Big-Data Algorithms: Overview
Reference: http://www.sketchingbigdata.org/fall17/lec/lec1.pdf

What's the problem here?

- So far, linear (i.e., linear-cost) algorithms have been "gold standard".
- What if linear algorithms aren't good enough?

What's the problem here?

- So far, linear (i.e., linear-cost) algorithms have been "gold standard".
- What if linear algorithms aren't good enough?

Example: Search the web for pages of interest.

Topics of Interest

- Sketching: Compression of a data set that allows queries.
- Compression $C(x)$ of some data set x that allows us to query $f(x)$.
- May want to compute $f(x, y)$ from $C(x)$ and $C(y)$.
- May want composable compression: if $x=x_{1} x_{2} \ldots x_{n}$, would like to compute $C\left(x_{1} x_{2} \ldots x_{n} x_{n+1}\right)=C\left(x x_{n+1}\right)$ using just $C(x)$ and x_{n+1}.

Topics of Interest

- Sketching: Compression of a data set that allows queries.
- Compression $C(x)$ of some data set x that allows us to query $f(x)$.
- May want to compute $f(x, y)$ from $C(x)$ and $C(y)$.
- May want composable compression: if $x=x_{1} x_{2} \ldots x_{n}$, would like to compute $C\left(x_{1} x_{2} \ldots x_{n} x_{n+1}\right)=C\left(x x_{n+1}\right)$ using just $C(x)$ and x_{n+1}.
- Streaming: May not be able to store a huge dataset. Need to process stream of data, coming in one chunk at a time, on the fly. Must answer queries with sublinear memory.

Topics of Interest

- Sketching: Compression of a data set that allows queries.
- Compression $C(x)$ of some data set x that allows us to query $f(x)$.
- May want to compute $f(x, y)$ from $C(x)$ and $C(y)$.
- May want composable compression: if $x=x_{1} x_{2} \ldots x_{n}$, would like to compute $C\left(x_{1} x_{2} \ldots x_{n} x_{n+1}\right)=C\left(x x_{n+1}\right)$ using just $C(x)$ and x_{n+1}.
- Streaming: May not be able to store a huge dataset. Need to process stream of data, coming in one chunk at a time, on the fly. Must answer queries with sublinear memory.
- Dimensionality reduction: For example, spam filtering. Bag-of-words model: Let d be a dictionary of words. Represent email by vector v, where v_{i} is the number of times d_{i} appears in msg. Then $\operatorname{dim} v=|d|$.
- Large-scale matrix computation, such as least squares regression: Suppose we want to learn $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, where $f=\langle\mathbf{b}, \cdot\rangle$ for some $\mathbf{b} \in \mathbb{R}^{n}$, where

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\sum_{j=1}^{n} u_{i} v_{i} \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}
$$

Collect data $\left\{\left(\mathbf{x}_{i} \in \mathbb{R}^{n}, y_{i} \in \mathbb{R}\right): 1 \leq i \leq m\right\}$. Want to compute \mathbf{b} minimizing

$$
\|\mathbf{X} \mathbf{b}-\mathbf{y}\|_{2}^{2}=\left(\sum_{j=1}^{n}\left(y_{i}-\left\langle\mathbf{b}, \mathbf{x}_{i}\right\rangle\right)^{2}\right)^{1 / 2}
$$

where $\mathbf{X} \in \mathbb{R}^{m \times n}$ is composed of the (column) vectors $\mathbf{x}_{1}^{T}, \ldots, \mathbf{x}_{m}^{T}$ and $\|\cdot\|_{2}=\sqrt{\langle\cdot, \cdot\rangle}$ is ℓ_{2}-norm.

Also, principal component analysis, given by singular value decomposition of matrix: which features are most important?

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count of number of events so far at any time.

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to zero) and supporting the operations

- init(): set $n \leftarrow 0$.
- update(): increments n.
- query(): prints (estimate of) n

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to zero) and supporting the operations

- init(): set $n \leftarrow 0$.
- update(): increments n.
- query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence of $\lceil\log n\rceil$ bits (" $\log ^{\prime \prime}$ is " $\log _{2}$ ").

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to zero) and supporting the operations

- init(): set $n \leftarrow 0$.
- update(): increments n.
- query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence of $\lceil\log n\rceil$ bits (" $\log ^{\prime \prime}$ is " $\log _{2}{ }^{\prime}$).
Can't do better:
If we use $f(n)$ bits to store n, then there are $2^{f(n)}$ configurations.
To store exact value of all integers up to n, must have
$2^{f(n)} \geq n$

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to zero) and supporting the operations

- init(): set $n \leftarrow 0$.
- update(): increments n.
- query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence of $\lceil\log n\rceil$ bits (" $\log ^{\prime \prime}$ is " $\log _{2}{ }^{\prime}$).
Can't do better:
If we use $f(n)$ bits to store n, then there are $2^{f(n)}$ configurations.
To store exact value of all integers up to n, must have
$2^{f(n)} \geq n \Longrightarrow f(n) \geq \log n$

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to zero) and supporting the operations

- init(): set $n \leftarrow 0$.
- update(): increments n.
- query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence of $\lceil\log n\rceil$ bits (" $\log ^{\prime \prime}$ is " $\log _{2}{ }^{\prime}$).
Can't do better:
If we use $f(n)$ bits to store n, then there are $2^{f(n)}$ configurations.
To store exact value of all integers up to n, must have
$2^{f(n)} \geq n \Longrightarrow f(n) \geq \log n \Longrightarrow f(n) \geq\lceil\log n\rceil$

Approximate Counting

Problem: Monitor a sequence of events, allow approximate count of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to zero) and supporting the operations

- init(): set $n \leftarrow 0$.
- update(): increments n.
- query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence of $\lceil\log n\rceil$ bits (" $\log ^{\prime \prime}$ is " $\log _{2}$ ").
Can't do better:
If we use $f(n)$ bits to store n, then there are $2^{f(n)}$ configurations.
To store exact value of all integers up to n, must have
$2^{f(n)} \geq n \Longrightarrow f(n) \geq \log n \Longrightarrow f(n) \geq\lceil\log n\rceil \quad$ since $n \in \mathbb{Z}$

If we want sublinear-space algorithm, need an estimate \tilde{n} of n. Want to know that for some $\varepsilon, \delta \in(0,1)$, we have

$$
\mathbb{P}(|\tilde{n}-n|>\varepsilon n)<\delta .
$$

If we want sublinear-space algorithm, need an estimate \tilde{n} of n. Want to know that for some $\varepsilon, \delta \in(0,1)$, we have

$$
\mathbb{P}(|\tilde{n}-n|>\varepsilon n)<\delta .
$$

Equivalently:

$$
\mathbb{P}(|\tilde{n}-n| \leq \varepsilon n) \geq 1-\delta .
$$

Morris' algorithm: Uses an integer counter X, with data structure operations

- init(): sets $X \leftarrow 0$
- update(): increments X with probability 2^{-X}
- query (): outputs $\tilde{n}=2^{X}-1$

Intuitively, X attempts to store a value approximately $\log n$.
How good is this?

Morris' algorithm: Uses an integer counter X, with data structure operations

- init(): sets $X \leftarrow 0$
- update(): increments X with probability 2^{-X}
- query (): outputs $\tilde{n}=2^{X}-1$

Intuitively, X attempts to store a value approximately $\log n$.
How good is this? Not so great; we'll see that

$$
\mathbb{P}(|\tilde{n}-n|>\varepsilon n)<\frac{1}{2 \varepsilon^{2}}
$$

Since $\varepsilon<1$, RHS exceeds $\frac{1}{2}$, which means that estimator may always be zero!

Improvement Morris+: Create s independent copies of Morris, and average their outputs. Calling these estimators $\tilde{n}_{1}, \ldots, \tilde{n}_{s}$, then output is

$$
\tilde{n}=\frac{1}{s} \sum_{i=1}^{n} \tilde{n}_{i}
$$

Then

$$
\mathbb{P}(|\tilde{n}-n|>\varepsilon n)<\frac{1}{2 s \varepsilon^{2}}
$$

So

$$
\mathbb{P}(|\tilde{n}-n|>\varepsilon n)<\delta \quad \text { for } s>\frac{1}{2 \varepsilon^{2} \delta}=\Theta(1 / \delta)
$$

Better!

Improvement Morris++: Reduces dependence of failure probability from $\Theta(1 / \delta)$ to $\Theta(\log 1 / \delta)$.

Improvement Morris++: Reduces dependence of failure probability from $\Theta(1 / \delta)$ to $\Theta(\log 1 / \delta)$.
Run t instances of Morris+, each with failure probability $\frac{1}{3}$. So $s=\Theta\left(1 / \varepsilon^{2}\right)$ for each instance. Now output median estimate of these t Morris+ instances. Calling this output \tilde{n}, it turns out that

$$
\mathbb{P}(|\tilde{n}-n|>\varepsilon n)<\delta \quad \text { for } t=\Theta(\log 1 / \delta)
$$

Probability Review

Let X be a random variable taking values in $S \subseteq \mathbb{R}$.
The expected value of X is

$$
\mathbb{E} X=\sum_{j \in S} j \cdot \mathbb{P}(X=j)
$$

The variance of X is

$$
\operatorname{Var}[X]=\mathbb{E}\left((X-\mathbb{E} X)^{2}\right)
$$

Linearity of expected value: Let X and Y be random variables. Than

$$
\mathbb{E}(a X+b Y)=a \mathbb{E} X+b \mathbb{E} Y \quad \forall a, b \in \mathbb{R}
$$

Markov's inequality: If X is a nonnegative random variable, then

$$
\mathbb{P}(X>\lambda)<\frac{\mathbb{E} X}{\lambda} \quad \forall \lambda>0
$$

Chebyshev's inequality: Let X be a nonnegative random variable. Then

$$
\mathbb{P}(|X-\mathbb{E} X|>\lambda)<\frac{\mathbb{E}(X-\mathbb{E} X)^{2}}{\lambda^{2}}=\frac{\operatorname{Var}[X]}{\lambda^{2}} \quad \forall \lambda>0
$$

More generally, if $p \geq 1$, then

$$
\mathbb{P}(|X-\mathbb{E} X|>\lambda)<\frac{\mathbb{E}(X-\mathbb{E} X)^{p}}{\lambda^{p}} . \quad \forall \lambda>0
$$

Chernoff's inequality: Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with $X_{i} \in[0,1]$. Let $X=\sum_{i=1}^{n} X_{i}$. Then

$$
\mathbb{P}(|X-\mathbb{E} X|>\varepsilon \mathbb{E} X) \leq 2 \cdot \mathrm{e}^{-\varepsilon^{2} \mu / 3} \quad \forall \varepsilon \in(0,1)
$$

Analysis of Morris' algorithm

Let X_{n} be X after n updates.
Claim: $\mathbb{E} 2^{X_{n}}=n+1$ for $n \in \mathbb{N}_{0}$.
Proof of claim: By induction, the base case $n=0$ being

$$
\mathbb{E} 2^{X_{n}}=\mathbb{E} 2^{X_{0}}=\mathbb{E} 1=n+1 .
$$

Induction step: Suppose that $\mathbb{E} 2^{X_{n}}=n+1$ for some $n \in \mathbb{N}_{0}$. Then

$$
\begin{aligned}
\mathbb{E} 2^{X_{n+1}} & =\sum_{j=0}^{\infty} \mathbb{P}\left(X_{n}=j\right) \cdot \mathbb{E}\left(2^{X_{n+1}} \mid X_{n}=j\right) \\
& =\sum_{j=0}^{\infty} \mathbb{P}\left(X_{n}=j\right) \cdot\left(\left(1-\frac{1}{2^{j}}\right) 2^{j}+\frac{1}{2^{j}} \cdot 2^{j+1}\right) \\
& =\sum_{j=0}^{\infty} \mathbb{P}\left(X_{n}=j\right) 2^{j}+\sum_{j=0}^{\infty} \mathbb{P}\left(X_{n}=j\right) \\
& =\mathbb{E} 2^{X_{n}}+1 \\
& =(n+1)+1
\end{aligned}
$$

as required.

So $\tilde{n}=2^{X}-1$ is an unbiased estimator of n. Need to find its variance. Using Chebyshev:

$$
\mathbb{P}(|\tilde{n}-n|>\varepsilon n)<\frac{1}{\varepsilon^{2} n^{2}} \cdot \mathbb{E}(\tilde{n}-n)^{2}=\frac{1}{\varepsilon^{2} n^{2}} \cdot \mathbb{E}\left(2^{X}-1-n\right)^{2} .
$$

Claim: $\mathbb{E} 2^{2 X_{n}}=\frac{3}{2} n^{2}+\frac{3}{2} n+1$ for $n \in \mathbb{N}_{0}$.
Proof: By induction, the base case $n=0$ being

$$
\mathbb{E} 2^{2 X_{0}}=\mathbb{E} 2^{0}=1=\frac{3}{2} \cdot 0^{2}+\frac{3}{2} \cdot 0+1
$$

For the inductive step, suppose that $\mathbb{E} 2^{2 X_{n}}=\frac{3}{2} n^{2}+\frac{3}{2} n+1$ for some $n \in \mathbb{N}_{0}$. Then

$$
\begin{aligned}
\mathbb{E} 2^{2 X_{n+1}} & =\sum_{j=0}^{\infty} \mathbb{P}\left(2^{X_{n}}=j\right) \cdot \mathbb{E}\left(2^{2 X_{n+1}} \mid 2^{X_{n}}=j\right) \\
& =\sum_{j=0}^{\infty} \mathbb{P}\left(2^{X_{n}}=j\right) \cdot\left(\frac{1}{j} \cdot 4 j^{2}+\left(1-\frac{1}{j}\right) \cdot j^{2}\right) \\
& =\sum_{j=0}^{\infty} \mathbb{P}\left(2^{X_{n}}=j\right) \cdot\left(j^{2}+3 j\right) \\
& =\mathbb{E} 2^{2 X_{n}}+3 \cdot \mathbb{E} 2^{X_{n}} \\
& =\left(\frac{3}{2} n^{2}+\frac{3}{2} n+1\right)+3(n+1) \\
& =\frac{3}{2}(n+1)^{2}+\frac{3}{2}(n+1)+1
\end{aligned}
$$

as required.

Since $\operatorname{Var}[Z]=\mathbb{E}\left[Z^{2}\right]-(\mathbb{E}[Z])^{2}$ for any random variable Z, we have

$$
\mathbb{P}(|\tilde{n}-n|>\varepsilon n)<\frac{1}{\varepsilon^{2} n^{2}} \cdot \frac{n^{2}}{2}=\frac{1}{2 \varepsilon^{2}}
$$

as claimed for (the original version of) Morris.

Morris+: As on earlier slide.
Morris++: Run t instances of Morris+, each with failure probability $\frac{1}{3}$. So $s=\Theta\left(1 / \varepsilon^{2}\right)$ for each instance. Now output median estimate of these t Morris+ instances.

Morris+: As on earlier slide.
Morris++: Run t instances of Morris+, each with failure probability $\frac{1}{3}$. So $s=\Theta\left(1 / \varepsilon^{2}\right)$ for each instance. Now output median estimate of these t Morris+ instances.
Expected number of unsuccessful Morris+ instantiations: $\frac{1}{3} t$. Expected number of successful Morris+ instantiations: $\frac{2}{3} t$.

Morris+: As on earlier slide.
Morris++: Run t instances of Morris+, each with failure probability $\frac{1}{3}$. So $s=\Theta\left(1 / \varepsilon^{2}\right)$ for each instance. Now output median estimate of these t Morris+ instances.
Expected number of unsuccessful Morris+ instantiations: $\frac{1}{3} t$. Expected number of successful Morris+ instantiations: $\frac{2}{3} t$.

If median is bad estimate, then at most half of the Morris+ instantiations can succeed.
Hence number of succeeding instantiations deviated from its expectation by at least $\frac{1}{2} \cdot \frac{1}{3} t=\frac{1}{6} t$.

For $i \in\{1, \ldots, t\}$, define the random variable

$$
Y_{i}= \begin{cases}1 & \text { if } i \text { th Morris+ instantiation succeeds } \\ 0 & \text { if } i \text { th Morris }+ \text { instantiation fails }\end{cases}
$$

For $i \in\{1, \ldots, t\}$, define the random variable

$$
Y_{i}= \begin{cases}1 & \text { if } i \text { th Morris }+ \text { instantiation succeeds } \\ 0 & \text { if } i \text { th Morris }+ \text { instantiation fails. }\end{cases}
$$

So

$$
\mathbb{P}\left(\sum_{i=1}^{t} Y_{i} \leq \frac{t}{2}\right) \leq
$$

For $i \in\{1, \ldots, t\}$, define the random variable

$$
Y_{i}= \begin{cases}1 & \text { if } i \text { th Morris+ instantiation succeeds } \\ 0 & \text { if } i \text { th Morris }+ \text { instantiation fails }\end{cases}
$$

So

$$
\mathbb{P}\left(\sum_{i=1}^{t} Y_{i} \leq \frac{t}{2}\right) \leq \mathbb{P}\left(\left|\sum_{i=1}^{t} Y_{i}-\mathbb{E} \sum_{i=1}^{t} Y_{i}\right| \geq \frac{t}{6}\right)
$$

For $i \in\{1, \ldots, t\}$, define the random variable

$$
Y_{i}= \begin{cases}1 & \text { if } i \text { th Morris+ instantiation succeeds } \\ 0 & \text { if } i \text { th Morris }+ \text { instantiation fails. }\end{cases}
$$

So

$$
\mathbb{P}\left(\sum_{i=1}^{t} Y_{i} \leq \frac{t}{2}\right) \leq \mathbb{P}\left(\left|\sum_{i=1}^{t} Y_{i}-\mathbb{E} \sum_{i=1}^{t} Y_{i}\right| \geq \frac{t}{6}\right) \leq 2 \mathrm{e}^{-t / 3}
$$

the last by Chernoff's inequality.

For $i \in\{1, \ldots, t\}$, define the random variable

$$
Y_{i}= \begin{cases}1 & \text { if } i \text { th Morris }+ \text { instantiation succeeds } \\ 0 & \text { if } i \text { th Morris }+ \text { instantiation fails. }\end{cases}
$$

So

$$
\mathbb{P}\left(\sum_{i=1}^{t} Y_{i} \leq \frac{t}{2}\right) \leq \mathbb{P}\left(\left|\sum_{i=1}^{t} Y_{i}-\mathbb{E} \sum_{i=1}^{t} Y_{i}\right| \geq \frac{t}{6}\right) \leq 2 \mathrm{e}^{-t / 3}
$$

the last by Chernoff's inequality. Now

$$
2 \mathrm{e}^{t / 3}<\delta \Longleftrightarrow t>3 \log \frac{1}{2 \delta}=\Theta\left(\log \frac{1}{\delta}\right)
$$

For $i \in\{1, \ldots, t\}$, define the random variable

$$
Y_{i}= \begin{cases}1 & \text { if } i \text { th Morris+ instantiation succeeds } \\ 0 & \text { if } i \text { th Morris }+ \text { instantiation fails }\end{cases}
$$

So

$$
\mathbb{P}\left(\sum_{i=1}^{t} Y_{i} \leq \frac{t}{2}\right) \leq \mathbb{P}\left(\left|\sum_{i=1}^{t} Y_{i}-\mathbb{E} \sum_{i=1}^{t} Y_{i}\right| \geq \frac{t}{6}\right) \leq 2 \mathrm{e}^{-t / 3}
$$

the last by Chernoff's inequality. Now

$$
2 \mathrm{e}^{t / 3}<\delta \Longleftrightarrow t>3 \log \frac{1}{2 \delta}=\Theta\left(\log \frac{1}{\delta}\right)
$$

So

$$
\mathbb{P}\left(\sum_{i=1}^{t} Y_{i} \leq \frac{t}{2}\right)<\delta \quad \text { for } t=\Theta\left(\log \frac{1}{\delta}\right)
$$

as required.

