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Problem Description

I Input: Given an integer n, along with a stream of integers
i1, ı2, . . . , im ∈ {1, . . . , n}.

I Output: The number of distinct integers in the stream.

So want to write a function query() that will return same.

Trivial algorithms:

I Remember the whole stream!
Cost? min{m, n} log n bits

I Use a bit vector of length n.
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Need Ω(n) bits of memory in worst case setting.

Can be done using Θ(min{m log n, n}) bits of memory if we
abandon worst case setting.

If A is exact answer, seek approximation Ã such that

P
(
|Ã− A| > ε · A

)
< δ,

where

I ε: approximation factor

I δ: failure probability
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Universal Hashing



Motivation

We will give a short “nickname” to each of the 232 possible IP addresses.

You can think of this short name as just a number between 1 and 250 (we will
later adjust this range very slightly).

Thus many IP addresses will inevitably have the same nickname; however, we
hope that most of the 250 IP addresses of our particular customers are
assigned distinct names, and we will store their records in an array of size 250
indexed by these names.

What if there is more than one record associated with the same name?

Easy: each entry of the array points to a linked list containing all records with
that name. So the total amount of storage is proportional to 250, the number
of customers, and is independent of the total number of possible IP addresses.

Moreover, if not too many customer IP addresses are assigned the same name,
lookup is fast, because the average size of the linked list we have to scan
through is small.



Hash tables

How do we assign a short name to each IP address?

This is the role of a hash function: A function h that maps IP addresses to
positions in a table of length about 250 (the expected number of data items).

The name assigned to an IP address x is thus h(x), and the record for x is
stored in position h(x) of the table.

Each position of the table is in fact a bucket, a linked list that contains all
current IP addresses that map to it.
Hopefully, there will be very few buckets that contain more than a handful of
IP addresses.



How to choose a hash function?

In our example, one possible hash function would map an IP address to the
8-bit number that is its last segment:

h(128.32.168.80) = 80.

A table of n = 256 buckets would then be required.

But is this a good hash function?

Not if, for example, the last segment of an IP address tends to be a small
(single- or double-digit) number; then low-numbered buckets would be crowded.

Taking the first segment of the IP address also invites disaster, for example, if
most of our customers come from Asia.



How to choose a hash function? (cont’d)

I There is nothing inherently wrong with these two functions. If our 250 IP
addresses were uniformly drawn from among all N = 232 possibilities, then
these functions would behave well.
The problem is we have no guarantee that the distribution of IP addresses
is uniform.

I Conversely, there is no single hash function, no matter how sophisticated,
that behaves well on all sets of data.
Since a hash function maps 232 IP addresses to just 250 names, there
must be a collection of at least

232/250 ≈ 224 ≈ 16, 000, 000

IP addresses that are assigned the same name (or, in hashing terminology,
collide).

Solution: let us pick a hash function at random from some class of functions.



Families of hash functions

Let us take the number of buckets to be not 250 but n = 257. a prime number!
We consider every IP address x as a quadruple x =

(x1, x2, x3, x4)

of integers modulo n.

We can define a function h from IP addresses to a number mod n as follows:

Fix any four numbers mod n = 257, say 87, 23, 125, and 4. Now map the IP
address (x1, . . . , x4) to h(x1, . . . , x4) = (87x1 + 23x2 + 125x3 + 4x4) mod 257.

In general for any four coefficients a1, . . . , a4 ∈ {0, 1, . . . , n − 1} write
a = (a1, a2, a3, a4) and define ha to be the following hash function:

ha(x1, . . . , x4) = (a1 · x1 + a2 · x2 + a3 · x3 + a4 · x4) mod n.



Property

Consider any pair of distinct IP addresses x = (x1, . . . , x4) and y = (y1, . . . , y4).
If the coefficients a = (a1, . . . , a4) are chosen uniformly at random from
{0, 1, . . . , n − 1}, then

Pr
⇥
ha(x1, . . . , x4) = ha(y1, . . . , y4)

⇤
=

1

n
.



Universal families of hash functions

Let
H =

�
ha | a ∈ {0, 1, . . . , n − 1}4

 
.

It is universal:

For any two distinct data items x and y, exactly |H|/n of all the hash
functions in H map x and y to the same bucket, where n is the
number of buckets.



An Intuitive Approach

Reference: Ravi Bhide’s “Theory behind the technology” blog

Suppose a stream has size n, with m unique elements.
FM approximates m using time Θ(n) and memory Θ(logm), along
with estimate of standard deviation σ.

Intuition: Suppose we have good random hash function
h : strings→ N0.
Since generated integers are random, 1/2n of them have binary
representation ending in 0n.
IOW, if h generated an integer ending in 0j for j ∈ {0, . . . ,m},
then number of unique strings is around 2m.

FM maintains 1 bit per 0i seen.
Output based on number of consecutive 0i seen.

http://ravi-bhide.blogspot.com/2011/04/flajolet-martin-algorithm.html
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Informal description of algorithm:

1. Create bit vector v of length L > log n.
(v [i ] represents whether we’ve seen hash function value whose
binary representation ends in 0i .)

2. Initialize v → 0.

3. Generate good random hash function.

4. For each word in input:
I Hash it, let k be number of trailing zeros.
I Set v [k] = 1.

5. Let R = min{ i : v [i ] = 0 }.
Note that R is number of consecutive ones, plus 1.

6. Calculate number of unique words as 2R/φ, where
φ = 0.77351.

7. σ(R) = 1.12. Hence our count can be off by
I factor of 2: about 32% of observations
I factor of 4: about 5% of observations
I factor of 8: about 0.3% of observations



For the record,

φ =
2eγ

3
√

2

∞∏
p=1

[
(4p + 1)(4p + 2)

(4p)(4p + 3)

](−1)ν(p)
,

where ν(p) is the number of ones in the binary representation of p.

Improving the accuracy:

I Averaging: Use multiple hash functions, and use average R.

I Bucketing: Averages are susceptible to large fluctuations. So
use multiple buckets of hash functions, and use median of the
average R values.

I Fine-tuning: Adjust number of hash functions in averaging
and bucketing steps. (But higher computation cost.)
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Results using Bhide’s Java implementation:

I Wikipedia article on “United States Constitution” had
3978 unique words. When run ten times, Flajolet-Martin
algorithmic reported values of 4902, 4202, 4202, 4044, 4367,
3602, 4367, 4202, 4202 and 3891 for an average of 4198. As
can be seen, the average is about right, but the deviation is
between -400 to 1000.

I Wikipedia article on ”George Washington” had 3252 unique
words. When run ten times, the reported values were 4044,
3466, 3466, 3466, 3744, 3209, 3335, 3209, 3891 and 3088, for
an average of 3492.



Some Analysis: Idealized Solution

. . . uses real numbers!

Flagolet-Martin Algorithm (FM): Let [n] = {0, 1, . . . , n}.
1. Pick random hash function h : [n]→ [0, 1].

2. Maintain X = min{ h(i) : i ∈ stream }, smallest hash we’ve
seen so far

3. query(): Output 1/X − 1.

Intuition: Partitioning [0, 1] into bins of size 1/(t + 1), where t
distinct elements.
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Claim: For the expected value, we have

E[X ] =
1

t + 1
.

Proof:

E[X ] =

∫ ∞
0

P(X > λ) dλ

=

∫ ∞
0

P(∀i ∈ stream, h(i) > λ) dλ

=

∫ ∞
0

∏
i∈stream

P(h(i) > λ) dλ

=

∫ 1

0
(1− λ)t dλ

=
1

t + 1
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Claim: The variance satisfies

E[X 2] =
2

(t + 1)(t + 2)
.

Proof:

E[X 2] =

∫ ∞
0

P(X 2 > λ) dλ =

∫ ∞
0

P(X >
√
λ) dλ

=

∫ 1

0
(1−

√
λ)t dλ = 2

∫ 1

0
ut(1− u) du

=
2

(t + 1)(t + 2)

Note that

Var[X ] =
2

(t + 1)(t + 2)
− 1

(t + 1)2
=

t

(t + 1)2(t + 2)
< (E[X ])2.
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FM+: Given ε > 0 and η ∈ (0, 1), run the FM algorithm
q = 1/(ε2η) times in parallel, obtaining X1, . . . ,Xq. Then
query() outputs

q∑q
i=1 Xi

− 1.

Claim: For any ε and η, the failure probability is given by

P
(∣∣∣∣1q

q∑
i=1

Xi −
1

t + 1

∣∣∣∣ > ε

t + 1

)
< η.

Proof: By Chebyshev’s inequality, we have

P
(∣∣∣∣1q

q∑
i=1

Xi −
1

t + 1

∣∣∣∣ > ε

t + 1

)
<

Var
[
q−1

∑q
i=1 Xi

]
ε2/(t + 1)2

<
1

ε2q
= η,

as required.
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FM gives linear dependence on failure probability.
We want logarithmic dependence.

FM++: Given ε > 0 and δ ∈ (0, 1).
Let t = Θ(log 1/δ).
Run t copies of FM+ with η = 1

3 .
Then query() outputs the median of the FM+ estimates.

Claim:

P
(∣∣∣∣FM++− 1

t + 1

∣∣∣∣ < ε

t + 1

)
< Θ(log 1/δ).

Reasoning: About the same as transition Morris+→ Morris++.
Use indicator random variables Y1, . . . ,Yn, where

Yi =

{
1 if ith copy of FM+ doesn’t give (1 + ε)-approximation,

0 otherwise.
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Some Analysis: Non-idealized Solution

Need a pseudorandom hash function h.

Definition: A family H of functions mapping [a] into [b] is k-wise
independent iff for all distinct i1, . . . , ik ∈ [a] and for all
j1, . . . , jk ∈ [b], we have

Ph∈H(h(i1) = j1 ∧ · · · ∧ h(ik) = jk) =
1

bk
.

Can store h ∈ H in memory with log |H| bits.

Example Let H = { f : [a]→ [b] } Then |H| = ba, and so
log |H| = a lg b.

Less trivial examples exist.

Assume: Access to some pairwise independent hash families.
Can store in log n bits.



Some Analysis: Non-idealized Solution

Need a pseudorandom hash function h.

Definition: A family H of functions mapping [a] into [b] is k-wise
independent iff for all distinct i1, . . . , ik ∈ [a] and for all
j1, . . . , jk ∈ [b], we have

Ph∈H(h(i1) = j1 ∧ · · · ∧ h(ik) = jk) =
1

bk
.

Can store h ∈ H in memory with log |H| bits.

Example Let H = { f : [a]→ [b] } Then |H| = ba, and so
log |H| = a lg b.

Less trivial examples exist.

Assume: Access to some pairwise independent hash families.
Can store in log n bits.



Some Analysis: Non-idealized Solution

Need a pseudorandom hash function h.

Definition: A family H of functions mapping [a] into [b] is k-wise
independent iff for all distinct i1, . . . , ik ∈ [a] and for all
j1, . . . , jk ∈ [b], we have

Ph∈H(h(i1) = j1 ∧ · · · ∧ h(ik) = jk) =
1

bk
.

Can store h ∈ H in memory with log |H| bits.

Example Let H = { f : [a]→ [b] } Then |H| = ba, and so
log |H| = a lg b.

Less trivial examples exist.

Assume: Access to some pairwise independent hash families.
Can store in log n bits.



Some Analysis: Non-idealized Solution

Need a pseudorandom hash function h.

Definition: A family H of functions mapping [a] into [b] is k-wise
independent iff for all distinct i1, . . . , ik ∈ [a] and for all
j1, . . . , jk ∈ [b], we have

Ph∈H(h(i1) = j1 ∧ · · · ∧ h(ik) = jk) =
1

bk
.

Can store h ∈ H in memory with log |H| bits.

Example Let H = { f : [a]→ [b] } Then |H| = ba, and so
log |H| = a lg b.

Less trivial examples exist.

Assume: Access to some pairwise independent hash families.
Can store in log n bits.



Some Analysis: Non-idealized Solution

Need a pseudorandom hash function h.

Definition: A family H of functions mapping [a] into [b] is k-wise
independent iff for all distinct i1, . . . , ik ∈ [a] and for all
j1, . . . , jk ∈ [b], we have

Ph∈H(h(i1) = j1 ∧ · · · ∧ h(ik) = jk) =
1

bk
.

Can store h ∈ H in memory with log |H| bits.

Example Let H = { f : [a]→ [b] } Then |H| = ba, and so
log |H| = a lg b.

Less trivial examples exist.

Assume: Access to some pairwise independent hash families.
Can store in log n bits.



Common Strategy: Geometric Sampling of Streams
Let t̃ be a 32-approximation to t. Want a (1 + ε)-approximation.

Trivial solution (TS): Let K = c/ε2 and remember first K distinct
elements in stream.

Our algorithm:

1. Assume n = 2K for some K ∈ N.

2. Pick g : [n]→]n] from pairwise family.

3. init(): Create log n + 1 trivial solutions TS0, . . . ,TSK .

4. update(): Run TSLSB(g(i)) on the input i .

5. query(): Choose j ≈ log(t̃ε2)− 1.

6. Output TSj ·query()·2+1 .
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Explanation: LSB is “least significant bit”.

For example, suppose g : [16]→ [16] with g(i) = 1100; then
LSB(g(i)) = 2.

But if g(i) = 1001, then LSB(g(i)) = 0.
This explains the “+1” in step 3.
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Define a set of virtual streams wrapping the trivial solutions:

VS0 0 −→ TS0
...

...
...

...
VSlog n log n −→ TSlog n

Now choose the highest nonempty virtual stream.


