ← time + 1 
10. f[u] ← time    

Each loop takes  
|Adj[u]|

DFS-VISIT is called exactly 
once for each vertex

Total: Σu∈V |Adj[u]| + Θ(|V|) =

Θ(|E|) = Θ(|V| + |E|)
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DFS without recursion*

52

Data Structure: use stack (Last In First Out!) 
to store all gray nodes 

Pseudocode: 
1. Start by push source node to stack
2. Explore node at stack top, i.e.,

 * push its next white adj. node to stack)
 * if all its adj nodes are black, the node turns black, pop it from stack 

3. Continue (go back 2) until stack is empty

4. If there are white nodes remaining, go back to 1 using another white node 
as source node



Parenthesis Theorem*
In any DFS  of a graph G, for all 

u, v, exactly one of the 

following holds: 
1. [d[u], f[u]] and [d[v], f[v]] are 

disjoint, and neither of u and v is a 

descendant of the other 

2. [d[v], f[v]] is entirely within    [d[u], 

f[u]] and v is a descendant of u 

3. [d[u], f[u]] is entirely within    [d[v], 

f[v]] and u is a descendant of v 

3/6 2/9 1/10

4/5 7/8 12/13
uvwx

y z s

11/16

14/15

t

1 2 3 4 5 6 7 8 9 10 1311 12 14 15 16

s

z

t

v u

y w

x

(s (z (y (x x) y) (w w) z) s) v)(t (v (u u) t)

Well-formed expression: parenthesis are 
properly nested
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Other Properties of DFS*
Corollary  
 Vertex v is a proper descendant of u 

 ⟺ d[u] < d[v] < f[v] < f[u] 

Theorem (White-path Theorem)

 In a depth-first forest of a graph G, 
vertex v is a descendant of u if and only 
if at time d[u], there is a path u ! v 
consisting of only white vertices.

1/  2/   

u

v

1/8 2/7 9/12 

4/5 3/6 10/11 

u

v

BF
C

B
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Cycle detection via DFS
 A directed graph is acyclic ⟺ a DFS on G yields no 

back edges. 

Proof:  

“⇒”: acyclic ⇒ no back edge 

– Assume back edge ⇒ prove cycle 

– Assume there is a back edge (u, v) 

⇒ v is an ancestor of u  

⇒ there is a path from v to u in G (v ! u) 

⇒ v ! u + the back edge (u, v) yield a cycle

v

u

(u, v)
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three graph algorithms
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Shortest Distance Paths
Distance/Cost of a path in weighted graph 

sum of weights of all edges on the path 
path A,B,E, cost is 2+3=5 
path A, B, C, E, cost is 2+1+4=7 

How to find shortest distance path from a node, A, to all another node?  
assuming: all weights are positive  
This implies no cycle in the shortest distance path 

Why? Prove by contradiction.  
If A->B->C->..->B->D is shortest path, then A->B->D is a shorter!  

d[u]: the distance of the shortest-distance path from A to u  
d[A] = 0  
d[D] = min {d[B]+2, d[E]+2}  
  because B, E are the two only possible previous node in path to D 



Dijkstra Algorithm
Input: positive weighted graph G, source node s 
Output: shortest distance path from s to all other nodes 
that is reachable from s 

S

Expanding frontier (one hop a time)  
1). Starting from A: 
We can go to B with cost B, go to C with cost 1 

going to all other nodes (here D, E) has to pass B or C 
are there cheaper paths to go to C?   
are there cheaper paths to B?  

2). Where can we go from C?  B, E 
     Two new paths: (A,C,B), (A,C,E)  
     Better paths than before?  => update current optimal path 
     Are there cheaper paths to B?  
3). Where can we go from B?   
… 

for each node u, keep track pred[u] (previous node in the path leading to u), 
              d[u] current shortest distance   



Dijkstra Alg  
Demo

dist pred
A: null 
B: A 
C: A 
D: null, 
E: null

A: null 
B: C 
C: A 
D: C, 
E: C

A: null 
B: C 
C: A 
D: B, 
E: B

best paths to 
each node via  
nodes circled &  
associated 
distance

A: null 
B: C 
C: A 
D: B, 
E: B

Q: C(2), B(4), D, E

Q: B(3), D(6), E(7)

Q: D(5), E(6)

Q: E(6)



Dijkstra Alg  
Demo

dist pred

A: null 
B: C 
C: A 
D: B, 
E: B

best paths to 
each node via  
nodes circled &  
associated 
distance

A: null 
B: C 
C: A 
D: B, 
E: B

Q: D(5), E(6)

Q: E(6)



Dijkstra’s algorithm & snapshot

s=A

prev=nil 
dist=0

prev=A 
dist=2

prev=A 
dist=1

prev=nil 
dist=inf

prev=nil 
dist=inf

H: priority queue (min-heap in this case) 
C(dist=1), B(dist=2), D(dist=inf), E (dist=inf)



Minimum Spanning Trees

Minimum Spanning Tree Problem: Given a weighted 
graph, choose a subset of edges so that resulting 
subgraph is connected, and the total weights of edges 
is minimized 

to minimize total weights, it never pays to have cycles, so 
resulting connection graph is connected, undirected, and 
acyclic, i.e., a tree. 

Applications:  
– Communication networks 
– Circuit design 
– Layout of highway systems

62



Formal Definition of MST

• Given a connected, undirected, weighted graph G = (V, E), a 
spanning tree is an acyclic subset of edges  T ⊆ E that connects all  
vertices together.   

• cost of a spanning tree T : the sum of edge weights in the spanning 
tree 

w(T) = ∑(u,v)∈T w(u,v) 

• A minimum spanning tree (MST) is a spanning tree of minimum 
weight.
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Minimum Spanning Trees
• Given: Connected, undirected, weighted graph, G 
• Find:  Minimum - weight spanning tree, T 

Notice: there are many spanning trees for a graph 
We want to find the one with the minimum cost 

Such problems are optimization problems: there are multiple 
 viable solutions, we want to find best (lowest cost, best perf) one. 

Acyclic subset of edges(E) that 
connects all vertices of G.
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Greedy Algorithms

A problem solving strategy (like divide-and-conquer) 
Idea: build up a solution piece by piece, in each step 
always choose the option that offers best immediate 
benefits (a myopic approach)  

Local optimization: choose what seems best 
right now 
not worrying about long term benefits/global 
benefits 

Sometimes yield optimal solution, sometimes yield 
suboptimal (i.e., not optimal) 
Sometimes we can bound difference from optimal… 
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Minimum Spanning Trees
• Given: Connected, undirected, weighted graph, G 
• Find:  Minimum - weight spanning tree, T 

How to greedily build a spanning tree?  
  * Always choose lightest edge? Might lead to cycle. 
  * Repeat for n-1 times:  
 find next lightest edge that does not introduce cycle, 
 add the edge into tree 
     => Kruskal’s algorithm 66



Kruskal’s Algorithm

Implementation detail: 
* Maintain sets of nodes that are connected by tree edges 
* find(u): return the set that u belongs to  
* find(u)=find(v) means u, v belongs to same group (i.e., u and v 
are already connected)



Minimum Spanning Trees
• Given: Connected, undirected, weighted graph, G 
• Find:  Minimum - weight spanning tree, T 

How to greedily build a spanning tree?  
  *  Grow the tree from a node (any node), 
  *  Repeat for n-1 times: 
        * connect one node to the tree by choosing  
   node with lightest edge connecting to tree nodes 

This is Prim algorithm.  

         

68

Example: 
Suppose we start grow tree from C,  
 step 1. A has lightest edge to tree, add A 
and the edge (A-C) to tree  
          // tree is now A-C 
 step 2:  D has lightest edge to tree 
add D and the edge (C-D) to tree  
    ….  
         



Prim’s Algorithm

cost[u]: stores weight of lightest edge 
connecting u to current tree 

It will be updated as the tree grows

deletemin() takes node v with lowest 
cost out  
  * this means node v is done(added to 
tree) // v, and edge v - prev(v) added to 
tree

H is a priority queue (usually implemented as heap,  
here it’s min-heap: node with lostest cost at root)



Summary
• Graph everywhere: represent binary relation 

• Graph Representation 

• Adjacent lists, Adjacent matrix  

• Path, Cycle, Tree, Connectivity  

• Graph Traversal Algorithm: systematic way to explore graph 
(nodes) 

• BFS yields a fat and short tree  

• App: find shortest hop path from a node to other nodes 

• DFS yields forest made up of lean and tall tree 

• App: detect cycles and topological sorting (for DAG)
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