Acknowledgement

Support for Dictionary

- Dictionary ADT: a dynamic set of elements supporting INSERT, DELETE, SEARCH operations
- elements have distinct key fields
- DELETE, SEARCH by key
- Different ways to implement Dictionary
- unsorted array
- insert $O(1)$, delete $O(n)$, search $O(n)$
- sorted array
- insert O(n), delete O(n), search O(log n)
- binary search tree
- insert $O(\log n)$, delete $O(\log n)$, search $O(\log n)$
- linked list ..
- Can we have "almost" constant time insert/delete/ search?
- The set of slides have used materials from the following resources
- Slides for textbook by Dr. Y. Chen from Shanghai Jiaotong Univ.
- Slides from Dr. M. Nicolescu from UNR
- Slides sets by Dr. K. Wayne from Princeton
- which in turn have borrowed materials from other resources
- Other online resources

Towards constant time

- Direct address table: use key as index into the array
- T[i] stores the element whose key is i

Insert (element(2,Alice)) T[2]=element(2, Alice);
Delete (element(4))
T[4]=NULL;
Search (element(5)) return T[5]

- How big is the table?

- big enough to have one slot for every possible key

Case studies

- A web server: maintains all active clients' info, using IP addr. as key
- Universe of keys: the set of all possible IPv4 addr., $|\mathrm{U}|=2^{32}$
- much bigger than total \# of active clients
- Too big to use direct access table:
- a table with 2^{32} entries, if each entry is 32bytes, then 128 GB is needed!
- How to have constant accessing time, while not requiring huge memory usage?

Hash Table

- Hash Table: use a (hash) function to map key to index of the table (array)
- Element x is stored in T[h(x.key)]
- hash function: int hash (Key k) // return value 0...m-1

Is it possible to design a hash function that is one-to-one? Hint: domain and condomain of hash()?

HashTable Operations

- If there is no collision:
- Insert
- Table[h("john")]=Eleme nt("John", 25000)
- Delete
- Table[h("john")]=NULL
- Search
- return Table[h("john")]
- All constant time O(1)

- Collisions cannot be avoided but its chances can be reduced using a "good" hash function
- a large universe set U
- A set K of actually occurred
keys, $|\mathrm{K}|$ << |U| (much much
smaller)
- Table T of size $\mathrm{m}, m=\Theta(|K|)$ So that we don't waste memory space
- A hash function: $h: U \rightarrow\{0, \ldots, m-1\}$
- Given $|U|>|m|$, hash function is many-to-one
- by pigeonhole theorem

Hash Function

- A hash function: $h: U \rightarrow\{0, \ldots, m-1\}$. Given an element x, x is stored in $\mathrm{T}[\mathrm{h}(\mathrm{x}$. key $)$]
- Good hash function:
- fast to compute
- Ideally, map any key equally likely to any of the slots, independent of other keys
- Hash Function:
- first stage: map non-integer key to integer
- second stage: map integer to [0...m-1]

First stage: any type to integer

- Any basic type is represented in binary
- Composite type which is made up of basic type
- a character string (each char is coded as an int by ASCII code), e.g.,"pt"
- add all chars up, ' p '+'t'=112+116=228
- radix notation: ' p '*128+'t'=14452
- treat "pt" as base 128 number...
- a point type: (x, y) an ordered pair of int
- $x+y$
- ax+by // pick some non-zero constants a, b
- ..
- IP address:four integers in range of 0... 255
- add them up
- radix notation: $150 * 256^{3}+108 * 256^{2}+68 * 256+26$

Hash Function: second stage

- Division method: divide integer by m (size of hash table) and take remainder
- $\mathrm{h}($ key $)=$ key mod m
- if key's value are randomly uniformly distributed all integer values, the above hash function is uniform
- But often times data are not randomly distributed,
- What if $\mathrm{m}=100$, all keys have same last two digits?
- Similarly, if $m=2^{p}$, then result is simply the lowestordre p bits
- Rule of thumbs: choose m to be a prime not too close to exact powers of 2

Multiplication Method

Figure 11.4 The multiplication method of hashing. The w-bit representation of the key k is multiplied by the w-bit value $s=A \cdot 2^{w}$. The p highest-order bits of the lower w-bit half of the product form the desired hash value $h(k)$

$$
m=2^{p}
$$

$$
h(k)=\lfloor m(k A-\lfloor k A\rfloor)\rfloor
$$

Exercise

- Write a hash function that maps string type to a hash table of size 250
- First stage: using radix notation
- "Hello!" => 'H'*128^5+'e'*128^4+...+'!'
- Second stage:
- x mod 250
- How do you implement it efficiently?
- Recall modular arithmetic theorem?
- $(x+y) \bmod n=((x \bmod n)+(y \bmod n)) \bmod n$
- $\left(x^{*} y\right) \bmod n=\left((x \bmod n)^{*}(y \bmod n)\right) \bmod n$
- $\left(x^{\wedge} e\right) \bmod n=(x \bmod n)^{\wedge} e \bmod n$

Collision Resolution

- Recall that $\mathrm{h}($.$) is not one-to-one, so it maps$ multiple keys to same slot:
- for distinct k1, k2, h(k1)=h(k2) => collision
- Two different ways to resolve collision
- Chaining: store colliding keys in a linked list (bucket) at the hash table slot
- dynamic memory allocation, storing pointers (overhead)
- Open addressing: if slot is taken, try another, and another (a probing sequence)
- clustering problem.

Chaining

- Chaining: store colliding elements in a linked list at the same hash table slot
- if all keys are hashed to same slot, hash table degenerates to a linked list.

- STL: vector<list<HashedObject>> T;

Chaining: analysis

- Consider a hash table T with m slots stores n elements.
- load factor $\alpha=n / m$
- If any given element is equally likely to hash into any of the m slots, independently of where any other element is hashed to, then average length of lists is α
- search and delete takes $\Theta(1+\alpha)$
- If all keys are hashed to same slot, hash table degenerates to a linked list
- search and delete takes $\Theta(n)$

Chaining: operations

- Insert (T,x):
- insert x at the head of T[h(x.key)]
- Running time (worst and best case): $\mathrm{O}(1)$
- Search (T,k)
- search for an element with key x in list T[h(k)]
- Delete (T, x)
- Delete x from the list T[h(x.key)]
- Running time of search and delete: proportional to length of list stored in h (x.key)

Collision Resolution

- Open addressing: store colliding elements elsewhere in the table
- Advantage: no need for dynamic allocation, no need to store pointers
- When inserting:
- examine (probe) a sequence of positions in hash table until find empty slot
- e.g., linear probing: if T[h(x.key)] is taken, try slots: h(x.key)+1, h(x.key+2), ..
- When searching/deleting:
- examine (probe) a sequence of positions in hash table until find element

Open Addressing

- Hash function: extended to probe sequence (m functions):

$$
\begin{aligned}
& h_{i}(x), i=0,1, \ldots, m-1 \\
& h_{i}(x) \neq h_{j}(x), \text { for } i \neq j
\end{aligned}
$$

- insert element with key x : if $h_{0}(x)$ is taken, try $h_{1}(x)$, and then $h_{2}(x)$, until find an empty/deleted slot
- Search for key x : if element at $h_{0}(\mathrm{x})$ is not a match, try $h_{1}(x)$, and then $h_{2}(x)$, ..until find matching element, or reach an empty slot
- Delete key x: mark its slot as DELETED

Quadratic Probing

$$
h_{i}(x)=\left(h(x)+c_{1} i+c_{2} i^{2}\right) \bmod m
$$

- probe sequence:
- $h_{0}(x)=h(x) \bmod m$
- $\mathrm{h}_{1}(\mathrm{x})=\left(\mathrm{h}(\mathrm{x})+\mathrm{C}_{1}+\mathrm{c}_{2}\right) \bmod \mathrm{m}$
- $h_{2}(x)=\left(h(x)+2 c_{1}+4 c_{2}\right) \bmod m$
- ...
- Problem:
- secondary clustering
- choose $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{~m}$ carefully so that all slots are probed

Linear Probing

- Probing sequence
- $h_{i}(x)=(h(x)+i) \bmod m$
probe sequence: $\mathrm{h}(\mathrm{x}), \mathrm{h}(\mathrm{x})$ $+1, h(x)+2$,
- Continue until an empty slot is found
: Problem: primary clustering
- if there are multiple keys mapped to a slot, the slots after it tends to be occupied
(- Reason: all keys using same probing: $+1,+2, \ldots$

Double Hashing

- Use two functions $\mathrm{f}_{1}, \mathrm{f}_{2}$:

$$
h_{i}(x)=\left(f_{1}(x)+i \cdot f_{2}(x)\right) \bmod m
$$

- Probe sequence:
- $h_{0}(x)=f_{1}(x) \bmod m$,
- $h_{1}(x)=\left(f_{1}(x)+f_{2}(x)\right) \bmod m$
- $h_{2}(x)=\left(f_{1}(x)+2 f_{2}(x)\right) \bmod m, \ldots$
- $f_{2}(x)$ and m must be relatively prime for entire hash table to be searched/used
- Two integers a, b are relatively prime with each other if their greatest common divisor is 1
- e.g., $m=2^{k}, f_{2}(x)$ be odd
- or, m be prime, $\mathrm{f}_{2}(\mathrm{x})<\mathrm{m}$

Exercises

- Hash function, Chaining, Open addressing
- Implementing HashTable
- Using C++ STL containers (implemented using hashtable)
- unordered_set<int> // a set of int
- unordered_map<string,int> lookup; //key, value
- unordered_multiset
- You can specify your own hash function
- In contrast, set, map, multimap are implemented using binary search tree (keys are ordered)
- All are associative container: where elements are referenced by key, not by position/index
- e.g., lookup["john"]=100;

Case studies

- A web server: maintains all active clients' info, using IP addr. as key

$$
\underbrace{\text { An IPv4 address (dotted-decimal notation) }}_{\text {One byte }=\text { Eight bits }}
$$

- key is 32 bits long int, or $\mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdot \mathrm{x}_{3} \cdot \mathrm{x}_{4}$ (each 8 bits long, between 0 and 255)
- Let's try to use hash table to organize the data!
- Suppose that we expect about 250 active clients...
- So we use a table of length $250(\mathrm{~m}=250)$

Design Hash Function

- Goal: reduce collision by spread the hash values uniformly to $0 . . . \mathrm{m}-1$
- so that for any key, it's equally likely to be hashed to $0,1, \ldots \mathrm{~m}-1$
- We know the U, the set of possible values that keys can take
- But sometimes we don't know K beforehand...

Hash function

- A hash function h maps IP addr to positions in the table
- Each position of table is in fact a bucket (a linked list that contains all IP addresses that are mapped to it)
- (i.e., chaining is used)

Design of Hash Function

- One possible hash function would map an IP address to the 8-bit number that is its last segment:
- $\mathrm{h}(\mathrm{x} 1 . \mathrm{x} 2 . \mathrm{x} 3 . \mathrm{x} 4)=\mathrm{x} 4 \bmod \mathrm{~m}$
- e.g., $\mathrm{h}(128.32 .168 .80)=80 \bmod 250=250$
- But is this a good hash function?
- Not if the last segment of an IP address tends to be a small number; then low-numbered buckets would be crowded.
- Taking first segment of IP address also invites disaster, e.g., if most of our customers come from a certain area.

How to choose a hash function?

- There is nothing inherently wrong with these two functions.
- If our IP addr. were uniformly drawn from all 2^{32} possibilities, then these functions would behave well.
- ... the last segment would be equally likely to be any value from 0 to 255 , so the table is balanced...
- The problem is we have no guarantee that the probability of seeing all IP addresses is uniform.
- these are dynamic and changing over time.

How to choose a hash function?

- In most application:
- fixed U, but the set of data K (i.e., IP addrs) are not necessarily uniformly randomly drawn from U
- There is no single hash function that behaves well on all possible sets of data.
- Given any hash function maps $|\mathrm{U}|=2^{32}$ IP addrs to $\mathrm{m}=250$ slots
- there exists a collection of at least $2^{32} / 250=2^{24} \approx 16,000,000$

IP addr that are mapped to same slot (or collide).

- if data set K all come from this collection, hash table becomes linked list!

In General...

- $|\mathrm{f}| \mathrm{U} \mid \geq(N-1) m+1$, then
 for any hash function h, there exists a set of N keys in U, such that all keys are hashed to same slot
- Proof.(General pigeon-hole principle) if every slot has at most $\mathrm{N}-1$ keys mapped to it under h , then there are at most $(\mathrm{n}-1) \mathrm{m}$ elements in U . But we know |U| is larger than this, so ...
- Implication: no matter how careful you choose a hash function, there is always some input (S) that leads to a linear insertion/deletion/search time

Solution: Universal Hashing

- For any fixed hash function, $\mathrm{h}($.$) , there exists a$ set of n keys, such that all keys are hashed to same slot
- Solution: randomly select a hash function from a carefully designed class of hash functions
- For any input, we might choose a bad hash function on a run, and good hash function on another run...
- averaged on different runs, performance is good

Universal hash

Consider any pair of distinct IP addresses $x=\left(x_{1}, \ldots, x_{4}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{4}\right)$. If the coefficients $a=\left(a_{1}, \ldots, a_{4}\right)$ are chosen uniformly at random from $\{0,1, \ldots, m-1\}$, then

$$
\operatorname{Pr}\left[h_{a}\left(x_{1}, \ldots, x_{4}\right)=h_{a}\left(y_{1}, \ldots, y_{4}\right)\right]=\frac{1}{n}
$$

- Proof omitted.
- Implication: given any pair of diff keys, the randomly selected hash function maps them to same slot with prob. $1 / \mathrm{m}$.
- For a set S of data, the average/expected chain length is $\mathrm{IS} / \mathrm{m}=\mathrm{n} / \mathrm{m}=\alpha$
- => Very good average performance

A family of hash functions

- Let us make the table size to be $\mathrm{m}=257$, a prime number!
- Every IP address x as a quadruple $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)$ of integers (all less than m).
- Fix any four numbers (less than 257), e.g., 87, 23, 125, and 4, we can define a function h() as follows:
- $h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(81 x_{1}+23 x_{2}+125 x_{3}+4 x_{4}\right) \bmod 257$
- In general, for any four coefficients $\mathrm{a}_{1}, \ldots, \mathrm{a}_{4} \in\{0,1, \ldots, \mathrm{n}-1\}$ write $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, and define h_{a} as follows:
$h_{a}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right) \bmod 257$

A class of universal hash

Let

$$
H=\left\{h_{a} \mid a \in\{0,1, \ldots, m-1\}\right\}
$$

The above set of hash functions is universal: For any two distinct data items x and y , exactly $1 / \mathrm{m}$ of all the hash functions in H map x and y to the slot, where n is the number of slots.

Two-level hash table

- Perfect hashing: if we fix the set S, can we find a hash function h so that all lookups are constant time?
- Use universal hash functions with 2-level scheme

1. hash into a table of size m using universal hashing (some collision unless really lucky)
2. rehash each slot, here we pick a random h, and try it out, if collision, try another one, ...

Properties of crypt. hash function

- Ideally,
- it is deterministic so the same message always results in the same hash
- it is quick to compute the hash value for any given message
- it is infeasible to generate a message from its hash value except by trying all possible messages
- a small change to a message should change the hash value so extensively that the new hash value appears uncorrelated with the old hash value
- it is infeasible to find two different messages with the same hash value

Note: Cryptographic hash function

- It is a mathematical algorithm
- maps data of arbitrary size to a bit string of a fixed size (a hash function)
- designed to be a one-way function, that is, a function which is infeasible to invert.
- only way to recreate input data from an ideal cryptographic hash function's output is to attempt a brute-force search of possible inputs to see if they produce a match, or use a "rainbow table" of matched hashes.

Cryp. hash functions

- Application of crypt. hash function:
- ensure integrity of everything from digital certificates for HTTPS websites, to managing commits in code repositories, and protecting users against forged documents.
- Recently, Google announced a public collision in the SHA-1 algorithm
- with enough computing power - roughly 110 years of computing from a single GPU - you can produce a collision, effectively breaking the algorithm.
- Two PDF files were shown to be hashed to same hash
- Allow malicious parties to tamper with Web contents...

