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Efficient Algorithms

• So far, we have developed algorithms for finding 
• shortest paths in graphs,  
• minimum spanning trees in graphs,  
• matchings in bipartite graphs, 
• maximum increasing subsequences, 
• maximum flows in networks, 
• … 

• All these algorithms are efficient, because in each 
case their time requirement grows as a polynomial 
function (such as n, n2, or n3) of the size of the input 
(n). 
• These problems are tractable.
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Exponential search space
• In all these problems we are searching for a solution (path, 

tree, matching, etc.) from among an exponential number of 
possibilities. 

• Brute force solution: checking through all candidate solutions, one 
by one. 

• Running time is 2n, or worse, useless in practice 

• Quest for efficient algorithms: finding clever ways to 
bypass exhaustive search, using clues from input in order 
to dramatically narrow down the search space. 

• for many problems, this quest hasn’t been successful: fastest 
algorithms we know for them are all exponential.
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• A boolean expression in conjunctive normal form (CNF) 

• literals: a boolean variable or negation of one  

• a collection of clauses (in parentheses), each consisting of 
disjunction (logical or, ∨) of several literals 

• A satisfying truth assignment: an assignment of false or true to each 
variable so that every clause contains a literal whose value is true, and 
whole expression is satisfied (true)  

• is (x=T, y=T, z=F) satisfying truth assignment to above CNF? 

• SAT Problem 

• Given a Boolean formula in CNF 

• Either find a satisfying truth assignment or report that none exists.

Satisfiability Problem
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• SAT is a typical search problem (or decision problem) 
• Given an instance I (i.e., some input data specifying 

problem at hand),  
• To find a solution S (an object that meets a particular 

specification). If no such solution exists, we must say 
so. 

• In SAT: input data is a Boolean formula in conjunctive 
normal form, and solution we are searching for is an 
assignment that satisfies each clause.

SAT as a search problem
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• For  each such search problem, consider corresponding 
checking/verifying algorithm C, which:  
•   Given inputs: an instance I and a proposed solution S 

•   Runs in time polynomial in size of instance, i.e., |I|. 

•  Return true if S is a solution to I, and return false if 
otherwise 

• For SAT problem, checking/verifying algorithm C 

• take instance I, such as,  

• solution S, such as  

• return true if S is a satisfying truth assignment for I. 

Search Problems
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• Given n vertices 1, . . . , n, and all n(n − 1)/2 distances between 
them, as well as a budget b. 

• Can we tour 4 nodes with budge b=55? 

• Output: find a tour (a cycle that passes through every vertex exactly 
once) of total cost b or less – or to report that no such tour exists. 

•  find permutation τ(1),...,τ(n) of vertices such that when they are 
toured in this order, total distance covered is at most b: 

• dτ(1),τ(2) +dτ(2),τ(3) +···+dτ(n),τ(1) ≤b. 

Traveling Salesman Problem
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For a search/decision problem, if : 

•  There is an efficient checking algorithm C that takes as   
input the given instance I, the proposed solution S, 
and outputs true if and only if S really is a solution to 
instance I; and outputs false o.w. 

•   Moreover running time of C(I,S) is bounded by a   
polynomial in |I|, the length of the instance.  

• Then the search/decision problem belongs to NP, the set 
of search problem for which there is a polynomial time 
checking algorithms  

• Origin: such search problem can be solved in 
polynomial time by nondeterministic Turing 
machine 

NP Problem
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• Given n vertices 1, . . . , n, and all n(n − 1)/2 distances between them, 
as well as a budget b. 

• Output: find a tour (a cycle that passes through every vertex exactly 
once) of total cost b or less – or to report that no such tour exists. 

• Here,  TSP is defined as a search/decision problem 
• given an instance, find a tour within the budget (or report that none 

exists). 

• Usually, TSP is posed as optimization problem  

• i.e., find shortest possible tour 

• 1->2->3->4, total cost: 60

Traveling Salesman Problem
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• Turning an optimization problem into a search problem does 
not change its difficulty at all, because the two versions 
reduce to one another. 

• Any algorithm that solves the optimization TSP also readily 
solves search problem: find the optimum tour and if it is 
within budget, return it; if not, there is no solution. 

• Conversely, an algorithm for search problem can also be 
used to solve optimization problem: 

•  First suppose that we somehow knew cost of optimum tour; then     
we could find this tour by calling algorithm for search problem, 
using optimum cost as the budget.  

•   We can find optimum cost by binary search.     

Search vs Optimization
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• Isn’t any optimization problem also a search problem in the 
sense that we are searching for a solution that has the 
property of being optimal? 

• The solution to a search problem should be easy to 
recognize, or as we put it earlier, polynomial-time 
checkable. 

• Given a potential solution to the TSP, it is easy to check the 
properties “is a tour” (just check that each vertex is visited 
exactly once) and “has total length ≤ b.” 

• But how could one check the property “is optimal”? 

Why Search (not Optimize)?

11

Next: a collection of problems … 
apparently similar problems have different complexities 
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Given a graph, find a path that contains each edge exactly 
once. 

Possible, if and only if 
• (a) the graph is connected and 

• (b) every vertex, with the possible exception of two vertices (the start 
and final vertices of the walk), has even degree. 

A polynomial time algorithm for Euler Path? 

Euler Path:

13

Rudrata/Hamilton Cycle: 

    Given a graph, find a cycle that visits each vertex exactly 
once. 

  Recall: a cycle is a path that starts and 

stops at same vertex 

Hamiltonian path (or traceable path) is a path in an 
undirected or directed graph that visits each vertex exactly 
once.

Hamilton/Rudrata Cycle
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A cut is a set of edges whose removal leaves a graph 
disconnected. 
minimum cut: given a graph and a budget b, find a cut 
with at most b edges. 
This problem can be solved in polynomial time by n − 1 
max-flow computations: give each edge a capacity of 1, 
and find the maximum flow between some fixed node and 
every single other node. 
 
The smallest such flow will correspond (via the max-flow 
min-cut theorem) to the smallest cut.

Minimum Cut
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Bipartite Matching
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• Input: a (bipartite) graph 
•  four nodes on left representing boys and four 

nodes on the right representing girls. 

•  there is an edge between a boy and girl if they 
like each other  

• Output: Is it possible to choose couples so 
that everyone has exactly one partner, 
and it is someone they like? I (i.e., is there 
a perfect matching?) 

• Reduced to maximum-flow problem.  
• Create a super source node, s, with outgoing edges 

to all boys 

• Add a super sink node, t, with incoming edges from 
all girls 

• direct all edges from boy to girl, assigned cap. of 1



3D matching: there are n boys and n girls, but also n pets, 
and the compatibilities among them are specified by a set of 
triples, each containing a boy, a girl, and a pet. 

Intuitively, a triple (b,g,p) means that boy b, girl g, and pet p 
get along well together. 

We want to find n disjoint triples and thereby create n 
harmonious households. 

3D matching
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Graph Problems

18

independent set: 
    Given a graph and an integer g, find g vertices, no two of 
which have an edge between them. 

   g=3, {3, 4, 5}  

vertex cover: Given a graph and an integer b, find b vertices 
cover (touch) every edge. 

   b=1, no solution; b=2, {3, 7} 

Clique:  Given a graph and an integer g, find g vertices such 
that all possible edges between them are present 

    g=3, {1, 2, 3}.

knapsack: We are given integer weights w1 , . . . , wn and integer values 
v1,...,vn for n items. 

We are also given a weight capacity W and a goal g 

We seek a set of items whose total weight is at most W and whose total 
value is at least g. 

The problem is solvable in time O(nW) by dynamic programming. 

subset sum: 
Find a subset of a given set of integers that adds up to exactly W . 

Knapsack
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Hard Problems, Easy Problems
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We’ve seen many examples of NP search problems that are 
solvable in polynomial time. 

 In such cases, there is an algorithm that takes as input 
an instance I and has a running time polynomial in |I|. If I 
has a solution, the algorithm returns such a solution; and if I 
has no solution, the algorithm correctly reports so. 

The class of all search problems that can be solved in 
polynomial time is denoted P.

P
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• Most people believe not  

• Many problems have no polynomial time 
algorithms … yet. 

• All problems on left side of table are same 
problem. 
• If one of them has a polynomial time algorithm, then 

every problem has a polynomial time algorithm.  
• NP Complete (NPC)

P=NP?
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Reduce A -> B
A reduction from search problem A to search problem B  

•  a polynomial time algorithm f that transforms any 
instance I of A into an instance f(I) of B 

• and another polynomial time algorithm h that maps any 
solution S of f(I) back into a solution h(S) of I. 

• If f (I ) has no solution, then neither does I . 

Any algorithm for B can be converted into an algorithm for 
A by bracketing it between f and h.
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Reduction
• Assume there is a reduction from a problem A to a 

problem B. A → B. 

• If we can solve B efficiently, then we can also solve A 
efficiently.  

• If we know A is hard, then B must be hard too.  
Reductions also have the convenient property that 
they compose. If A → B and B → C, then A → C.  

24



NP Complete
Definition:  
    A search problem C is NP-complete  
1) It’s NP 
2) Every NP problem can be reduced to C.
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3SAT (special case of SAT)  
input: a set of clauses, each with three or fewer literals,  

Output: a satisfying truth assignment (if exists) 

Independent Set 
Input: a graph and a number g 

Output: a set of g pairwise non-adjacent vertices (if exists) 

3SAT -> Independent Set
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3SAT

INDEP

3SAT:  find satisfying truth assignment for a set of clauses 

  

Independent Set input: a graph and a number g 

 Output: find a set of g pairwise non-adjacent vertices. 

Given an instance I of 3SAT, create an instance (G,g) of 
Independent Set as follows:  

• Graph G has a triangle for each clause (or just an edge, if the 
clause has two literals), with vertices labeled by the clause’s 
literals, edges between any two vertices that represent opposite 
literals.  

• Goal g is set to the number of clauses. 

3SAT -> Independent Set
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3SAT:  find satisfying truth assignment for a set of clauses 

  

Independent Set input: a graph and a number g 

 Output: find a set of g pairwise non-adjacent vertices. 

3SAT -> Independent Set
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Find independent set of size 2 



3SAT:  find satisfying truth assignment for a set of clauses 

  

Independent Set input: a graph and a number g 

 Output: find a set of g pairwise non-adjacent vertices. 

3SAT -> Independent Set
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Find independent set of size 4 

SAT -> 3SAT
Given an instance I of SAT where clauses have more than 
three literals, (a1 ∨ a2 ∨ · · · ∨ ak ) (ai ’s are literals, k > 3), is 
replaced by a set of clauses, 

 where yi ’s are new variables. 

  The conversion takes polynomial time. 

Resulting CNF, I′, is equivalent to I in terms of satisfiability, 
because for any assignment to the ai ’s,
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Summary
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