

Instructor: X. Zhang

Acknowledgement

- The set of slides have use materials from the following resources
 - Slides for textbook by Dr. Y. Chen from Shanghai Jiaotong Univ.
 - Slides from Dr. M. Nicolescu from UNR
 - Slides sets by Dr. K. Wayne from Princeton
 - which in turn have borrowed materials from other resources

2

Outline **Graph Definition** ٠ **Graph Representation** ٠ Path, Cycle, Tree, Connectivity Graph Traversal Algorithms Breath first search/traversal • Depth first search/traversal ٠ ... Minimal Spaning Tree algorithms ٠ Dijkstra algorithm: shortest path a ٠ 3

<section-header><section-header><complex-block><complex-block><complex-block><image><image><image><image>

iome graph applications						
graph	node	edge				
communication	telephone, computer	fiber optic cable wire rod, beam, spring				
circuit	gate, register, processor					
mechanical	joint					
financial	stock, currency	transactions				
transportation	street intersection, airport	highway, airway route connection legal move				
internet	class C network					
game	board position					
social relationship	person, actor	friendship, movie cast				
neural network	neuron	synapse				
protein network	protein	protein-protein interaction				
molecule	atom	bond				

Properties of Adjacency List Representation

- Sum of the lengths of all the adjacency lists
 - Directed graph: size of E (m)
 - Edge (u, v) appears only once in u's list
 - Undirected graph: 2* size of E (2m)
 - u and v appear in each other's adjacency lists: edge (u, v) appears twice

Undirected graph

10

Properties of Adjacency List Representation

Memory required

- ⊖(m+n)
- Preferred when
 - the graph is sparse: m << n^2
- Disadvantage
 - no quick way to determine whether there is an edge between node u and v
 - Time to determine if (u, v) exists:
 O(degree(u))
- Time to list all vertices adjacent to u:
 - $\Theta(degree(u))$

Undirected graph

Directed graph

2

Properties of Adjacency Matrix Representation

- Memory required
 - $\Theta(n^2)$, independent on the number of edges in G
- Preferred when
 - The graph is dense: m is close to n^2
 - need to quickly determine if there is an edge between two vertices
- Time to list all vertices adjacent to u:
 - Θ(n)
- Time to determine if (u, v) belongs to E:

– ⊖(1)

13

15

Weighted Graphs

 Weighted graphs = graphs for which each edge has an associated weight w(u, v)

w: E -> R, weight function

- Storing the weights of a graph
 - Adjacency list:
 - Store w(u,v) along with vertex v in u's adjacency list
 - Adjacency matrix:
 - Store w(u, v) at location (u, v) in the matrix

14

NetworkX: a Python graph library

- http://networkx.github.io/
- **Node:** any hashable object as a node. Hashable objects include strings, tuples, integers, and more.
- Arbitrary edge attributes: weights and labels can be associated with an edge.
- internal data structures: based on an adjacency list representation and uses Python dictionary.
 - adjacency structure: implemented as a dictionary of dictionaries
 - top-level (outer) dictionary: keyed by nodes to values that are themselves dictionaries keyed by neighboring node to edge attributes associated with that edge.
 - Support: fast addition, deletion, and lookup of nodes and neighbors in large graphs.
- underlying datastructure is accessed directly by methods

Graphs Everywhere

- · Prerequisite graph for CIS undergrad courses
- Three jugs of capacity 8, 5 and 3 liters, initially filled with 8, 0 and 0 liters respectively. How to pour water between them so that in the end we have 4, 4 and 0 liters in the three jugs?

•

Searching in a Graph

- Graph searching = systematically follow the edges of the graph to visit all vertices of the graph
 - Graph algorithms are typically elaborations of the basic graph-searching algorithms
 - e.g. puzzle solving, maze walking...
- Two basic graph searching algorithms:
 - Breadth-first search
 - Depth-first search
- Difference: the order in which they explore unvisited edges of the graph

22

Breadth-First Search (BFS)

• Input:

- A graph G = (V, E) (directed or undirected)
- A source vertex s from V
- Goal:
 - Explore the edges of G to "discover" every vertex reachable from s, taking the ones closest to s first
- Output:
 - d[v] = distance (smallest # of edges) from s to v, for all v from V
 - A "breadth-first tree" rooted at s that contains all reachable vertices

23

21

Breadth-First Search (cont.)

- Keeping track of progress:
 - Color each vertex in either white, gray or black
 - Initially, all vertices are **white**
 - When being discovered a vertex becomes **gray**
- After discovering all its adjacent vertices the node becomes black
- Use FIFO queue Q to maintain the set of gray vertices

24

3

3

Breadth-First Tree

• BFS constructs a breadth-first tree

- Initially contains root (source vertex s)
- When vertex v is discovered while scanning adjacency list

of a vertex $u \Rightarrow$ vertex v and edge (u, v) are added to the $\ \ \, source$ tree /

- A vertex is discovered only once \Rightarrow it has only one parent

- u is the predecessor (parent) of v in the breadth-first tree 5

 Breath-first tree contains nodes that are reachable from source node, and all edges from each node's predecessor to the node

25

BFS Application

source

26

- BFS constructs a breadth-first tree
- BFS finds shortest (hop-count) path from src node to all other reachable nodes
- E.g., What's shortest path from 1 to 3?
 - perform BFS using node 1 as source node

 Node 2 is discovered while exploring 1's adjacent nodes => pred. of node 2 is node 1

 Node 3 is discovered while exploring node 2's adjacent nodes => pred. of node 3 is node 2

- so shortest hop count path is: 1, 2, 3

• Useful when we want to find minimal steps to reach a state

Analysis of BFS					
1.	for each $\upsilon \in V - \{s\}$)			
2.	$\textbf{do} \text{ color}[\textbf{u}] \leftarrow \textbf{WHITE}$				
3.	d[∪] ← ∞	{ O(V)			
4.	pred[u] = NIL				
5.	$color[s] \leftarrow GRAY$)			
6.	$d[s] \leftarrow 0$				
7.	pred[s] = NIL	} ⊖(1)			
8.	$Q \gets \varnothing$				
9.	$Q \leftarrow ENQUEUE(Q, s)$	J			
		3	1		

Analysis of BFS						
10.	while Q not empty					
11.	do u \leftarrow DEQUEUE(Q) $-\Theta(1)$					
12.	for each v in Adj[u] Scan Adj[u] for all vertices u in the graph					
13.	do if color[v] = WHITE • Each vertex u is processed only once, when the vertex is					
14.	then color[v] = dequeued • Sum of lengths of all					
15.	$\begin{array}{c} \text{GRAY} & \text{adjacency lists} = \Theta(E) \\ & \bullet \text{ Scanning operations:} \\ d[v] \leftarrow d[u] + 1 & O(E) \end{array}$					
16.	$pred[v] = u \Theta(1)$					
17.	ENQUEUE(Q , v)					
18.	color[u] = BLACK Total running time for BFS = $O(V + E)^{32}$					

Outline

- Graph Definition
- Graph Representation
- Path, Cycle, Tree, Connectivity
- Graph Traversal Algorithms
 - Breath first search/traversal
 - Depth first search/traversal
 - ...

34

Depth-First Search

• Input:

- G = (V, E) (No source vertex given!)
- Goal:
 - Explore edges of G to "discover" every vertex in V starting at most current visited node
 - Search may be repeated from multiple sources
- Output:
 - 2 timestamps on each vertex:
 - d[v] = discovery time (time when v is first reached)
 - f[v] = finishing time (done with examining v's adjacency (G))
 - Depth-first forest

Depth-First Search: idea

- Search "deeper" in graph whenever possible
 - explore edges of most recently discovered vertex v (that still has unexplored edges)
 - After all edges of v have been explored, "backtracks" to parent of v
- Continue until all vertices reachable from original source have been discovered
- If undiscovered vertices remain, choose one of them as a new source and repeat search from that vertex
 - different from BFS!!!

(D)

(н)

35

• DFS creates a "depth-first forest"

Properties of DFS u = pred[v] ⇔ DFS-VISIT(v) was called during a search of u's adjacency list u is the predecessor (parent) of v More generally, vertex v is a descendant of vertex u in depth first forest ⇔ v is discovered while u is gray

Cycle detection via DFS

A directed graph is **acyclic** \iff a DFS on G yields no back edges.

Proof:

- " \Rightarrow ": acyclic \Rightarrow no back edge
 - Assume **back edge** \Rightarrow prove **cycle**
 - Assume there is a back edge (u, v)
 - \Rightarrow v is an ancestor of u
 - \Rightarrow there is a path from v to u in G (v \Rightarrow u)
 - \Rightarrow v \Rightarrow u + the back edge (u, v) yield a cycle

A = B = B = B = B = B = B = B = B = B =	$\begin{array}{c} \textbf{dist} \\ \hline \textbf{A:0} & \textbf{D: } \infty \\ \textbf{B:4} & \textbf{E: } \infty \\ \textbf{C: 2} \\ \end{array} \\ \textbf{Q: C(2), B(4), D, E} \\ \hline \begin{array}{c} \textbf{A:0} & \textbf{D: 6} \\ \textbf{B:3} & \textbf{E: 7} \\ \textbf{C: 2} \\ \end{array} \\ \textbf{Q: B(3), D(6), E(7)} \end{array}$	pred A: null B: A C: A D: null, E: null B: C C: A D: C, E: C	best paths to each node via nodes circled & associated distance
	A: 0 D: 5 B: 3 E: 6 C: 2 Q: D(5), E(6)	A: null B: C C: A D: B, E: B	
	A: 0 D: 5 B: 3 E: 6 C: 2	A: null B: C C: A D: B, E: B	Dijkstra Alg Demo

Minimum Spanning Trees

- Minimum Spanning Tree Problem: Given a weighted graph, choose a subset of edges so that resulting subgraph is connected, and the total weights of edges is minimized
 - to minimize total weights, it never pays to have cycles, so resulting connection graph is connected, undirected, and acyclic, i.e., a tree.
- Applications:
 - Communication networks
 - Circuit design
 - Layout of highway systems

Formal Definition of MST

- Given a connected, undirected, weighted graph G = (V, E), a spanning tree is an acyclic subset of edges T⊆E that connects all vertices together.
- *cost* of a spanning tree *T* : the sum of edge weights in the spanning tree

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

• A *minimum spanning tree (MST)* is a spanning tree of minimum weight.

Such problems are **optimization problems**: there are multiple viable solutions, we want to find best (lowest cost, best perf) one.

 \bigcirc

 \bigcirc

Θ

Minimum Spanning Trees

• Given: Connected, undirected, weighted graph, G • Find: Minimum - weight spanning tree, T

Е

 \mathbf{F}

Example:

How to greedily build a spanning tree?

- * Grow the tree from a node (any node),
- * Repeat for n-1 times:

* connect one node to the tree by choosing node with lightest edge connecting to tree nodes

This is Prim algorithm.

Summary

- Graph everywhere: represent binary relation
- Graph Representation
 - Adjacent lists, Adjacent matrix
- Path, Cycle, Tree, Connectivity
- Graph Traversal Algorithm: systematic way to explore graph (nodes)
 - BFS yields a fat and short tree
 - App: find shortest hop path from a node to other nodes
 - DFS yields forest made up of lean and tall tree
 - App: detect cycles and topological sorting (for DAG)