
Algorithms with numbers (1)  
CISC5835, Computer Algorithms

CIS, Fordham Univ.

Instructor: X. Zhang

Fall 2018

Acknowledgement

• The set of slides have used materials from the
following resources
• Slides for textbook by Dr. Y. Chen from

Shanghai Jiaotong Univ.
• Slides from Dr. M. Nicolescu from UNR
• Slides sets by Dr. K. Wayne from Princeton

• which in turn have borrowed materials from
other resources

• Other online resources

2

Outline

• Motivation
• Algorithm for integer addition
• Algorithms for multiplication

• grade-school algorithm
• recursive algorithm
• divide-and-conquer algorithm

• Division
• Exponentiation

3

• We study adding/multiplying two integers
• earliest algorithms!
• mostly what you learned in grade school!

• Analyze running time of these algorithms by
counting number of elementary operations on
individual bits when adding/multiplying two N-bits
long ints (so called bit complexity)
• input size N: the length of operands

• for example, to add two N-bits integer numbers, we
need to O(n) bit operations (such as adding three bits
together).

Algorithms for integer arithmetics

4

• But, why bother?
• Given that with a single (machine) instruction,

one can add/subtract/multiply integers whose
size in bits is within word length of computer –
32, or 64.

• i.e., they are implemented in hardware
• Bit complexity of arithmetic operations algorithms

captures amount of hardware (transistors and
wires) necessary for implementing algorithm using
digital logic circuit.
• e.g., number of logic gates needed …

Practical consideration

5

• What if we need to handle numbers that are several
thousand bits long?
• need to implement arithmetic operations of large

integers in software.

• Ex: Use an array of ints to store the (decimal or
binary) digits of integer,
• int digits[3]={2,4,6}; //represents 642
• int digits1[10]={3,4,5,7,0,7,8}; //represent 8707543
• int bindigits[4]={1,0,1,0}; //represent 0101, i.e., 3

• Algorithms studied here are presented assuming base 2
• those for other base (e.g., base 10) are similar

Support for Big Integer

6

• But notice that each int variable can store up to 64 bits, and
we can add/subtract/multiple 64-bits ints in one machine
instruction

• To save space and time, one could divide big integer into
chunks of 63 bits long, and store each chunk in a int

• 101100… 10 1111110…101110 111111…0000110011110111
 63 bits 63 bits 63 bits

• int chunks[3]={32, 121254, 145246};
 //represent a value of

When adding two numbers, adding corresponding chunks together,
carry over are added to the next chunks…

Support for Big Integer*

7

Outline
• Motivation
• Algorithm for integer addition
• Algorithms for multiplication

• grade-school algorithm
• recursive algorithm
• divide-and-conquer algorithm

• Division
• Exponentiation

8

Adding two binary number

9

10

Algorithm for adding integers
• Sum of any three single-digit numbers is at most two digits long.

(holds for any base)
• In binary the largest possible sum of three single-bit numbers

is 3, which is a 2-bit number.
• In decimal, the max possible sum of three single digit

numbers is 27 (9+9+9), which is a 2-digit number
• Algorithms for addition (in any base):

• align their right-hand ends,
• perform a single right-to-left pass

• the sum is computed digit by digit, maintaining overflow as
a carry

• since we know each individual sum is a two-digit number,
the carry is always a single digit, and so at any given step,
three single-digit numbers are added)

Sorting applications

11

12

Ubiquitous log2N
• log2N is the power to which you need to raise 2 in order to

obtain N.
• e.g., log28=3 (as 23=8), log2 1024=10(as 210=1024).

• Going backward, it can be seen as the number of times you
must halve N to get down to 1, more precisely:
• e.g., N=10, ; N=8,

• It is the number of bits in binary representation of N, more
precisely:
• e.g., hw1 questions

• It is the depth of a complete binary tree with N nodes, more
precisely:
• height of a heap with N nodes …

• It is even the sum 1+1/2+1/3+...+1/N, to within a constant
factor.

Multiplication in base 2

13

The grade-school algorithm for multiplying two numbers x and y:
• create an array of intermediate sums, each representing the

product of x by a single digit of y.
• these values are appropriately left-shifted and then added up.

14

Multiplication in base 2

 If x and y are both n bits, then there are n intermediate rows, with
lengths of up to 2n bits.
 The total time taken to add up these rows, doing two numbers at a
time, is

which is O(n2).

Multiplication: top-down approach

15

• Totally, n recursive calls, because at each call y is halved (i.e., n
decreases by 1)

• In each recursive call: a division by 2 (right shift), a test for odd/
even (looking up the last bit); a multiplication by 2 (left shift); and
possibly one addition => a total of O(n) bit operations.

• The total time taken is thus O(n2).

Divide-and-conquer

16

Running time

17

Our method for multiplying n-bit numbers

1. making recursive calls to multiply these four pairs of n/2-bit
numbers,

2. evaluates the above expression in O(n) time

Writing T(n) for the overall running time on n-bit inputs, we get the
recurrence relation:

 T(n) = 4T(n/2) + O(n)

By master theorem, T(n)=(n2)

Can we do better?

18

By Master Theorem:

19

Integer Division

20

Readings

• Chapter 1.1

