Algorithms with numbers (1) CISC5835, Computer Algorithms CIS, Fordham Univ.

Instructor: X. Zhang
Fall 2018

Acknowledgement

- The set of slides have used materials from the following resources
- Slides for textbook by Dr. Y. Chen from Shanghai Jiaotong Univ.
- Slides from Dr. M. Nicolescu from UNR
- Slides sets by Dr. K. Wayne from Princeton
- which in turn have borrowed materials from other resources
- Other online resources

Outline

- Motivation
- Algorithm for integer addition
- Algorithms for multiplication
- grade-school algorithm
- recursive algorithm
- divide-and-conquer algorithm
- Division
- Exponentiation

Algorithms for integer arithmetics

- We study adding/multiplying two integers
- earliest algorithms!
- mostly what you learned in grade school!
- Analyze running time of these algorithms by counting number of elementary operations on individual bits when adding/multiplying two N-bits long ints (so called bit complexity)
- input size N : the length of operands
- for example, to add two N-bits integer numbers, we need to $\mathrm{O}(\mathrm{n})$ bit operations (such as adding three bits together).

Practical consideration

- But, why bother?
- Given that with a single (machine) instruction, one can add/subtract/multiply integers whose size in bits is within word length of computer 32 , or 64.
- i.e., they are implemented in hardware
- Bit complexity of arithmetic operations algorithms captures amount of hardware (transistors and wires) necessary for implementing algorithm using digital logic circuit.
- e.g., number of logic gates needed ...

Support for Big Integer

- What if we need to handle numbers that are several thousand bits long?
- need to implement arithmetic operations of large integers in software.
- Ex: Use an array of ints to store the (decimal or binary) digits of integer,
- int digits[3]=\{2,4,6\}; //represents 642
- int digits1[10]=\{3,4,5,7,0,7,8\}; //represent 8707543
- int bindigits[4]=\{1,0,1,0\}; //represent 0101, i.e., 3
- Algorithms studied here are presented assuming base 2
- those for other base (e.g., base 10) are similar

Support for Big Integer*

- But notice that each int variable can store up to 64 bits, and we can add/subtract/multiple 64-bits ints in one machine instruction
- To save space and time, one could divide big integer into chunks of 63 bits long, and store each chunk in a int
- 101100... $101111110 \ldots 101110111111 \ldots 0000110011110111$ 63 bits 63 bits

63 bits

- int chunks[3]=\{32, 121254, 14524б\};
//represent a value of

$$
32 \times 2^{126}+121254 \times 2^{63}+145246
$$

When adding two numbers, adding corresponding chunks together, carry over are added to the next chunks...

Outline

- Motivation
- Algorithm for integer addition
- Algorithms for multiplication
- grade-school algorithm
- recursive algorithm
- divide-and-conquer algorithm
- Division
- Exponentiation

Adding two binary number

Algorithm for adding integers

- Sum of any three single-digit numbers is at most two digits long. (holds for any base)
- In binary the largest possible sum of three single-bit numbers is 3 , which is a 2-bit number.
- In decimal, the max possible sum of three single digit numbers is $27(9+9+9)$, which is a 2 -digit number
- Algorithms for addition (in any base):
- align their right-hand ends,
- perform a single right-to-left pass
- the sum is computed digit by digit, maintaining overflow as a carry
- since we know each individual sum is a two-digit number, the carry is always a single digit, and so at any given step, three single-digit numbers are added)

Question

Given two binary numbers x and y, how long does our algorithm take to add them?

We want the answer expressed as a function of the size of the input: the number of bits of x and y.

Suppose x and y are each n bits long. Then the sum of x and y is $n+1$ bits at most, and each individual bit of this sum gets computed in a fixed amount of time.
The total running time for the addition algorithm is therefore of the form $c_{0}+c_{1} n$, where c_{0} and c_{1} are some constants, i.e., $O(n)$.

Question

Is there a faster algorithm?
In order to add two n-bit numbers we must at least read them and write down the answer, and even that requires n operations.
So the addition algorithm is optimal, up to multiplicative constants!

Ubiquitous $\log _{2} \mathrm{~N}$

- $\log _{2} \mathrm{~N}$ is the power to which you need to raise 2 in order to obtain N .
- e.g., $\log _{2} 8=3$ (as $2^{3}=8$), $\log _{2} 1024=10$ (as $2^{10}=1024$).
- Going backward, it can be seen as the number of times you must halve N to get down to 1 , more precisely:
- e.g., $\mathrm{N}=10, \quad\left[\log _{2} 10\right\rceil=\dot{4}^{\mathrm{N}=8,} \quad\left[\log _{2} 8\right]=3$
- It is the number of bits in binary representation of N, more precisely:
- e.g., hw1 ququestions 1) $]$
- It is the depth of a complete binary tree with N nodes, more precisely:
- height of loque $N{ }^{2} ل_{\text {with }} \mathrm{N}$ nodes ...
- It is even the sum $1+1 / 2+1 / 3+\ldots+1 / \mathrm{N}$, to within a constant factor.

Multiplication in base 2

The grade-school algorithm for multiplying two numbers x and y :

- create an array of intermediate sums, each representing the product of x by a single digit of y.
- these values are appropriately left-shifted and then added up.

Multiplication in base 2

If x and y are both n bits, then there are n intermediate rows, with lengths of up to $2 n$ bits.
The total time taken to add up these rows, doing two numbers at a time, is

$$
\underbrace{O(n)+\ldots+O(n)}_{n-1 \text { times }}
$$

which is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Multiplication: top-down approach

$\operatorname{MULTIPLY}(x, y)$
// Two n-bit integers x and y, where $y \geq 0$.

1. if $y=0$ then return 0
2. $z=\operatorname{MULTIPLY}(x,\lfloor y / 2\rfloor)$
3. if y is even then return $2 z$
4. else return $x+2 z$

- Totally, n recursive calls, because at each call y is halved (i.e., n decreases by 1)
- In each recursive call: a division by 2 (right shift), a test for odd/ even (looking up the last bit); a multiplication by 2 (left shift); and possibly one addition => a total of $O(n)$ bit operations.
- The total time taken is thus $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Divide-and-r.nncuer

Suppose x and y are two n-bit integers, and assume for convenience that n is a power of 2 .

Lemma

For every n there exists an n^{\prime} with $n \leq n^{\prime} \leq 2 n$ such that n^{\prime} a power of 2 .

As a first step toward multiplying x and y, we split each of them into their left and right halves, which are $n / 2$ bits long:

$$
\begin{gathered}
x=x_{L} \quad x_{R}=2^{n / 2} x_{L}+x_{R} \\
y=y_{L} y_{R}=2^{n / 2} y_{L}+y_{R} \\
x y=\left(2^{n / 2} x_{L}+x_{R}\right)\left(2^{n / 2} y_{L}+y_{R}\right)=2^{n} x_{L} y_{L}+2^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{gathered}
$$

The additions take linear time, as do the multiplications by powers of 2 . The significant operations are the four $n / 2$-bit multiplications; these we can handle by four recursive calls.

Running time

$$
x y=\left(2^{n / 2} x_{L}+x_{R}\right)\left(2^{n / 2} y_{L}+y_{R}\right)=2^{n} x_{L} y_{L}+2^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R} .
$$

Our method for multiplying n-bit numbers

1. making recursive calls to multiply these four pairs of $n / 2$-bit numbers,
2. evaluates the above expression in $\mathrm{O}(\mathrm{n})$ time

Writing $\mathrm{T}(\mathrm{n})$ for the overall running time on n -bit inputs, we get the recurrence relation:

$$
\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})
$$

By master theorem, $\mathrm{T}(\mathrm{n})=\left(\mathrm{n}^{2}\right)$

Can we do better?

$$
x y=\left(2^{n / 2} x_{L}+x_{R}\right)\left(2^{n / 2} y_{L}+y_{R}\right)=2^{n} x_{L} y_{L}+2^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
$$

By Gauss's trick, three multiplications, $x_{L} y_{L}, x_{R} y_{R}$, and $\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$, suffice, as

$$
x y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R} .
$$

The recurrence relation:

$$
T(n)=3 T(n / 2)+O(n)
$$

By Master Theorem: $T(n)=n^{\log _{2} 3}$

Integer Division

DIVIDE (x, y)

// Two n-bit integers x and y, where $y \geq 1$.

1. if $x=0$ then return $(q, r)=(0,0)$
2. $(q, r)=\operatorname{DIVIDE}(\lfloor x / 2\rfloor, y)$
3. $q=2 \cdot q, r=2 \cdot r$
4. if x is odd then $r=r+1$
5. if $r \geq y$ then $r=r-y, q=q+1$
6. return (q, r)

Readings

- Chapter 1.1

