Algorithms with numbers (1)
CISC5835, Computer Algorithms
CIS, Fordham Univ.

Instructor: X. Zhang
Fall 2018

Acknowledgement

 The set of slides have used materials from the
following resources

« Slides for textbook by Dr. Y. Chen from
Shanghai Jiaotong Univ.

e Slides from Dr. M. Nicolescu from UNR
« Slides sets by Dr. K. Wayne from Princeton

 which in turn have borrowed materials from
other resources

 Other online resources

Outline

Motivation

Algorithm for integer addition
Algorithms for multiplication

« grade-school algorithm

* recursive algorithm
 divide-and-conquer algorithm
Division

Exponentiation

Algorithms for integer arithmetics

* We study adding/multiplying two integers
» earliest algorithms!
* mostly what you learned in grade school!

* Analyze running time of these algorithms by
counting number of elementary operations on
individual bits when adding/multiplying two N-Dbits
long ints (so called bit complexity)

* input size N: the length of operands

* for example, to add two N-bits integer numbers, we
need to O(n) bit operations (such as adding three bits
together).

Practical consideration

 But, why bother?

 Given that with a single (machine) instruction,
one can add/subtract/multiply integers whose
size in bits is within word length of computer —
32, or 64.

* |.e., they are implemented in hardware
* Bit complexity of arithmetic operations algorithms
captures amount of hardware (transistors and
wires) necessary for implementing algorithm using
digital logic circuit.
* €.g., number of logic gates needed ...

Support for Big Integer

 What if we need to handle numbers that are several
thousand bits long?

* need to implement arithmetic operations of large
integers in software.

* Ex: Use an array of ints to store the (decimal or
binary) digits of integer,
« int digits[3]={2,4,6}; //represents 642
* int digits1[10]={3,4,5,7,0,7,8}; //Irepresent 8707543
* int bindigits[4]={1,0,1,0}; //represent 0101, i.e., 3
 Algorithms studied here are presented assuming base 2
» those for other base (e.g., base 10) are similar

Support for Big Integer®

« But notice that each int variable can store up to 64 bits, and
we can add/subtract/multiple 64-bits ints in one machine
instruction

» To save space and time, one could divide big integer into
chunks of 63 bits long, and store each chunk in a int

- 101100... 10 1111110...101110 111111...0000110011110111
63 bits 63 bits 63 bits

« int chunks[3]=(32, 121554, 14524‘6;/

//represent a value of

32 x 2126 4 121254 x 293 + 145246

When adding two numbers, adding corresponding chunks together,
carry over are added to the next chunks...

Outline

Motivation

Algorithm for integer addition
Algorithms for multiplication

« grade-school algorithm

* recursive algorithm
 divide-and-conquer algorithm
Division

Exponentiation

Adding two binary number

Carry: 1 1 1 1
1 1 0 1 0 1 (53
1 0 0 0 1 1 (35
1 0 1 1 0 0 O (88

Algorithm for adding integers

« Sum of any three single-digit numbers is at most two digits long.
(holds for any base)

* In binary the largest possible sum of three single-bit numbers
IS 3, which is a 2-bit number.

* In decimal, the max possible sum of three single digit
numbers is 27 (9+9+9), which is a 2-digit number

« Algorithms for addition (in any base):
« align their right-hand ends,
« perform a single right-to-left pass

 the sum is computed digit by digit, maintaining overflow as
a carry

 since we know each individual sum is a two-digit number,
the carry is always a single digit, and so at any given step,
three single-digit numbers are added)

10

Question
Given two binary numbers x and y, how long does our algorithm take to add
them?

We want the answer expressed as a function of the size of the input: the
number of bits of x and y.

Suppose x and y are each n bits long. Then the sum of x and y is n+ 1 bits at
most, and each individual bit of this sum gets computed in a fixed amount of

time.
The total running time for the addition algorithm is therefore of the form

c + cin, where ¢ and ¢ are some constants, i.e., O(n).

Question
Is there a faster algorithm?

In order to add two n-bit numbers we must at least read them and write down
the answer, and even that requires n operations.
So the addition algorithm is optimal, up to multiplicative constants!

Ubiguitous log2N

* log2N is the power to which you need to raise 2 in order to
obtain N.

* e.g., 10g28=3 (as 23=8), logz 1024=10(as 2'°=1024).
« Going backward, it can be seen as the number of times you
must halve N to get down to 1, more precisely: [log N
* e.g., N=10, |— 10 _4N8J rl
e It is the number of blt2 In binary represe t%‘?‘o ofN more
precisely:

* e.g., hw[ll%%g{i\cf)ﬁg)]

* It is the depth of a complete binary tree with N nodes, more
precisely:

* height olflgﬂ%%’pjwith N nodes ...

* |[tis even the sum 1+1/2+1/3+...+1/N, to within a constant
factor.

12

Multiplication in base 2

1 1 0 1 (binary 13)

x 1 0 1 1 (binary 11)

1 1 0 1 (1101 times 1)

1 1 0 1 (1101 times 1, shifted once)

0O 0 O O (1101 times 0, shifted twice)

+ 1 1 0 1 (1101 times 1, shifted thrice)
1 0 0 0 1 1 1 1 (binary 143)

The grade-school algorithm for multiplying two numbers x and :
create an array of intermediate sums, each representing the

product of x by a single digit of .

these values are appropriately left-shifted and then added up.

13

Multiplication in base 2

1 1 0 1 (binary 13)

x 1 0 1 1 (binary 11)

1 1 0 1 (1101 times 1)

1 1 0 1 (1101 times 1, shifted once)

0O 0 0 O (1101 times 0, shifted twice)

+ 1 1 0 1 (1101 times 1, shifted thrice)
1 0 0 0 1 1 1 1 (binary 143)

If x and y are both n bits, then there are n intermediate rows, with
lengths of up to 2n bits.

The total time taken to add up these rows, doing two numbers at a

Hme, 18 O(n)+ ...+ O(n).

¥

n — 1 times

which is O(n:).

14

Multiplication: top-down approach

MULTIPLY(X, y)
// Two n-bit integers x and y, where y > 0.

1. if y =0 then return O

2. z = MULTIPLY(x, |y/2])
3. if y is even then return 2z
4. else return x 4+ 2z

* Totally, n recursive calls, because at each call y is halved (i.e., n
decreases by 1)
* In each recursive call: a division by 2 (right shift), a test for odd/

even (looking up the last bit); a multiplication by 2 (left shift); and
possibly one addition => a total of O(n) bit operations.

* The total time taken is thus O(n2).

15

Nivide-and-conaiiler

Suppose x and y are two n-bit integers, and assume for convenience that n is a
power of 2.

Lemma
For every n there exists an n' with n < n" < 2n such that n' a power of 2.

As a first step toward multiplying x and y, we split each of them into their left
and right halves, which are n/2 bits long:

2
X =| x XR =2n/XL+XR

y=| v |l yr |=2"2y + yr.

xy = (2"%x. + xr) (2" %y + yr) = 2"x1yr + 2" *(xLyr + xryL) + XrYR.

The additions take linear time, as do the multiplications by powers of 2. The
significant operations are the four n/2-bit multiplications; these we can handle

by four recursive calls.

Running time

xy = (2"%x + xr) 2"’y + yr) = 2"xeyr + 2" *(xLyr + XrYL) + XRYR-

Our method for multiplying n-bit numbers

1. making recursive calls to multiply these four pairs of n/2-bit
numbers,

2. evaluates the above expression in O(n) time

Writing T(n) for the overall running time on n-bit inputs, we get the
recurrence relation:

T(n) = 4T(n/2) + O(n)

By master theorem, T(n)=(n?)
17

Can we do better?

xy = (2"%x + xr)(2"?yL + yr) = 2"xuyr + 2" (xyr + XryL) 4+ XrYR-

By Gauss's trick, three multiplications, x.y:, xryr, and (x. + xg)(ye + vr),
suffice, as
xtyr + xryr = (xt + xr)(yL + YR) — XLYL — XRYR.

The recurrence relation:

T(n) =3T(n/2) + O(n)

By Master Theorem: T(n) — nlog23

18

Integer Division

DIVIDE(X, y)
// Two n-bit integers x and y, where y > 1.

1. if x =0 then return (q,r) = (0,0)
(9, r) = DIVIDE([x/2] , y)
q=2-q, r=2-r

if xisoddthen r=r+1
fr>ythenr=r—y,gq=q+1
return (q, r)

OOl WN

19

Readings

N2

\ e Chapter 1.1
AV}

