Big-Data Algorithms: Overview
Reference: http://www.sketchingbigdata.org/fall17/lec/lecl.pdf

http://www.sketchingbigdata.org/fall17/lec/lec1.pdf

What's the problem here?

» So far, linear (i.e., linear-cost) algorithms have been “gold
standard" .

» What if linear algorithms aren’t good enough?

What's the problem here?

» So far, linear (i.e., linear-cost) algorithms have been “gold
standard" .

» What if linear algorithms aren’t good enough?
Example: Search the web for pages of interest.

Topics of Interest

» Sketching: Compression of a data set that allows queries.
» Compression C(x) of some data set x that allows us to
query f(x).
» May want to compute f(x, y) from C(x) and C(y).
» May want composable compression: if x = x1x ... x,, would
like to compute C(x1x2 ... XpXpt+1) = C(X Xp+1) using just
C(x) and xp41.

Topics of Interest

» Sketching: Compression of a data set that allows queries.
» Compression C(x) of some data set x that allows us to
query f(x).
» May want to compute f(x, y) from C(x) and C(y).
» May want composable compression: if x = x1x ... x,, would
like to compute C(x1x2 ... XpXpt1) = C(X Xp41) using just
C(x) and xp41.
» Streaming: May not be able to store a huge dataset. Need
to process stream of data, coming in one chunk at a time, on
the fly. Must answer queries with sublinear memory.

Topics

of Interest

Sketching: Compression of a data set that allows queries.

» Compression C(x) of some data set x that allows us to
query f(x).

» May want to compute f(x, y) from C(x) and C(y).

» May want composable compression: if x = x1x ... x,, would
like to compute C(x1x2 ... XpXpt1) = C(X Xp41) using just
C(x) and xp41.

Streaming: May not be able to store a huge dataset. Need
to process stream of data, coming in one chunk at a time, on
the fly. Must answer queries with sublinear memory.

Dimensionality reduction: For example, spam filtering.
Bag-of-words model: Let d be a dictionary of words.
Represent email by vector v, where v; is the number of times
d; appears in msg. Then dimv = |d]|.

» Large-scale matrix computation, such as least squares
regression: Suppose we want to learn f: R” — R, where
f = (b,-) for some b € R", where

n
{(u,v) :Zu,-v,- Vu,veR"
j=1

Collect data { (x; e R",y; e R): 1 << m}.
Want to compute b minimizing

n 1/2
IXb —y|2 = (Z (i — <b,x,->)2) ,

Jj=1

where X € R™*" is composed of the (column) vectors
x!,.ooxland || -]2 = /() is £a-norm.

Also, principal component analysis, given by singular value
decomposition of matrix: which features are most important?

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count

of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to

zero) and supporting the operations
> init(): set n <+ 0.
» update(): increments n.
» query(): prints (estimate of) n

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

> init(): set n <+ 0.

» update(): increments n.

» query(): prints (estimate of) n
Why approximation?
If we want exact value, then can store n via a counter, a sequence
of [log n] bits (“log” is “log,").

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

> init(): set n <+ 0.

» update(): increments n.

» query(): prints (estimate of) n
Why approximation?
If we want exact value, then can store n via a counter, a sequence
of [log n] bits (“log” is “log,").
Can't do better:
If we use f(n) bits to store n, then there are 2(") configurations.
To store exact value of all integers up to n, must have
2f(") >

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

> init(): set n <+ 0.

» update(): increments n.

» query(): prints (estimate of) n
Why approximation?
If we want exact value, then can store n via a counter, a sequence
of [log n] bits (“log” is “log,").
Can't do better:
If we use f(n) bits to store n, then there are 2(") configurations.
To store exact value of all integers up to n, must have

2f(M > n — f(n) > log n

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

> init(): set n <+ 0.

» update(): increments n.

» query(): prints (estimate of) n
Why approximation?
If we want exact value, then can store n via a counter, a sequence
of [log n] bits (“log” is “log,").
Can't do better:
If we use f(n) bits to store n, then there are 2(") configurations.
To store exact value of all integers up to n, must have

20 > n — f(n) >log n = f(n) > [log n]

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

> init(): set n <+ 0.

» update(): increments n.

» query(): prints (estimate of) n
Why approximation?
If we want exact value, then can store n via a counter, a sequence
of [log n] bits (“log” is “log,").
Can't do better:
If we use f(n) bits to store n, then there are 2(") configurations.
To store exact value of all integers up to n, must have

2fM > n — f(n)>log n = f(n) > [log n] since n € Z

If we want sublinear-space algorithm, need an estimate 7 of n.
Want to know that for some ¢,d € (0,1), we have

P(|i—n|>en)<é.

If we want sublinear-space algorithm, need an estimate 7 of n.
Want to know that for some ¢,d € (0,1), we have

P(|i—n|>en)<é.

Equivalently:
P(|i—n| <en)>1-4.

Morris’ algorithm: Uses an integer counter X, with data structure
operations

> init(): sets X + 0
» update(): increments X with probability 27X
» query(): outputs i = 2X — 1
Intuitively, X attempts to store a value approximately log n.

How good is this?

Morris’ algorithm: Uses an integer counter X, with data structure
operations

> init(): sets X + 0
» update(): increments X with probability 27X
» query(): outputs i = 2X — 1
Intuitively, X attempts to store a value approximately log n.

How good is this? Not so great; we'll see that
P(|fi—nl>en) < !
A—n|>en)< —
2¢2

Since € < 1, RHS exceeds % which means that estimator may
always be zero!

Improvement Morris+: Create s independent copies of Morris, and

average their outputs. Calling these estimators fq, . .., fis, then
output is
Ll
A= - fi;
s <
i=1
Then

P(|a— n| > < —
(|i—n|>en) 5ec?

So

N 1
P(|i—n|>en)<$ for s > 5225 = ©(1/9)

Better!

Improvement Morris++: Reduces dependence of failure probability
from ©(1/9) to O(log 1/9).

Improvement Morris++: Reduces dependence of failure probability
from ©(1/9) to O(log 1/9).

Run t instances of Morris+, each with failure probability % So
s = ©(1/&?) for each instance. Now output median estimate of
these t Morris+ instances. Calling this output 7, it turns out that

P(|i—n|>en) <o for t = ©(log 1/6).

Probability Review

Let X be a random variable taking values in S C R.
The expected value of X is

EX =) _j-P(X =)).
Jjes

The variance of X is
Var[X] = E((X — EX)?).

Linearity of expected value: Let X and Y be random variables.
Than

E(aX + bY) = aEX + bEY Va,beR.

Markov’s inequality: If X is a nonnegative random variable, then

EX
IP>(X>/\)<T V> 0.

Chebyshev’s inequality: Let X be a nonnegative random variable.
Then

E(X — EX)? _ Var[X]

P(|IX —EX| > \) < 2 32 VA>0.
More generally, if p > 1, then
E(X —EX)P
IP(|X—JEX|>>\)<()\p). VA>0.

Chernoff’s inequality: Suppose Xi, X, ..., X, are independent
random variables with X; € [0,1]. Let X =>"" ; X;. Then

P(|X —EX| > eEX)<2.e<H3 vee(0,1).

Analysis of Morris’ algorithm

Let X, be X after n updates.
Claim: E2X" = n+4+ 1 for n € Np.

Proof of claim: By induction, the base case n = 0 being

E2Xn = F2X0 —=E1=n+1.

Induction step: Suppose that E2X" = n+ 1 for some n € Ny. Then

E2Xn+l — ZP(Xn :J) . E(2Xn+l ‘ Xn :_/)
j=0
N - 1Ny b o
_ng(X,,_J)-<<1—2j>21+2j-21 >
J:

=) P(Xa =)+ P(X,=))
j=0 j=0

=E2% +1
=(n+1)+1,

as required.

So /i = 2X — 1 is an unbiased estimator of n.
Need to find its variance. Using Chebyshev:

1

~ 2 _ X 2
W-E(n—n) _82?~E(2 —1-—n)“.

P(|fi — n| > en) <

Claim: E22%n — %n2 + %n + 1 for n € Np.
Proof: By induction, the base case n = 0 being
E2?0 =E2° =1=3.02+3.0+1.
For the inductive step, suppose that E22%n = %n2 + %n + 1 for
some n € Ng. Then

22Xn+1 _ Z]P) 2Xn _J (22X,,+]_ | 2X,, :J)

(gn +3 n+1)+3(n+1)
3(n+1+3(n+1)+1,

as required.

Since Var[Z] = E[Z?] — (E[Z])? for any random variable Z, we
have

. 1
]P’(]n—n]>€n)<€2?~?:@,

as claimed for (the original version of) Morris.

Morris+: As on earlier slide.

Morris++: Run t instances of Morris+, each with failure
probability % So s = ©(1/¢?) for each instance. Now output
median estimate of these t Morris+ instances.

Morris+: As on earlier slide.

Morris++: Run t instances of Morris+, each with failure
probability % So s = ©(1/¢?) for each instance. Now output
median estimate of these t Morris+ instances.

Expected number of unsuccessful Morris+ instantiations: %t.
Expected number of successful Morris+ instantiations: %t.

Morris+: As on earlier slide.

Morris++: Run t instances of Morris+, each with failure
probability % So s = ©(1/¢?) for each instance. Now output
median estimate of these t Morris+ instances.

Expected number of unsuccessful Morris+ instantiations: %t.
Expected number of successful Morris+ instantiations: %t.

If median is bad estimate, then at most half of the Morris+
instantiations can succeed.

Hence number of succeeding instantiations deviated from its
expectation by at least % . %t = %t.

For i € {1,...,t}, define the random variable

B 1 if ith Morris+ instantiation succeeds,
"7 10 if ith Morris+ instantiation fails.

For i € {1,...,t}, define the random variable

B 1 if ith Morris+ instantiation succeeds,
"7 10 if ith Morris+ instantiation fails.

So

For i € {1,...,t}, define the random variable

B 1 if ith Morris+ instantiation succeeds,
"7 10 if ith Morris+ instantiation fails.

So

t

(et

i=1

t t
S v-EY Y
i=1 i=1

t
>
>¢)

For i € {1,...,t}, define the random variable

B 1 if ith Morris+ instantiation succeeds,
"7 10 if ith Morris+ instantiation fails.

So

p@y,.g;)@(

the last by Chernoff’s inequality.

t
6> S 2e7t/37

For i € {1,...,t}, define the random variable

B 1 if ith Morris+ instantiation succeeds,
"7 10 if ith Morris+ instantiation fails.

So

p@y,.g;)@(

the last by Chernoff's inequality. Now

t
6> S 2e7t/37

1 1
t/3 -
2e <<5<:>1“>3|og25 @(Iog(S).

For i € {1,...,t}, define the random variable

B 1 if ith Morris+ instantiation succeeds,
’ 0 if ith Morris+ instantiation fails.

So

t
6> S 2e7t/37

P<§W5;><P<ZY EZY

the last by Chernoff's inequality. Now

1 1
t/3 -
2e <<5<:>1“>3|og25 @(Iog(S).

So .
t 1
]P’(E Y; < 2> <6 for t @(Iog 5)

as required.

