Big-Data Algorithms:

Computing the ℓ_{2} Norm
Reference: http://www.sketchingbigdata.org/fall17/lec/lec3.pdf

Basic Data Stream Model

- Single pass over the data $i_{1}, i_{2}, \ldots, i_{n} \in[m]$. Here, $[m]=\{1,2, \ldots, m\}$.

Basic Data Stream Model

- Single pass over the data $i_{1}, i_{2}, \ldots, i_{n} \in[m]$. Here, $[m]=\{1,2, \ldots, m\}$.
- Bounded storage (often $\log { }^{O(1)} n$)

Basic Data Stream Model

- Single pass over the data $i_{1}, i_{2}, \ldots, i_{n} \in[m]$. Here, $[m]=\{1,2, \ldots, m\}$.
- Bounded storage (often $\log { }^{O(1)} n$)
- Units of storage: bits, words, "elements" (e.g., points, nodes/edges)

Basic Data Stream Model

- Single pass over the data $i_{1}, i_{2}, \ldots, i_{n} \in[m]$. Here, $[m]=\{1,2, \ldots, m\}$.
- Bounded storage (often $\log { }^{O(1)} n$)
- Units of storage: bits, words, "elements" (e.g., points, nodes/edges)
- Randomness and approximation OK (almost always necessary)

Basic Data Stream Model

- Single pass over the data $i_{1}, i_{2}, \ldots, i_{n} \in[m]$. Here, $[m]=\{1,2, \ldots, m\}$.
- Bounded storage (often $\log { }^{O(1)} n$)
- Units of storage: bits, words, "elements" (e.g., points, nodes/edges)
- Randomness and approximation OK (almost always necessary)
- Last lecture: estimating the number of distinct elements

$$
\mathbb{P}(\text { relative error }<\varepsilon)>\frac{2}{3}
$$

with space $O\left(\log n+(1 / \varepsilon)^{2}\right)$.

Generalization

- Vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, where each x_{i} is number of times $i \in[m]$ has been seen so far.

Generalization

- Vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, where each x_{i} is number of times $i \in[m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_{i} \leftarrow x_{i}+a$.

Generalization

- Vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, where each x_{i} is number of times $i \in[m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_{i} \leftarrow x_{i}+a$.
- Basic streaming model: Corresponds to updates $(i, 1)$.

Generalization

- Vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, where each x_{i} is number of times $i \in[m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_{i} \leftarrow x_{i}+a$.
- Basic streaming model: Corresponds to updates $(i, 1)$.
- Note that $a<0$ is possible, but maybe problematic with algorithms for queries.

Generalization

- Vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, where each x_{i} is number of times $i \in[m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_{i} \leftarrow x_{i}+a$.
- Basic streaming model: Corresponds to updates $(i, 1)$.
- Note that $a<0$ is possible, but maybe problematic with algorithms for queries.
- Number of distinct elements $=$ number of non-zero coordinates in x, denote by $\|x\|_{0}$. Algorithm from last time can also be used in this model.

Generalization

- Vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, where each x_{i} is number of times $i \in[m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_{i} \leftarrow x_{i}+a$.
- Basic streaming model: Corresponds to updates $(i, 1)$.
- Note that $a<0$ is possible, but maybe problematic with algorithms for queries.
- Number of distinct elements $=$ number of non-zero coordinates in x, denote by $\|x\|_{0}$.
Algorithm from last time can also be used in this model.
- Will consider two methods for calculating
$\|x\|_{\ell_{2}}^{2}=\sum_{i=1}^{n} x_{i}^{2}$

Generalization

- Vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, where each x_{i} is number of times $i \in[m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_{i} \leftarrow x_{i}+a$.
- Basic streaming model: Corresponds to updates $(i, 1)$.
- Note that $a<0$ is possible, but maybe problematic with algorithms for queries.
- Number of distinct elements $=$ number of non-zero coordinates in x, denote by $\|x\|_{0}$.
Algorithm from last time can also be used in this model.
- Will consider two methods for calculating $\|x\|_{\ell_{2}}^{2}=\sum_{i=1}^{n} x_{i}^{2}$
- Alon-Matias-Szegedy (AMS)

Generalization

- Vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, where each x_{i} is number of times $i \in[m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_{i} \leftarrow x_{i}+a$.
- Basic streaming model: Corresponds to updates $(i, 1)$.
- Note that $a<0$ is possible, but maybe problematic with algorithms for queries.
- Number of distinct elements $=$ number of non-zero coordinates in x, denote by $\|x\|_{0}$.
Algorithm from last time can also be used in this model.
- Will consider two methods for calculating $\|x\|_{\ell_{2}}^{2}=\sum_{i=1}^{n} x_{i}^{2}$
- Alon-Matias-Szegedy (AMS)
- Johnson-Lindenstrauss

Why Calculate ℓ_{2} norm?

- General ℓ_{p} norms:

$$
\|x\|_{\ell_{p}}= \begin{cases}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} & \text { if } p<\infty \\ \max _{1 \leq i \leq n}\left|x_{i}\right| & \text { if } p=\infty\end{cases}
$$

Why Calculate ℓ_{2} norm?

- General ℓ_{p} norms:

$$
\|x\|_{\ell_{p}}= \begin{cases}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} & \text { if } p<\infty \\ \max _{1 \leq i \leq n}\left|x_{i}\right| & \text { if } p=\infty\end{cases}
$$

- $\|x\|_{1} / n$: average of $\left|x_{1}\right|, \ldots,\left|x_{n}\right|$.

Why Calculate ℓ_{2} norm?

- General ℓ_{p} norms:

$$
\|x\|_{\ell_{p}}= \begin{cases}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} & \text { if } p<\infty \\ \max _{1 \leq i \leq n}\left|x_{i}\right| & \text { if } p=\infty\end{cases}
$$

- $\|x\|_{1} / n$: average of $\left|x_{1}\right|, \ldots,\left|x_{n}\right|$.
- $\|x\|_{\ell_{2}}$ measures spikiness of x :

If $\|x\|_{1}$ is fixed, then $\left\|x_{2}\right\|$ is minimized if $x_{1}=x_{2}=\cdots=x_{n}=1 /\|x\|_{1}$.

Why Calculate ℓ_{2} norm?

- General ℓ_{p} norms:

$$
\|x\|_{\ell_{p}}= \begin{cases}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} & \text { if } p<\infty \\ \max _{1 \leq i \leq n}\left|x_{i}\right| & \text { if } p=\infty\end{cases}
$$

- $\|x\|_{1} / n$: average of $\left|x_{1}\right|, \ldots,\left|x_{n}\right|$.
- $\|x\|_{\ell_{2}}$ measures spikiness of x :

If $\|x\|_{1}$ is fixed, then $\left\|x_{2}\right\|$ is minimized if
$x_{1}=x_{2}=\cdots=x_{n}=1 /\|x\|_{1}$.

- ℓ_{2}-norm estimation also arises in database applications.

AMS Algorithm

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." J. Comput. Syst. Sci., 58(1): 137-147. 1999.

- Choose r_{1}, \ldots, r_{m} to be independently identically distributed random variables, with

$$
\mathbb{P}\left[r_{i}=1\right]=\mathbb{P}\left[r_{i}=-1\right]=\frac{1}{2} \quad(1 \leq i \leq n)
$$

AMS Algorithm

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." J. Comput. Syst. Sci., 58(1): 137-147. 1999.

- Choose r_{1}, \ldots, r_{m} to be independently identically distributed random variables, with

$$
\mathbb{P}\left[r_{i}=1\right]=\mathbb{P}\left[r_{i}=-1\right]=\frac{1}{2} \quad(1 \leq i \leq n)
$$

- Maintain

$$
Z=\langle r, x\rangle=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments to the x_{i}.
Since Z is linear in x :

$$
\text { update } x \text { by }(i, a) \text { simply via } Z \leftarrow Z+r_{i} a
$$

AMS Algorithm

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." J. Comput. Syst. Sci., 58(1): 137-147. 1999.

- Choose r_{1}, \ldots, r_{m} to be independently identically distributed random variables, with

$$
\mathbb{P}\left[r_{i}=1\right]=\mathbb{P}\left[r_{i}=-1\right]=\frac{1}{2} \quad(1 \leq i \leq n)
$$

- Maintain

$$
Z=\langle r, x\rangle=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments to the x_{i}.
Since Z is linear in x :
update x by (i, a) simply via $Z \leftarrow Z+r_{i} a$

- Return Z^{2} as our estimator for $\|x\|_{\ell_{2}}^{2}$.

AMS Algorithm

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." J. Comput. Syst. Sci., 58(1): 137-147. 1999.

- Choose r_{1}, \ldots, r_{m} to be independently identically distributed random variables, with

$$
\mathbb{P}\left[r_{i}=1\right]=\mathbb{P}\left[r_{i}=-1\right]=\frac{1}{2} \quad(1 \leq i \leq n)
$$

- Maintain

$$
Z=\langle r, x\rangle=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments to the x_{i}.
Since Z is linear in x :
update x by (i, a) simply via $Z \leftarrow Z+r_{i} a$

- Return Z^{2} as our estimator for $\|x\|_{\ell_{2}}^{2}$.

AMS Algorithm

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." J. Comput. Syst. Sci., 58(1): 137-147. 1999.

- Choose r_{1}, \ldots, r_{m} to be independently identically distributed random variables, with

$$
\mathbb{P}\left[r_{i}=1\right]=\mathbb{P}\left[r_{i}=-1\right]=\frac{1}{2} \quad(1 \leq i \leq n)
$$

- Maintain

$$
Z=\langle r, x\rangle=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments to the x_{i}.
Since Z is linear in x :
update x by (i, a) simply via $Z \leftarrow Z+r_{i} a$

- Return Z^{2} as our estimator for $\|x\|_{\ell_{2}}^{2}$.

AMS Algorithm

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." J. Comput. Syst. Sci., 58(1): 137-147. 1999.

- Choose r_{1}, \ldots, r_{m} to be independently identically distributed random variables, with

$$
\mathbb{P}\left[r_{i}=1\right]=\mathbb{P}\left[r_{i}=-1\right]=\frac{1}{2} \quad(1 \leq i \leq n)
$$

- Maintain

$$
Z=\langle r, x\rangle=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments to the x_{i}.
Since Z is linear in x :
update x by (i, a) simply via $Z \leftarrow Z+r_{i} a$

- Return Z^{2} as our estimator for $\|x\|_{\ell_{2}}^{2}$.
- Analysis?
- Compute expectation of Z^{2}.

AMS Algorithm

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." J. Comput. Syst. Sci., 58(1): 137-147. 1999.

- Choose r_{1}, \ldots, r_{m} to be independently identically distributed random variables, with

$$
\mathbb{P}\left[r_{i}=1\right]=\mathbb{P}\left[r_{i}=-1\right]=\frac{1}{2} \quad(1 \leq i \leq n)
$$

- Maintain

$$
Z=\langle r, x\rangle=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments to the x_{i}.
Since Z is linear in x :

$$
\text { update } x \text { by }(i, a) \text { simply via } Z \leftarrow Z+r_{i} a
$$

- Return Z^{2} as our estimator for $\|x\|_{\ell_{2}}^{2}$.
- Analysis?
- Compute expectation of Z^{2}.
- Bound the variance of Z^{2}.

AMS Algorithm: Compute Expectation

- We have

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{2}=\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right) \\
& =\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right)=\sum_{i, j=1}^{n} x_{i} x_{j} \mathbb{E}\left[r_{i} r_{j}\right]
\end{aligned}
$$

AMS Algorithm: Compute Expectation

- We have

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{2}=\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right) \\
& =\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right)=\sum_{i, j=1}^{n} x_{i} x_{j} \mathbb{E}\left[r_{i} r_{j}\right]
\end{aligned}
$$

- But

AMS Algorithm: Compute Expectation

- We have

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{2}=\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right) \\
& =\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right)=\sum_{i, j=1}^{n} x_{i} x_{j} \mathbb{E}\left[r_{i} r_{j}\right]
\end{aligned}
$$

- But
- For $i \neq j$, we have $\mathbb{E}\left[r_{i} r_{j}\right]=\mathbb{E}\left[r_{j}\right] \mathbb{E}\left[r_{j}\right]=0$, and so term disappears.

AMS Algorithm: Compute Expectation

- We have

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{2}=\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right) \\
& =\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right)=\sum_{i, j=1}^{n} x_{i} x_{j} \mathbb{E}\left[r_{i} r_{j}\right]
\end{aligned}
$$

- But
- For $i \neq j$, we have $\mathbb{E}\left[r_{i} r_{j}\right]=\mathbb{E}\left[r_{i}\right] \mathbb{E}\left[r_{j}\right]=0$, and so term disappears.
- For $i=j$, we have $\mathbb{E}\left[r_{i} r_{j}\right]=\mathbb{E}\left[r_{i}^{2}\right]=\mathbb{E}[1]=1$.

AMS Algorithm: Compute Expectation

- We have

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{2}=\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right) \\
& =\mathbb{E}\left(\sum_{i, j=1}^{n} r_{i} x_{i} r_{j} x_{j}\right)=\sum_{i, j=1}^{n} x_{i} x_{j} \mathbb{E}\left[r_{i} r_{j}\right]
\end{aligned}
$$

- But
- For $i \neq j$, we have $\mathbb{E}\left[r_{i} r_{j}\right]=\mathbb{E}\left[r_{i}\right] \mathbb{E}\left[r_{j}\right]=0$, and so term disappears.
- For $i=j$, we have $\mathbb{E}\left[r_{i} r_{j}\right]=\mathbb{E}\left[r_{i}^{2}\right]=\mathbb{E}[1]=1$.
- So

$$
\mathbb{E}\left[Z^{2}\right]=\sum_{i=1}^{n} x_{i}^{2}=\|x\|_{\ell_{2}}^{2}
$$

and hence Z^{2} is an unbiased estimator of $\|x\|_{\ell_{2}}^{2}$.

AMS Algorithm: Bounding the Variance

- We have

$$
\operatorname{Var}\left[Z^{2}\right]=\mathbb{E}\left[\left(Z^{2}\right)^{2}\right]-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}=\mathbb{E}\left[Z^{4}\right]-\|x\|_{\ell_{2}}^{4}
$$

AMS Algorithm: Bounding the Variance

- We have

$$
\operatorname{Var}\left[Z^{2}\right]=\mathbb{E}\left[\left(Z^{2}\right)^{2}\right]-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}=\mathbb{E}\left[Z^{4}\right]-\|x\|_{\ell_{2}}^{4}
$$

- Now

$$
Z^{4}=\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{4}
$$

AMS Algorithm: Bounding the Variance

- We have

$$
\operatorname{Var}\left[Z^{2}\right]=\mathbb{E}\left[\left(Z^{2}\right)^{2}\right]-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}=\mathbb{E}\left[Z^{4}\right]-\|x\|_{\ell_{2}}^{4}
$$

- Now

$$
z^{4}=\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{4}
$$

- Decompose into a sum of

AMS Algorithm: Bounding the Variance

- We have

$$
\operatorname{Var}\left[Z^{2}\right]=\mathbb{E}\left[\left(Z^{2}\right)^{2}\right]-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}=\mathbb{E}\left[Z^{4}\right]-\|x\|_{\ell_{2}}^{4}
$$

- Now

$$
z^{4}=\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{4}
$$

- Decompose into a sum of
- $\sum_{i=1}^{n}\left(r_{i} x_{i}\right)^{4}$, with expectation $\sum_{i=1}^{n} x_{i}^{4}$.

AMS Algorithm: Bounding the Variance

- We have

$$
\operatorname{Var}\left[Z^{2}\right]=\mathbb{E}\left[\left(Z^{2}\right)^{2}\right]-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}=\mathbb{E}\left[Z^{4}\right]-\|x\|_{\ell_{2}}^{4}
$$

- Now

$$
z^{4}=\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{4}
$$

- Decompose into a sum of
- $\sum_{i=1}^{n}\left(r_{i} x_{i}\right)^{4}$, with expectation $\sum_{i=1}^{n} x_{i}^{4}$.
- $6 \sum_{i, j=1}^{n}\left(r_{i} r_{j} x_{i} x_{j}\right)^{2}$, with expectation $6 \sum_{1 \leq i<j \leq n} x_{i}^{2} x_{j}^{2}$

AMS Algorithm: Bounding the Variance

- We have

$$
\operatorname{Var}\left[Z^{2}\right]=\mathbb{E}\left[\left(Z^{2}\right)^{2}\right]-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}=\mathbb{E}\left[Z^{4}\right]-\|x\|_{\ell_{2}}^{4}
$$

- Now

$$
z^{4}=\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{4}
$$

- Decompose into a sum of
- $\sum_{i=1}^{n}\left(r_{i} x_{i}\right)^{4}$, with expectation $\sum_{i=1}^{n} x_{i}^{4}$.
- $6 \sum_{i, j=1}^{n}\left(r_{i} r_{j} x_{i} x_{j}\right)^{2}$, with expectation $6 \sum_{1 \leq i<j \leq n} x_{i}^{2} x_{j}^{2}$
- Terms involving no repeated multipliers (such as $\left.r_{1} x_{1} r_{2} x_{2} r_{3} x_{3} r_{4} x_{4}\right)$, with expectation 0 .

AMS Algorithm: Bounding the Variance

- We have

$$
\operatorname{Var}\left[Z^{2}\right]=\mathbb{E}\left[\left(Z^{2}\right)^{2}\right]-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}=\mathbb{E}\left[Z^{4}\right]-\|x\|_{\ell_{2}}^{4}
$$

- Now

$$
z^{4}=\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{4}
$$

- Decompose into a sum of
- $\sum_{i=1}^{n}\left(r_{i} x_{i}\right)^{4}$, with expectation $\sum_{i=1}^{n} x_{i}^{4}$.
- $6 \sum_{i, j=1}^{n}\left(r_{i} r_{j} x_{i} x_{j}\right)^{2}$, with expectation $6 \sum_{1 \leq i<j \leq n} x_{i}^{2} x_{j}^{2}$
- Terms involving no repeated multipliers (such as $\left.r_{1} x_{1} r_{2} x_{2} r_{3} x_{3} r_{4} x_{4}\right)$, with expectation 0 .
- So

$$
\mathbb{E}\left[Z^{4}\right]=\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{1 \leq i<j \leq n}^{n} x_{i}^{2} x_{j}^{2}
$$

AMS Algorithm: Bounding the Variance (con'td)

- Recall that

$$
\mathbb{E}\left[Z^{2}\right]=\sum_{i=1}^{n} x_{i}^{2}=\|x\|_{\ell_{2}}^{2}
$$

and

$$
\mathbb{E}\left[Z^{4}\right]=\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{1 \leq i<j \leq n}^{n} x_{i}^{2} x_{j}^{2}
$$

AMS Algorithm: Bounding the Variance (con'td)

- Recall that

$$
\mathbb{E}\left[Z^{2}\right]=\sum_{i=1}^{n} x_{i}^{2}=\|x\|_{\ell_{2}}^{2}
$$

and

$$
\mathbb{E}\left[Z^{4}\right]=\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{1 \leq i<j \leq n}^{n} x_{i}^{2} x_{j}^{2}
$$

- So

$$
\begin{aligned}
\operatorname{Var}\left[Z^{2}\right] & =\mathbb{E}\left[Z^{4}\right]-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}=\mathbb{E}\left[Z^{4}\right]-\|x\|_{\ell_{2}}^{4} \\
& =\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{1 \leq i<j \leq n}^{n} x_{i}^{2} x_{j}^{2}-\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2} \\
& =\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{1 \leq i<j \leq n}^{n} x_{i}^{2} x_{j}^{2}-\left(\sum_{i=1}^{n} x_{i}^{4}+2 \sum_{1 \leq i<j \leq n}^{n} x_{i}^{2} x_{j}^{2}\right) \\
& =4 \sum_{1 \leq i<j \leq n}^{n} x_{i}^{2} x_{j}^{2} \leq 2\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}=2\|x\|_{\ell_{2}}^{2}
\end{aligned}
$$

AMS Algorithm: Completing the Analysis

- We have an estimator $Z^{2} \approx\|x\|_{\ell_{2}}^{2}$, with $E\left[Z^{2}\right]=\|x\|_{\ell_{2}}^{2}$ and $\sigma=\operatorname{Var}\left[Z^{2}\right] \leq 2\|x\|_{\ell_{2}}^{2}$.

AMS Algorithm: Completing the Analysis

- We have an estimator $Z^{2} \approx\|x\|_{\ell_{2}}^{2}$, with $E\left[Z^{2}\right]=\|x\|_{\ell_{2}}^{2}$ and $\sigma=\operatorname{Var}\left[Z^{2}\right] \leq 2\|x\|_{\ell_{2}}^{2}$.
- Apply Chebyshev inequality

$$
\mathbb{P}[|\mathbb{E}[Y]-Y| \geq c \sigma] \leq \frac{1}{c^{2}} \quad \forall c>0
$$

to find

$$
\mathbb{P}\left[\left|\mathbb{E}\left[Z^{2}\right]-\|x\|_{\ell_{2}}^{2}\right| \geq c \sqrt{2}\|x\|_{\ell_{2}}^{2}\right] \leq \frac{1}{c^{2}}
$$

AMS Algorithm: Completing the Analysis

- We have an estimator $Z^{2} \approx\|x\|_{\ell_{2}}^{2}$, with $E\left[Z^{2}\right]=\|x\|_{\ell_{2}}^{2}$ and $\sigma=\operatorname{Var}\left[Z^{2}\right] \leq 2\|x\|_{\ell_{2}}^{2}$.
- Apply Chebyshev inequality

$$
\mathbb{P}[|\mathbb{E}[Y]-Y| \geq c \sigma] \leq \frac{1}{c^{2}} \quad \forall c>0
$$

to find

$$
\mathbb{P}\left[\left|\mathbb{E}\left[Z^{2}\right]-\|x\|_{\ell_{2}}^{2}\right| \geq c \sqrt{2}\|x\|_{\ell_{2}}^{2}\right] \leq \frac{1}{c^{2}}
$$

- Problem: This gives a lousy estimator if failure probability δ is small. For instance, if $\delta=\frac{1}{3}$, must choose $c=3$, finding

$$
\mathbb{P}\left[\left|\mathbb{E}\left[Z^{2}\right]-\|x\|_{\ell_{2}}^{2}\right| \geq 3 \sqrt{2}\|x\|_{\ell_{2}}^{2}\right] \leq \frac{1}{9}
$$

But $\mathbb{E}\left[Z^{2}\right] \geq 0$, so this is worse than natural bound.

AMS+ Algorithm

- Run AMS k times, getting $Z_{1}, Z_{2}, \ldots, Z_{k}$.

AMS+ Algorithm

- Run AMS k times, getting $Z_{1}, Z_{2}, \ldots, Z_{k}$.
- Estimator is

$$
Y=\frac{1}{k} \sum_{j=1}^{k} Z_{j}^{2}
$$

AMS+ Algorithm

- Run AMS k times, getting $Z_{1}, Z_{2}, \ldots, Z_{k}$.
- Estimator is

$$
Y=\frac{1}{k} \sum_{j=1}^{k} Z_{j}^{2}
$$

- We then have

$$
\mathbb{E}[Y]=\frac{1}{k} \sum_{j=1}^{k} \mathbb{E}\left[Z_{j}^{2}\right]=\frac{1}{k} \cdot k\|x\|_{\ell_{2}}^{2}=\|x\|_{\ell_{2}}^{2}
$$

AMS+ Algorithm

- Run AMS k times, getting $Z_{1}, Z_{2}, \ldots, Z_{k}$.
- Estimator is

$$
Y=\frac{1}{k} \sum_{j=1}^{k} Z_{j}^{2}
$$

- We then have

$$
\mathbb{E}[Y]=\frac{1}{k} \sum_{j=1}^{k} \mathbb{E}\left[Z_{j}^{2}\right]=\frac{1}{k} \cdot k\|x\|_{\ell_{2}}^{2}=\|x\|_{\ell_{2}}^{2}
$$

- Moreover,

$$
\operatorname{Var}[Y]=\frac{1}{k^{2}} \sum_{j=1}^{k} \operatorname{Var}\left[Z_{j}^{2}\right] \leq \frac{2}{k}\|x\|_{\ell_{2}}^{2},
$$

so that Chebyshev's inequality yields

$$
\mathbb{P}\left[\left|\mathbb{E}[Y]-\|x\|_{\ell_{2}}^{2}\right| \leq c \sqrt{2 / k}\|x\|_{\ell_{2}}^{2}\right]<1 / c^{2}
$$

AMS+Algorithm (cont'd)

- Run AMS k times, getting

$$
Z_{j}=\sum_{i=1}^{n} r_{j, i} x_{i} \quad(1 \leq j \leq k)
$$

AMS+Algorithm (cont'd)

- Run AMS k times, getting

$$
Z_{j}=\sum_{i=1}^{n} r_{j, i} x_{i} \quad(1 \leq j \leq k)
$$

- Use estimator

$$
Y=\frac{1}{k} \sum_{j=1}^{k} Z_{j}^{2}
$$

AMS+Algorithm (cont'd)

- Run AMS k times, getting

$$
Z_{j}=\sum_{i=1}^{n} r_{j, i} x_{i} \quad(1 \leq j \leq k)
$$

- Use estimator

$$
Y=\frac{1}{k} \sum_{j=1}^{k} Z_{j}^{2}
$$

- We then have

$$
\mathbb{E}[Y]=\|x\|_{\ell_{2}}^{2} .
$$

and

$$
\mathbb{P}\left[\left|\mathbb{E}[Y]-\|x\|_{\ell_{2}}^{2}\right| \leq c \sqrt{2 / k}\|x\|_{\ell_{2}}^{2}\right]<1 / c^{2}
$$

AMS+Algorithm (cont'd)

- Run AMS k times, getting

$$
Z_{j}=\sum_{i=1}^{n} r_{j, i} x_{i} \quad(1 \leq j \leq k)
$$

- Use estimator

$$
Y=\frac{1}{k} \sum_{j=1}^{k} Z_{j}^{2}
$$

- We then have

$$
\mathbb{E}[Y]=\|x\|_{\ell_{2}}^{2}
$$

and

$$
\mathbb{P}\left[\left|\mathbb{E}[Y]-\|x\|_{\ell_{2}}^{2}\right| \leq c \sqrt{2 / k}\|x\|_{\ell_{2}}^{2}\right]<1 / c^{2}
$$

- Set c to be a constant and $k=O\left(1 / \varepsilon^{2}\right)$, get a $(1 \pm \varepsilon)$-bit approximation with constant probability.

AMS+Algorithm (cont'd)

- Run AMS k times, getting

$$
Z_{j}=\sum_{i=1}^{n} r_{j, i} x_{i} \quad(1 \leq j \leq k)
$$

- Use estimator

$$
Y=\frac{1}{k} \sum_{j=1}^{k} Z_{j}^{2}
$$

- We then have

$$
\mathbb{E}[Y]=\|x\|_{\ell_{2}}^{2}
$$

and

$$
\mathbb{P}\left[\left|\mathbb{E}[Y]-\|x\|_{\ell_{2}}^{2}\right| \leq c \sqrt{2 / k}\|x\|_{\ell_{2}}^{2}\right]<1 / c^{2}
$$

- Set c to be a constant and $k=O\left(1 / \varepsilon^{2}\right)$, get a $(1 \pm \varepsilon)$-bit approximation with constant probability.
- Space usage: $O\left(\log (m n) / \varepsilon^{2}\right)$ bits (not counting the r_{i})

AMS: Final Comments

- Only needed 4 -wise independence of r_{1}, \ldots, r_{n}. Can generate using $O(\log m)$ random bits, using 4-wise independent hash functions.

AMS: Final Comments

- Only needed 4-wise independence of r_{1}, \ldots, r_{n}. Can generate using $O(\log m)$ random bits, using 4-wise independent hash functions.
- What we did:

AMS: Final Comments

- Only needed 4 -wise independence of r_{1}, \ldots, r_{n}. Can generate using $O(\log m)$ random bits, using 4-wise independent hash functions.
- What we did:
- Maintain a "linear sketch" vector $Z=R x$, where $R=\left[r_{j, i}\right]$

AMS: Final Comments

- Only needed 4 -wise independence of r_{1}, \ldots, r_{n}. Can generate using $O(\log m)$ random bits, using 4-wise independent hash functions.
- What we did:
- Maintain a "linear sketch" vector $Z=R x$, where $R=\left[r_{j, i}\right]$
- Easily handles (say) two data streams, since $R(x+\tilde{x})=R x+R \tilde{x}$.

AMS: Final Comments

- Only needed 4-wise independence of r_{1}, \ldots, r_{n}. Can generate using $O(\log m)$ random bits, using 4-wise independent hash functions.
- What we did:
- Maintain a "linear sketch" vector $Z=R x$, where $R=\left[r_{j, i}\right]$
- Easily handles (say) two data streams, since $R(x+\tilde{x})=R x+R \tilde{x}$.
- Estimate $\|x\|_{\ell_{2}}^{2}$ by $\|R x\|_{\ell_{2}}^{2} / k$.

AMS: Final Comments

- Only needed 4-wise independence of r_{1}, \ldots, r_{n}. Can generate using $O(\log m)$ random bits, using 4-wise independent hash functions.
- What we did:
- Maintain a "linear sketch" vector $Z=R x$, where $R=\left[r_{j, i}\right]$
- Easily handles (say) two data streams, since $R(x+\tilde{x})=R x+R \tilde{x}$.
- Estimate $\|x\|_{\ell_{2}}^{2}$ by $\|R x\|_{\ell_{2}}^{2} / k$.
- Reduction of dimension, use $R x$ (with k elements) instead of x (with n elements)

AMS: Final Comments

- Only needed 4 -wise independence of r_{1}, \ldots, r_{n}. Can generate using $O(\log m)$ random bits, using 4-wise independent hash functions.
- What we did:
- Maintain a "linear sketch" vector $Z=R x$, where $R=\left[r_{j, i}\right]$
- Easily handles (say) two data streams, since $R(x+\tilde{x})=R x+R \tilde{x}$.
- Estimate $\|x\|_{\ell_{2}}^{2}$ by $\|R x\|_{\ell_{2}}^{2} / k$.
- Reduction of dimension, use $R x$ (with k elements) instead of x (with n elements)
- Error bound too loose to be useful for small δ : For $c=O(1 / \sqrt{\delta})$, need $k=O\left(1 /\left(\delta \varepsilon^{2}\right)\right.$, linear in δ. That's because we only used second moment.

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." Contemporary Mathematics, 26(1): 189-206, 1984.

- Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right) \quad \forall x \in \mathbb{R}
$$

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." Contemporary Mathematics, 26(1): 189-206, 1984.

- Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right) \quad \forall x \in \mathbb{R}
$$

- Basic facts for normal distribution:

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." Contemporary Mathematics, 26(1): 189-206, 1984.

- Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right) \quad \forall x \in \mathbb{R}
$$

- Basic facts for normal distribution:
- Mean μ, variance σ^{2}.

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." Contemporary Mathematics, 26(1): 189-206, 1984.

- Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right) \quad \forall x \in \mathbb{R}
$$

- Basic facts for normal distribution:
- Mean μ, variance σ^{2}.
- If X and Y are independent identically distributed random variables, then $X+Y$ is normally distributed, with $\operatorname{Var}[X]+\operatorname{Var}[Y]$

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." Contemporary Mathematics, 26(1): 189-206, 1984.

- Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right) \quad \forall x \in \mathbb{R}
$$

- Basic facts for normal distribution:
- Mean μ, variance σ^{2}.
- If X and Y are independent identically distributed random variables, then $X+Y$ is normally distributed, with
$\operatorname{Var}[X]+\operatorname{Var}[Y]$
- $\operatorname{Var}[c X]=c^{2} \operatorname{Var}[X]$

JL Algorithm (cont'd)

Basic idea:

- Let $R \in \mathbb{R}^{k \times m}$, where each $r_{i, j}$ is i.i.d. random variable from $\mathcal{N}(0,1)$.

JL Algorithm (cont'd)

Basic idea:

- Let $R \in \mathbb{R}^{k \times m}$, where each $r_{i, j}$ is i.i.d. random variable from $\mathcal{N}(0,1)$.
- Maintain $Z=R x$ instead of x.

JL Algorithm (cont'd)

Basic idea:

- Let $R \in \mathbb{R}^{k \times m}$, where each $r_{i, j}$ is i.i.d. random variable from $\mathcal{N}(0,1)$.
- Maintain $Z=R x$ instead of x.
- Estimate $\|x\|_{\ell_{2}}^{2}$ by $Y=\|R x\|_{\ell_{2}}^{2} / k$.

JL Algorithm (cont'd)

Basic idea:

- Let $R \in \mathbb{R}^{k \times m}$, where each $r_{i, j}$ is i.i.d. random variable from $\mathcal{N}(0,1)$.
- Maintain $Z=R x$ instead of x.
- Estimate $\|x\|_{\ell_{2}}^{2}$ by $Y=\|R x\|_{\ell_{2}}^{2} / k$.
- As before, find $\mathbb{E}[Y]=\|x\|_{\ell_{2}}^{2}$, since

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{k}\|R x\|_{\ell_{2}}^{2}\right] & =\frac{1}{k} \mathbb{E}\left[x^{T} R^{T} R x\right]=\frac{1}{k} x^{T} \mathbb{E}\left[R^{T} R\right] x \\
& =\frac{1}{k} x^{T} \operatorname{diag}[k, k, \ldots, k] x=\|x\|_{\ell_{2}}^{2}
\end{aligned}
$$

JL Algorithm (cont'd)

Basic idea:

- Let $R \in \mathbb{R}^{k \times m}$, where each $r_{i, j}$ is i.i.d. random variable from $\mathcal{N}(0,1)$.
- Maintain $Z=R x$ instead of x.
- Estimate $\|x\|_{\ell_{2}}^{2}$ by $Y=\|R x\|_{\ell_{2}}^{2} / k$.
- As before, find $\mathbb{E}[Y]=\|x\|_{\ell_{2}}^{2}$, since

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{k}\|R x\|_{\ell_{2}}^{2}\right] & =\frac{1}{k} \mathbb{E}\left[x^{T} R^{T} R x\right]=\frac{1}{k} x^{T} \mathbb{E}\left[R^{T} R\right] x \\
& =\frac{1}{k} x^{T} \operatorname{diag}[k, k, \ldots, k] x=\|x\|_{\ell_{2}}^{2}
\end{aligned}
$$

- Moreover, there exists $C>0$ such that

$$
\mathbb{P}\left[\left|Y-\|x\|_{\ell_{2}}^{2}\right|>\varepsilon\|x\|_{\ell_{2}}^{2}\right] \leq \exp \left(-C \varepsilon^{2} k\right) \quad \text { for small } \varepsilon>0
$$

JL Algorithm (cont'd)

Basic idea:

- Let $R \in \mathbb{R}^{k \times m}$, where each $r_{i, j}$ is i.i.d. random variable from $\mathcal{N}(0,1)$.
- Maintain $Z=R x$ instead of x.
- Estimate $\|x\|_{\ell_{2}}^{2}$ by $Y=\|R x\|_{\ell_{2}}^{2} / k$.
- As before, find $\mathbb{E}[Y]=\|x\|_{\ell_{2}}^{2}$, since

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{k}\|R x\|_{\ell_{2}}^{2}\right] & =\frac{1}{k} \mathbb{E}\left[x^{T} R^{T} R x\right]=\frac{1}{k} x^{T} \mathbb{E}\left[R^{T} R\right] x \\
& =\frac{1}{k} x^{T} \operatorname{diag}[k, k, \ldots, k] x=\|x\|_{\ell_{2}}^{2}
\end{aligned}
$$

- Moreover, there exists $C>0$ such that

$$
\mathbb{P}\left[\left|Y-\|x\|_{\ell_{2}}^{2}\right|>\varepsilon\|x\|_{\ell_{2}}^{2}\right] \leq \exp \left(-C \varepsilon^{2} k\right) \quad \text { for small } \varepsilon>0
$$

- Set $k=O\left(1 / \varepsilon^{2} \log (1 / \delta)\right)$ to get $1 \pm \varepsilon$ approximation with probability $1-\delta$.

JL Algorithm: Final Comments

- Can use k-wise independence to generate $r_{i} s$, but much messier than for AMS

JL Algorithm: Final Comments

- Can use k-wise independence to generate $r_{i} s$, but much messier than for AMS
- Time to compute sketch vector Z from x is $O(k)$, bad if k is large.

JL Algorithm: Final Comments

- Can use k-wise independence to generate $r_{i} s$, but much messier than for AMS
- Time to compute sketch vector Z from x is $O(k)$, bad if k is large.
- Fast JL, sparse JL: reduce updating time

