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• We study adding/multiplying two integers  
• earliest algorithms!  
• mostly what you learned in grade school!  

• Analyze running time of these algorithms by 
counting number of elementary operations on 
individual bits when adding/multiplying two N-bits 
long ints (so called bit complexity)  
• input size N: the length of operands 

• for example, to add two N-bits integer numbers, we 
need to O(n) bit operations (such as adding three bits 
together). 

Algorithms for integer arithmetics
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• But, why bother?  
• Given that with a single (machine) instruction, 

one can add/subtract/multiply integers whose 
size in bits is within word length of computer – 
32, or 64.  

• i.e., they are implemented in hardware  
• Bit complexity of arithmetic operations algorithms 

captures amount of hardware (transistors and 
wires) necessary for implementing algorithm using 
digital logic circuit.  
• e.g., number of logic gates needed … 

Practical consideration
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• What if we need to handle numbers that are several 
thousand bits long?  
• need to implement arithmetic operations of large 

integers in software.  

• Ex: Use an array of ints to store the (decimal or 
binary) digits of integer, 
• int digits[3]={2,4,6}; //represents 642  
• int digits1[10]={3,4,5,7,0,7,8}; //represent 8707543 
• int bindigits[4]={1,0,1,0}; //represent 0101, i.e., 3 

• Algorithms studied here are presented assuming base 2 
•  those for other base (e.g., base 10) are similar 

Support for Big Integer
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• But notice that each int variable can store up to 64 bits, and 
we can add/subtract/multiple 64-bits ints in one machine 
instruction  

• To save space and time, one could divide big integer into 
chunks of 63 bits long, and store each chunk in a int  

• 101100…  10 1111110…101110  111111…0000110011110111 
    63 bits                      63 bits                              63 bits 

• int chunks[3]={32, 121254, 145246}; 
    //represent a value of 

When adding two numbers, adding corresponding chunks together, 
carry over are added to the next chunks…

Support for Big Integer*
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Adding two binary number
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Algorithm for adding integers
• Sum of any three single-digit numbers is at most two digits long. 

(holds for any base) 
• In binary the largest possible sum of three single-bit numbers 

is 3, which is a 2-bit number. 
• In decimal, the max possible sum of three single digit 

numbers is 27 (9+9+9), which is a 2-digit number 
• Algorithms for addition (in any base):  

• align their right-hand ends,  
• perform a single right-to-left pass  

• the sum is computed digit by digit, maintaining overflow as 
a carry  

• since we know each individual sum is a two-digit number, 
the carry is always a single digit, and so at any given step, 
three single-digit numbers are added) 



Sorting applications
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Ubiquitous log2N 
• log2N is the power to which you need to raise 2 in order to 

obtain N.  
• e.g., log28=3 (as 23=8), log2 1024=10(as 210=1024). 

• Going backward, it can be seen as the number of times you 
must halve N to get down to 1, more precisely: 
• e.g., N=10,                         ; N=8,  

• It is the number of bits in binary representation of N, more 
precisely:  
• e.g., hw1 questions  

• It is the depth of a complete binary tree with N nodes, more 
precisely:                   
• height of a heap with N nodes …  

• It is even the sum 1+1/2+1/3+...+1/N, to within a constant 
factor. 



Multiplication in base 2 
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The grade-school algorithm for multiplying two numbers x and y: 
•    create an array of intermediate sums, each representing the 

product of x by a single digit of y.  
•    these values are appropriately left-shifted and then added up.
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Multiplication in base 2 

   If x and y are both n bits, then there are n intermediate rows, with 
lengths of up to 2n bits. 
   The total time taken to add up these rows, doing two numbers at a 
time, is 
  

which is O(n2). 



Multiplication: top-down approach
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• Totally, n recursive calls, because at each call y is halved (i.e., n 
decreases by 1)  

• In each recursive call: a division by 2 (right shift), a test for odd/
even (looking up the last bit); a multiplication by 2 (left shift); and 
possibly one addition => a total of O(n) bit operations.  

• The total time taken is thus O(n2).



Divide-and-conquer
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Running time
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Our method for multiplying n-bit numbers 

1. making recursive calls to multiply these four pairs of n/2-bit 
numbers, 

2. evaluates the above expression in O(n) time

Writing T(n) for the overall running time on n-bit inputs, we get the 
recurrence relation:

           T(n) = 4T(n/2) + O(n)

By master theorem, T(n)=(n2)



Can we do better? 
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By Master Theorem:



19

Integer Division
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Readings

• Chapter 1.1


