
P and NP

CISC5835, Algorithms for Big Data

CIS, Fordham Univ.

Instructor: X. Zhang

Efficient Algorithms

• So far, we have developed algorithms for finding
• shortest paths in graphs,
• minimum spanning trees in graphs,
• matchings in bipartite graphs,
• maximum increasing subsequences,
• maximum flows in networks,
• …

• All these algorithms are efficient, because in each
case their time requirement grows as a polynomial
function (such as n, n2, or n3) of the size of the input
(n).
• These problems are tractable.

2

Exponential search space
• In all these problems we are searching for a solution (path,

tree, matching, etc.) from among an exponential number of
possibilities.

• Brute force solution: checking through all candidate solutions, one
by one.

• Running time is 2n, or worse, useless in practice

• Quest for efficient algorithms: finding clever ways to
bypass exhaustive search, using clues from input in order
to dramatically narrow down the search space.

• for many problems, this quest hasn’t been successful: fastest
algorithms we know for them are all exponential.

3

• A boolean expression in conjunctive normal form (CNF)

• literals: a boolean variable or negation of one

• a collection of clauses (in parentheses), each consisting of
disjunction (logical or, ∨) of several literals

• A satisfying truth assignment: an assignment of false or true to each
variable so that every clause contains a literal whose value is true, and
whole expression is satisfied (true)

• is (x=T, y=T, z=F) satisfying truth assignment to above CNF?

• SAT Problem

• Given a Boolean formula in CNF

• Either find a satisfying truth assignment or report that none exists.

Satisfiability Problem

4

• SAT is a typical search problem (or decision problem)
• Given an instance I (i.e., some input data specifying

problem at hand),
• To find a solution S (an object that meets a particular

specification). If no such solution exists, we must say
so.

• In SAT: input data is a Boolean formula in conjunctive
normal form, and solution we are searching for is an
assignment that satisfies each clause.

SAT as a search problem

5

• For each such search problem, consider corresponding
checking/verifying algorithm C, which:
• Given inputs: an instance I and a proposed solution S

• Runs in time polynomial in size of instance, i.e., |I|.

• Return true if S is a solution to I, and return false if
otherwise

• For SAT problem, checking/verifying algorithm C

• take instance I, such as,

• solution S, such as

• return true if S is a satisfying truth assignment for I.

Search Problems

6

• Given n vertices 1, . . . , n, and all n(n − 1)/2 distances between
them, as well as a budget b.

• Can we tour 4 nodes with budge b=55?

• Output: find a tour (a cycle that passes through every vertex exactly
once) of total cost b or less – or to report that no such tour exists.

• find permutation τ(1),...,τ(n) of vertices such that when they are
toured in this order, total distance covered is at most b:

• dτ(1),τ(2) +dτ(2),τ(3) +···+dτ(n),τ(1) ≤b.

Traveling Salesman Problem

7

For a search/decision problem, if :

• There is an efficient checking algorithm C that takes as
input the given instance I, the proposed solution S,
and outputs true if and only if S really is a solution to
instance I; and outputs false o.w.

• Moreover running time of C(I,S) is bounded by a
polynomial in |I|, the length of the instance.

• Then the search/decision problem belongs to NP, the set
of search problem for which there is a polynomial time
checking algorithms

• Origin: such search problem can be solved in
polynomial time by nondeterministic Turing
machine

NP Problem

8

• Given n vertices 1, . . . , n, and all n(n − 1)/2 distances between them,
as well as a budget b.

• Output: find a tour (a cycle that passes through every vertex exactly
once) of total cost b or less – or to report that no such tour exists.

• Here, TSP is defined as a search/decision problem
• given an instance, find a tour within the budget (or report that none

exists).

• Usually, TSP is posed as optimization problem

• i.e., find shortest possible tour

• 1->2->3->4, total cost: 60

Traveling Salesman Problem

9

• Turning an optimization problem into a search problem does
not change its difficulty at all, because the two versions
reduce to one another.

• Any algorithm that solves the optimization TSP also readily
solves search problem: find the optimum tour and if it is
within budget, return it; if not, there is no solution.

• Conversely, an algorithm for search problem can also be
used to solve optimization problem:

• First suppose that we somehow knew cost of optimum tour; then
we could find this tour by calling algorithm for search problem,
using optimum cost as the budget.

• We can find optimum cost by binary search.

Search vs Optimization

10

• Isn’t any optimization problem also a search problem in the
sense that we are searching for a solution that has the
property of being optimal?

• The solution to a search problem should be easy to
recognize, or as we put it earlier, polynomial-time
checkable.

• Given a potential solution to the TSP, it is easy to check the
properties “is a tour” (just check that each vertex is visited
exactly once) and “has total length ≤ b.”

• But how could one check the property “is optimal”?

Why Search (not Optimize)?

11

Next: a collection of problems …
apparently similar problems have different complexities

12

Given a graph, find a path that contains each edge exactly
once.

Possible, if and only if
• (a) the graph is connected and

• (b) every vertex, with the possible exception of two vertices (the start
and final vertices of the walk), has even degree.

A polynomial time algorithm for Euler Path?

Euler Path:

13

Rudrata/Hamilton Cycle:

 Given a graph, find a cycle that visits each vertex exactly
once.

 Recall: a cycle is a path that starts and

stops at same vertex

Hamiltonian path (or traceable path) is a path in an
undirected or directed graph that visits each vertex exactly
once.

Hamilton/Rudrata Cycle

14

A cut is a set of edges whose removal leaves a graph
disconnected.
minimum cut: given a graph and a budget b, find a cut
with at most b edges.
This problem can be solved in polynomial time by n − 1
max-flow computations: give each edge a capacity of 1,
and find the maximum flow between some fixed node and
every single other node.
 
The smallest such flow will correspond (via the max-flow
min-cut theorem) to the smallest cut.

Minimum Cut

15

Bipartite Matching

16

• Input: a (bipartite) graph
• four nodes on left representing boys and four

nodes on the right representing girls.

• there is an edge between a boy and girl if they
like each other

• Output: Is it possible to choose couples so
that everyone has exactly one partner,
and it is someone they like? I (i.e., is there
a perfect matching?)

• Reduced to maximum-flow problem.
• Create a super source node, s, with outgoing edges

to all boys

• Add a super sink node, t, with incoming edges from
all girls

• direct all edges from boy to girl, assigned cap. of 1

3D matching: there are n boys and n girls, but also n pets, 
and the compatibilities among them are specified by a set of
triples, each containing a boy, a girl, and a pet.

Intuitively, a triple (b,g,p) means that boy b, girl g, and pet p
get along well together.

We want to find n disjoint triples and thereby create n
harmonious households.

3D matching

17

Graph Problems

18

independent set: 
 Given a graph and an integer g, find g vertices, no two of
which have an edge between them.

 g=3, {3, 4, 5}

vertex cover: Given a graph and an integer b, find b vertices
cover (touch) every edge.

 b=1, no solution; b=2, {3, 7}

Clique: Given a graph and an integer g, find g vertices such
that all possible edges between them are present

 g=3, {1, 2, 3}.

knapsack: We are given integer weights w1 , . . . , wn and integer values
v1,...,vn for n items. 

We are also given a weight capacity W and a goal g

We seek a set of items whose total weight is at most W and whose total
value is at least g.

The problem is solvable in time O(nW) by dynamic programming.

subset sum: 
Find a subset of a given set of integers that adds up to exactly W .

Knapsack

19

Hard Problems, Easy Problems

20

We’ve seen many examples of NP search problems that are
solvable in polynomial time.

 In such cases, there is an algorithm that takes as input
an instance I and has a running time polynomial in |I|. If I
has a solution, the algorithm returns such a solution; and if I
has no solution, the algorithm correctly reports so.

The class of all search problems that can be solved in
polynomial time is denoted P.

P

21

• Most people believe not

• Many problems have no polynomial time
algorithms … yet.

• All problems on left side of table are same
problem.
• If one of them has a polynomial time algorithm, then

every problem has a polynomial time algorithm.
• NP Complete (NPC)

P=NP?

22

Reduce A -> B
A reduction from search problem A to search problem B

• a polynomial time algorithm f that transforms any
instance I of A into an instance f(I) of B

• and another polynomial time algorithm h that maps any
solution S of f(I) back into a solution h(S) of I.

• If f (I) has no solution, then neither does I .

Any algorithm for B can be converted into an algorithm for
A by bracketing it between f and h.

23

Reduction
• Assume there is a reduction from a problem A to a

problem B. A → B.

• If we can solve B efficiently, then we can also solve A
efficiently.

• If we know A is hard, then B must be hard too.  
Reductions also have the convenient property that
they compose. If A → B and B → C, then A → C.

24

NP Complete
Definition:
 A search problem C is NP-complete
1) It’s NP
2) Every NP problem can be reduced to C.

25

3SAT (special case of SAT)
input: a set of clauses, each with three or fewer literals,

Output: a satisfying truth assignment (if exists)

Independent Set
Input: a graph and a number g

Output: a set of g pairwise non-adjacent vertices (if exists)

3SAT -> Independent Set

26

3SAT

INDEP

3SAT: find satisfying truth assignment for a set of clauses

Independent Set input: a graph and a number g

 Output: find a set of g pairwise non-adjacent vertices.

Given an instance I of 3SAT, create an instance (G,g) of
Independent Set as follows:

• Graph G has a triangle for each clause (or just an edge, if the
clause has two literals), with vertices labeled by the clause’s
literals, edges between any two vertices that represent opposite
literals.

• Goal g is set to the number of clauses.

3SAT -> Independent Set

27

3SAT: find satisfying truth assignment for a set of clauses

Independent Set input: a graph and a number g

 Output: find a set of g pairwise non-adjacent vertices.

3SAT -> Independent Set

28

Find independent set of size 2

3SAT: find satisfying truth assignment for a set of clauses

Independent Set input: a graph and a number g

 Output: find a set of g pairwise non-adjacent vertices.

3SAT -> Independent Set

29

Find independent set of size 4

SAT -> 3SAT
Given an instance I of SAT where clauses have more than
three literals, (a1 ∨ a2 ∨ · · · ∨ ak) (ai ’s are literals, k > 3), is
replaced by a set of clauses,

 where yi ’s are new variables.

 The conversion takes polynomial time.

Resulting CNF, I′, is equivalent to I in terms of satisfiability,
because for any assignment to the ai ’s,

30

Summary

31

