
Big-Data Algorithms: Overview

Reference: http://www.sketchingbigdata.org/fall17/lec/lec1.pdf

http://www.sketchingbigdata.org/fall17/lec/lec1.pdf

What’s the problem here?

I So far, linear (i.e., linear-cost) algorithms have been “gold
standard”.

I What if linear algorithms aren’t good enough?

Example: Search the web for pages of interest.

I Worst case must be at least linear.

I Of necessity: non-worst-case setting (e.g., probabilistic).

What’s the problem here?

I So far, linear (i.e., linear-cost) algorithms have been “gold
standard”.

I What if linear algorithms aren’t good enough?
Example: Search the web for pages of interest.

I Worst case must be at least linear.

I Of necessity: non-worst-case setting (e.g., probabilistic).

Topics of Interest

I Sketching: Compression of a data set that allows queries.
I Compression C (x) of some data set x that allows us to

query f (x).
I May want to compute f (x , y) from C (x) and C (y).
I May want composable compression: if x = x1x2 . . . xn, would

like to compute C (x1x2 . . . xnxn+1) = C (x xn+1) using just
C (x) and xn+1.

I Streaming: May not be able to store a huge dataset. Need
to process stream of data, coming in one chunk at a time, on
the fly. Must answer queries with sublinear memory.

I Dimensionality reduction: For example, spam filtering.
Bag-of-words model: Let d be a dictionary of words.
Represent email by vector v , where vi is the number of times
di appears in msg. Then dim v = |d |.

Topics of Interest

I Sketching: Compression of a data set that allows queries.
I Compression C (x) of some data set x that allows us to

query f (x).
I May want to compute f (x , y) from C (x) and C (y).
I May want composable compression: if x = x1x2 . . . xn, would

like to compute C (x1x2 . . . xnxn+1) = C (x xn+1) using just
C (x) and xn+1.

I Streaming: May not be able to store a huge dataset. Need
to process stream of data, coming in one chunk at a time, on
the fly. Must answer queries with sublinear memory.

I Dimensionality reduction: For example, spam filtering.
Bag-of-words model: Let d be a dictionary of words.
Represent email by vector v , where vi is the number of times
di appears in msg. Then dim v = |d |.

Topics of Interest

I Sketching: Compression of a data set that allows queries.
I Compression C (x) of some data set x that allows us to

query f (x).
I May want to compute f (x , y) from C (x) and C (y).
I May want composable compression: if x = x1x2 . . . xn, would

like to compute C (x1x2 . . . xnxn+1) = C (x xn+1) using just
C (x) and xn+1.

I Streaming: May not be able to store a huge dataset. Need
to process stream of data, coming in one chunk at a time, on
the fly. Must answer queries with sublinear memory.

I Dimensionality reduction: For example, spam filtering.
Bag-of-words model: Let d be a dictionary of words.
Represent email by vector v , where vi is the number of times
di appears in msg. Then dim v = |d |.

I Large-scale matrix computation, such as least squares
regression: Suppose we want to learn f : Rn ! R, where
f = hb, ·i for some b 2 Rn, where

hu, vi =
nX

j=1

uivi 8u, v 2 Rn.

Collect data { (xi 2 Rn, yi 2 R) : 1  i  m }.
Want to compute b minimizing

kXb� yk22 =
✓ nX

j=1

(yi � hb, xi i)2
◆1/2

,

where X 2 Rm⇥n is composed of the (column) vectors
xT1 , . . . , x

T
m and k · k2 =

p
h·, ·i is `2-norm.

Also, principal component analysis, given by singular value
decomposition of matrix: which features are most important?

Approximate Counting
Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.

Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

I init(): set n 0.

I update(): increments n.

I query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence
of dlog ne bits (“log” is “log2”).
Can’t do better:
If we use f (n) bits to store n, then there are 2f (n) configurations.
To store exact value of all integers up to n, must have

2f (n) � n =) f (n) � log n =) f (n) � dlog ne since n 2 Z

Approximate Counting
Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

I init(): set n 0.

I update(): increments n.

I query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence
of dlog ne bits (“log” is “log2”).
Can’t do better:
If we use f (n) bits to store n, then there are 2f (n) configurations.
To store exact value of all integers up to n, must have

2f (n) � n =) f (n) � log n =) f (n) � dlog ne since n 2 Z

Approximate Counting
Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

I init(): set n 0.

I update(): increments n.

I query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence
of dlog ne bits (“log” is “log2”).

Can’t do better:
If we use f (n) bits to store n, then there are 2f (n) configurations.
To store exact value of all integers up to n, must have

2f (n) � n =) f (n) � log n =) f (n) � dlog ne since n 2 Z

Approximate Counting
Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

I init(): set n 0.

I update(): increments n.

I query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence
of dlog ne bits (“log” is “log2”).
Can’t do better:
If we use f (n) bits to store n, then there are 2f (n) configurations.
To store exact value of all integers up to n, must have

2f (n) � n

=) f (n) � log n =) f (n) � dlog ne since n 2 Z

Approximate Counting
Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

I init(): set n 0.

I update(): increments n.

I query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence
of dlog ne bits (“log” is “log2”).
Can’t do better:
If we use f (n) bits to store n, then there are 2f (n) configurations.
To store exact value of all integers up to n, must have

2f (n) � n =) f (n) � log n

=) f (n) � dlog ne since n 2 Z

Approximate Counting
Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

I init(): set n 0.

I update(): increments n.

I query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence
of dlog ne bits (“log” is “log2”).
Can’t do better:
If we use f (n) bits to store n, then there are 2f (n) configurations.
To store exact value of all integers up to n, must have

2f (n) � n =) f (n) � log n =) f (n) � dlog ne

since n 2 Z

Approximate Counting
Problem: Monitor a sequence of events, allow approximate count
of number of events so far at any time.
Create data structure maintaining a single integer n (initialize to
zero) and supporting the operations

I init(): set n 0.

I update(): increments n.

I query(): prints (estimate of) n

Why approximation?
If we want exact value, then can store n via a counter, a sequence
of dlog ne bits (“log” is “log2”).
Can’t do better:
If we use f (n) bits to store n, then there are 2f (n) configurations.
To store exact value of all integers up to n, must have

2f (n) � n =) f (n) � log n =) f (n) � dlog ne since n 2 Z

If we want sublinear-space algorithm, need an estimate ñ of n.
Want to know that for some ", � 2 (0, 1), we have

P (|ñ � n| > " n) < �.

Equivalently:
P (|ñ � n|  " n) � 1� �.

If we want sublinear-space algorithm, need an estimate ñ of n.
Want to know that for some ", � 2 (0, 1), we have

P (|ñ � n| > " n) < �.

Equivalently:
P (|ñ � n|  " n) � 1� �.

Morris’ algorithm: Uses an integer counter X , with data structure
operations

I init(): sets X 0

I update(): increments X with probability 2�X

I query(): outputs ñ = 2X � 1

Intuitively, X attempts to store a value approximately log n.

How good is this?

Not so great; we’ll see that

P (|ñ � n| > " n) <
1

2"2

Since " < 1, RHS exceeds 1
2 , which means that estimator may

always be zero!

Morris’ algorithm: Uses an integer counter X , with data structure
operations

I init(): sets X 0

I update(): increments X with probability 2�X

I query(): outputs ñ = 2X � 1

Intuitively, X attempts to store a value approximately log n.

How good is this? Not so great; we’ll see that

P (|ñ � n| > " n) <
1

2"2

Since " < 1, RHS exceeds 1
2 , which means that estimator may

always be zero!

Improvement Morris+: Create s independent copies of Morris, and
average their outputs. Calling these estimators ñ1, . . . , ñs , then
output is

ñ =
1

s

nX

i=1

ñi .

Then

P (|ñ � n| > " n) <
1

2s"2

So

P (|ñ � n| > " n) < � for s >
1

2"2�
= ⇥(1/�)

Better!

Improvement Morris++: Reduces dependence of failure probability
from ⇥(1/�) to ⇥(log 1/�).

Run t instances of Morris+, each with failure probability 1
3 . So

s = ⇥(1/"2) for each instance. Now output median estimate of
these t Morris+ instances. Calling this output ñ, it turns out that

P (|ñ � n| > " n) < � for t = ⇥(log 1/�).

Improvement Morris++: Reduces dependence of failure probability
from ⇥(1/�) to ⇥(log 1/�).

Run t instances of Morris+, each with failure probability 1
3 . So

s = ⇥(1/"2) for each instance. Now output median estimate of
these t Morris+ instances. Calling this output ñ, it turns out that

P (|ñ � n| > " n) < � for t = ⇥(log 1/�).

Probability Review
Let X be a random variable taking values in S ✓ R.
The expected value of X is

EX =
X

j2S
j · P(X = j).

The variance of X is

Var[X] = E
�
(X � EX)2

�
.

Linearity of expected value: Let X and Y be random variables.
Than

E(aX + bY) = aEX + bEY 8 a, b 2 R.

Markov’s inequality: If X is a nonnegative random variable, then

P(X > �) <
EX
�

8� > 0.

Chebyshev’s inequality: Let X be a nonnegative random variable.
Then

P(|X � EX | > �) <
E(X � EX)2

�2
=

Var[X]

�2
8� > 0.

More generally, if p � 1, then

P(|X � EX | > �) <
E(X � EX)p

�p
. 8� > 0.

Cherno↵’s inequality: Suppose X1,X2, . . . ,Xn are independent
random variables with Xi 2 [0, 1]. Let X =

Pn
i=1 Xi . Then

P(|X � EX | > "EX)  2 · e�"2µ/3 8 " 2 (0, 1).

Analysis of Morris’ algorithm

Let Xn be X after n updates.

Claim: E2Xn = n + 1 for n 2 N0.

Proof of claim: By induction, the base case n = 0 being

E2Xn = E2X0 = E1 = n + 1.

Induction step: Suppose that E2Xn = n+ 1 for some n 2 N0. Then

E2Xn+1 =
1X

j=0

P(Xn = j) · E(2Xn+1 | Xn = j)

=
1X

j=0

P(Xn = j) ·
✓✓

1� 1

2j

◆
2j +

1

2j
· 2j+1

◆

=
1X

j=0

P(Xn = j) 2j +
1X

j=0

P(Xn = j)

= E2Xn + 1

= (n + 1) + 1,

as required.

So ñ = 2X � 1 is an unbiased estimator of n.
Need to find its variance. Using Chebyshev:

P(|ñ � n| > "n) <
1

"2n2
· E(ñ � n)2 =

1

"2n2
· E(2X � 1� n)2.

Claim: E22Xn = 3
2n

2 + 3
2n + 1 for n 2 N0.

Proof: By induction, the base case n = 0 being

E22X0 = E20 = 1 = 3
2 · 02 + 3

2 · 0 + 1.

For the inductive step, suppose that E22Xn = 3
2n

2 + 3
2n + 1 for

some n 2 N0. Then

E22Xn+1 =
1X

j=0

P(2Xn = j) · E(22Xn+1 | 2Xn = j)

=
1X

j=0

P(2Xn = j) ·
✓
1

j
· 4j2 +

✓
1� 1

j

◆
· j2

◆

=
1X

j=0

P(2Xn = j) · (j2 + 3j)

= E22Xn + 3 · E2Xn

=
�
3
2n

2 + 3
2n + 1

�
+ 3(n + 1)

= 3
2(n + 1)2 + 3

2(n + 1) + 1,

as required.

Since Var[Z] = E[Z 2]� (E[Z])2 for any random variable Z , we
have

P(|ñ � n| > "n) <
1

"2n2
· n

2

2
=

1

2"2
,

as claimed for (the original version of) Morris.

Morris+: As on earlier slide.

Morris++: Run t instances of Morris+, each with failure
probability 1

3 . So s = ⇥(1/"2) for each instance. Now output
median estimate of these t Morris+ instances.

Expected number of unsuccessful Morris+ instantiations: 1
3 t.

Expected number of successful Morris+ instantiations: 2
3 t.

If median is bad estimate, then at most half of the Morris+
instantiations can succeed.
Hence number of succeeding instantiations deviated from its
expectation by at least 1

2 · 1
3 t =

1
6 t.

Morris+: As on earlier slide.

Morris++: Run t instances of Morris+, each with failure
probability 1

3 . So s = ⇥(1/"2) for each instance. Now output
median estimate of these t Morris+ instances.

Expected number of unsuccessful Morris+ instantiations: 1
3 t.

Expected number of successful Morris+ instantiations: 2
3 t.

If median is bad estimate, then at most half of the Morris+
instantiations can succeed.
Hence number of succeeding instantiations deviated from its
expectation by at least 1

2 · 1
3 t =

1
6 t.

Morris+: As on earlier slide.

Morris++: Run t instances of Morris+, each with failure
probability 1

3 . So s = ⇥(1/"2) for each instance. Now output
median estimate of these t Morris+ instances.

Expected number of unsuccessful Morris+ instantiations: 1
3 t.

Expected number of successful Morris+ instantiations: 2
3 t.

If median is bad estimate, then at most half of the Morris+
instantiations can succeed.
Hence number of succeeding instantiations deviated from its
expectation by at least 1

2 · 1
3 t =

1
6 t.

For i 2 {1, . . . , t}, define the random variable

Yi =

(
1 if ith Morris+ instantiation succeeds,

0 if ith Morris+ instantiation fails.

So

P
✓ tX

i=1

Yi 
t

2

◆
 P

✓����
tX

i=1

Yi � E
tX

i=1

Yi

���� �
t

6

◆
 2e�t/3,

the last by Cherno↵’s inequality. Now

2et/3 < � () t > 3 log
1

2�
= ⇥

✓
log

1

�

◆
.

So

P
✓ tX

i=1

Yi 
t

2

◆
< � for t = ⇥

✓
log

1

�

◆
.

as required.

For i 2 {1, . . . , t}, define the random variable

Yi =

(
1 if ith Morris+ instantiation succeeds,

0 if ith Morris+ instantiation fails.

So

P
✓ tX

i=1

Yi 
t

2

◆


P
✓����

tX

i=1

Yi � E
tX

i=1

Yi

���� �
t

6

◆
 2e�t/3,

the last by Cherno↵’s inequality. Now

2et/3 < � () t > 3 log
1

2�
= ⇥

✓
log

1

�

◆
.

So

P
✓ tX

i=1

Yi 
t

2

◆
< � for t = ⇥

✓
log

1

�

◆
.

as required.

For i 2 {1, . . . , t}, define the random variable

Yi =

(
1 if ith Morris+ instantiation succeeds,

0 if ith Morris+ instantiation fails.

So

P
✓ tX

i=1

Yi 
t

2

◆
 P

✓����
tX

i=1

Yi � E
tX

i=1

Yi

���� �
t

6

◆

 2e�t/3,

the last by Cherno↵’s inequality. Now

2et/3 < � () t > 3 log
1

2�
= ⇥

✓
log

1

�

◆
.

So

P
✓ tX

i=1

Yi 
t

2

◆
< � for t = ⇥

✓
log

1

�

◆
.

as required.

For i 2 {1, . . . , t}, define the random variable

Yi =

(
1 if ith Morris+ instantiation succeeds,

0 if ith Morris+ instantiation fails.

So

P
✓ tX

i=1

Yi 
t

2

◆
 P

✓����
tX

i=1

Yi � E
tX

i=1

Yi

���� �
t

6

◆
 2e�t/3,

the last by Cherno↵’s inequality.

Now

2et/3 < � () t > 3 log
1

2�
= ⇥

✓
log

1

�

◆
.

So

P
✓ tX

i=1

Yi 
t

2

◆
< � for t = ⇥

✓
log

1

�

◆
.

as required.

For i 2 {1, . . . , t}, define the random variable

Yi =

(
1 if ith Morris+ instantiation succeeds,

0 if ith Morris+ instantiation fails.

So

P
✓ tX

i=1

Yi 
t

2

◆
 P

✓����
tX

i=1

Yi � E
tX

i=1

Yi

���� �
t

6

◆
 2e�t/3,

the last by Cherno↵’s inequality. Now

2et/3 < � () t > 3 log
1

2�
= ⇥

✓
log

1

�

◆
.

So

P
✓ tX

i=1

Yi 
t

2

◆
< � for t = ⇥

✓
log

1

�

◆
.

as required.

For i 2 {1, . . . , t}, define the random variable

Yi =

(
1 if ith Morris+ instantiation succeeds,

0 if ith Morris+ instantiation fails.

So

P
✓ tX

i=1

Yi 
t

2

◆
 P

✓����
tX

i=1

Yi � E
tX

i=1

Yi

���� �
t

6

◆
 2e�t/3,

the last by Cherno↵’s inequality. Now

2et/3 < � () t > 3 log
1

2�
= ⇥

✓
log

1

�

◆
.

So

P
✓ tX

i=1

Yi 
t

2

◆
< � for t = ⇥

✓
log

1

�

◆
.

as required.

