Big-Data Algorithms: Computing the ℓ_2 Norm

Reference: http://www.sketchingbigdata.org/fall17/lec/lec3.pdf

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ Single pass over the data $i_1, i_2, \ldots, i_n \in [m]$. Here, $[m] = \{1, 2, \ldots, m\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 ▶ Single pass over the data *i*₁, *i*₂,..., *i_n* ∈ [*m*]. Here, [*m*] = {1, 2, ..., *m*}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Bounded storage (often $\log^{O(1)} n$)

- ▶ Single pass over the data *i*₁, *i*₂,..., *i_n* ∈ [*m*]. Here, [*m*] = {1, 2, ..., *m*}.
- Bounded storage (often log^{O(1)} n)
 - Units of storage: bits, words, "elements" (e.g., points, nodes/edges)

- ▶ Single pass over the data $i_1, i_2, \ldots, i_n \in [m]$. Here, $[m] = \{1, 2, \ldots, m\}$.
- Bounded storage (often log^{O(1)} n)
 - Units of storage: bits, words, "elements" (e.g., points, nodes/edges)
- Randomness and approximation OK (almost always necessary)

- ▶ Single pass over the data *i*₁, *i*₂,..., *i_n* ∈ [*m*]. Here, [*m*] = {1, 2, ..., *m*}.
- Bounded storage (often log^{O(1)} n)
 - Units of storage: bits, words, "elements" (e.g., points, nodes/edges)
- Randomness and approximation OK (almost always necessary)
- Last lecture: estimating the number of distinct elements

 $\mathbb{P}(\text{relative error} < \varepsilon) > \frac{2}{3}$

with space $O(\log n + (1/\varepsilon)^2)$.

▶ Vector $x = (x_1, x_2, ..., x_m)$, where each x_i is number of times $i \in [m]$ has been seen so far.

▶ Vector $x = (x_1, x_2, ..., x_m)$, where each x_i is number of times $i \in [m]$ has been seen so far.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ Stream: sequence of updates (i, a), meaning $x_i \leftarrow x_i + a$.

▶ Vector $x = (x_1, x_2, ..., x_m)$, where each x_i is number of times $i \in [m]$ has been seen so far.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Stream: sequence of updates (i, a), meaning $x_i \leftarrow x_i + a$.
- Basic streaming model: Corresponds to updates (i, 1).

- ▶ Vector $x = (x_1, x_2, ..., x_m)$, where each x_i is number of times $i \in [m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_i \leftarrow x_i + a$.
- ▶ Basic streaming model: Corresponds to updates (*i*, 1).
- ► Note that a < 0 is possible, but maybe problematic with algorithms for queries.</p>

- ▶ Vector $x = (x_1, x_2, ..., x_m)$, where each x_i is number of times $i \in [m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_i \leftarrow x_i + a$.
- Basic streaming model: Corresponds to updates (i, 1).
- Note that a < 0 is possible, but maybe problematic with algorithms for queries.
- Number of distinct elements = number of non-zero coordinates in x, denote by ||x||₀.
 Algorithm from last time can also be used in this model.

- ▶ Vector $x = (x_1, x_2, ..., x_m)$, where each x_i is number of times $i \in [m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_i \leftarrow x_i + a$.
- Basic streaming model: Corresponds to updates (i, 1).
- Note that a < 0 is possible, but maybe problematic with algorithms for queries.
- Number of distinct elements = number of non-zero coordinates in x, denote by ||x||₀.
 Algorithm from last time can also be used in this model.

• Will consider two methods for calculating $||x||_{\ell_2}^2 = \sum_{i=1}^n x_i^2$

- ▶ Vector $x = (x_1, x_2, ..., x_m)$, where each x_i is number of times $i \in [m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_i \leftarrow x_i + a$.
- Basic streaming model: Corresponds to updates (i, 1).
- Note that a < 0 is possible, but maybe problematic with algorithms for queries.
- Number of distinct elements = number of non-zero coordinates in x, denote by ||x||₀.
 Algorithm from last time can also be used in this model.
- Will consider two methods for calculating $||x||_{\ell_2}^2 = \sum_{i=1}^n x_i^2$

Alon-Matias-Szegedy (AMS)

- ▶ Vector $x = (x_1, x_2, ..., x_m)$, where each x_i is number of times $i \in [m]$ has been seen so far.
- Stream: sequence of updates (i, a), meaning $x_i \leftarrow x_i + a$.
- ▶ Basic streaming model: Corresponds to updates (*i*, 1).
- Note that a < 0 is possible, but maybe problematic with algorithms for queries.
- Number of distinct elements = number of non-zero coordinates in x, denote by ||x||₀.
 Algorithm from last time can also be used in this model.

- Will consider two methods for calculating $||x||_{\ell_2}^2 = \sum_{i=1}^n x_i^2$
 - Alon-Matias-Szegedy (AMS)
 - Johnson-Lindenstrauss

• General ℓ_p norms:

$$\|x\|_{\ell_p} = \begin{cases} \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} & \text{if } p < \infty, \\ \max_{1 \le i \le n} |x_i| & \text{if } p = \infty. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• General ℓ_p norms:

$$\|x\|_{\ell_p} = \begin{cases} \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} & \text{if } p < \infty, \\ \max_{1 \le i \le n} |x_i| & \text{if } p = \infty. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• $||x||_1/n$: average of $|x_1|, ..., |x_n|$.

• General ℓ_p norms:

$$\|x\|_{\ell_p} = \begin{cases} \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} & \text{if } p < \infty, \\ \max_{1 \le i \le n} |x_i| & \text{if } p = \infty. \end{cases}$$

- $||x||_1/n$: average of $|x_1|, ..., |x_n|$.
- ▶ $||x||_{\ell_2}$ measures spikiness of *x*: If $||x||_1$ is fixed, then $||x_2||$ is minimized if $x_1 = x_2 = \cdots = x_n = 1/||x||_1$.

• General ℓ_p norms:

$$\|x\|_{\ell_p} = \begin{cases} \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} & \text{if } p < \infty, \\ \max_{1 \le i \le n} |x_i| & \text{if } p = \infty. \end{cases}$$

- $||x||_1/n$: average of $|x_1|, ..., |x_n|$.
- ▶ $||x||_{\ell_2}$ measures spikiness of *x*: If $||x||_1$ is fixed, then $||x_2||$ is minimized if $x_1 = x_2 = \cdots = x_n = 1/||x||_1$.

 ℓ₂-norm estimation also arises in database applications.

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." *J. Comput. Syst. Sci.*, 58(1): 137–147. 1999.

► Choose r₁,..., r_m to be independently identically distributed random variables, with

$$\mathbb{P}[r_i = 1] = \mathbb{P}[r_i = -1] = \frac{1}{2}$$
 $(1 \le i \le n)$

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." *J. Comput. Syst. Sci.*, 58(1): 137–147. 1999.

Choose r₁,..., r_m to be independently identically distributed random variables, with

$$\mathbb{P}[r_i = 1] = \mathbb{P}[r_i = -1] = \frac{1}{2}$$
 $(1 \le i \le n)$

Maintain

$$Z = \langle r, x \rangle = \sum_{i=1}^{n} r_i x_i$$

under increments to the x_i . Since Z is linear in x: update x by (i, a) simply via $Z \leftarrow Z + r_i a$

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." *J. Comput. Syst. Sci.*, 58(1): 137–147. 1999.

Choose r₁,..., r_m to be independently identically distributed random variables, with

$$\mathbb{P}[r_i = 1] = \mathbb{P}[r_i = -1] = \frac{1}{2}$$
 $(1 \le i \le n)$

Maintain

$$Z = \langle r, x \rangle = \sum_{i=1}^{n} r_i x_i$$

under increments to the x_i .

Since Z is linear in x:

update x by (i, a) simply via $Z \leftarrow Z + r_i a$ • Return Z^2 as our estimator for $||x||_{\ell_2}^2$.

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." *J. Comput. Syst. Sci.*, 58(1): 137–147. 1999.

Choose r₁,..., r_m to be independently identically distributed random variables, with

$$\mathbb{P}[r_i = 1] = \mathbb{P}[r_i = -1] = \frac{1}{2}$$
 $(1 \le i \le n)$

Maintain

$$Z = \langle r, x \rangle = \sum_{i=1}^{n} r_i x_i$$

under increments to the x_i .

Since Z is linear in x:

update x by (i, a) simply via $Z \leftarrow Z + r_i a$ • Return Z^2 as our estimator for $||x||_{\ell_2}^2$.

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." *J. Comput. Syst. Sci.*, 58(1): 137–147. 1999.

Choose r₁,..., r_m to be independently identically distributed random variables, with

$$\mathbb{P}[r_i = 1] = \mathbb{P}[r_i = -1] = \frac{1}{2}$$
 $(1 \le i \le n)$

Maintain

$$Z = \langle r, x \rangle = \sum_{i=1}^{n} r_i x_i$$

under increments to the x_i .

Since Z is linear in x:

update x by (i, a) simply via $Z \leftarrow Z + r_i a$ • Return Z^2 as our estimator for $||x||_{\ell_2}^2$.

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." *J. Comput. Syst. Sci.*, 58(1): 137–147. 1999.

Choose r₁,..., r_m to be independently identically distributed random variables, with

$$\mathbb{P}[r_i = 1] = \mathbb{P}[r_i = -1] = \frac{1}{2}$$
 $(1 \le i \le n)$

Maintain

$$Z = \langle r, x \rangle = \sum_{i=1}^{n} r_i x_i$$

under increments to the x_i .

Since Z is linear in x:

update x by (i, a) simply via $Z \leftarrow Z + r_i a$

- Return Z^2 as our estimator for $||x||_{\ell_2}^2$.
- Analysis?
 - Compute expectation of Z^2 .

Reference: N. Alon, Y. Matias, M. Szegedy, "The Space Complexity of Approximating the Frequency Moments." *J. Comput. Syst. Sci.*, 58(1): 137–147. 1999.

Choose r₁,..., r_m to be independently identically distributed random variables, with

$$\mathbb{P}[r_i = 1] = \mathbb{P}[r_i = -1] = \frac{1}{2}$$
 $(1 \le i \le n)$

Maintain

$$Z = \langle r, x \rangle = \sum_{i=1}^{n} r_i x_i$$

under increments to the x_i .

Since Z is linear in x:

update x by (i, a) simply via $Z \leftarrow Z + r_i a$

- Return Z^2 as our estimator for $||x||_{\ell_2}^2$.
- Analysis?
 - Compute expectation of Z^2 .
 - Bound the variance of Z^2 .

► We have

$$\mathbb{E}[Z^2] = \mathbb{E}\left(\sum_{i=1}^n r_i x_i\right)^2 = \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right)$$
$$= \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right) = \sum_{i,j=1}^n x_i x_j \mathbb{E}[r_i r_j]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

We have

$$\mathbb{E}[Z^2] = \mathbb{E}\left(\sum_{i=1}^n r_i x_i\right)^2 = \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right)$$
$$= \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right) = \sum_{i,j=1}^n x_i x_j \mathbb{E}[r_i r_j]$$

(ロ)、(型)、(E)、(E)、 E) の(の)

But

We have

$$\mathbb{E}[Z^2] = \mathbb{E}\left(\sum_{i=1}^n r_i x_i\right)^2 = \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right)$$
$$= \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right) = \sum_{i,j=1}^n x_i x_j \mathbb{E}[r_i r_j]$$

But

For i ≠ j, we have ℝ[r_ir_j] = ℝ[r_i]ℝ[r_j] = 0, and so term disappears.

・ロト・日本・モト・モート ヨー うへで

We have

$$\mathbb{E}[Z^2] = \mathbb{E}\left(\sum_{i=1}^n r_i x_i\right)^2 = \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right)$$
$$= \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right) = \sum_{i,j=1}^n x_i x_j \mathbb{E}[r_i r_j]$$

But

▶ For $i \neq j$, we have $\mathbb{E}[r_i r_j] = \mathbb{E}[r_i]\mathbb{E}[r_j] = 0$, and so term disappears.

・ロト・日本・モート モー うへぐ

• For i = j, we have $\mathbb{E}[r_i r_j] = \mathbb{E}[r_i^2] = \mathbb{E}[1] = 1$.

We have

$$\mathbb{E}[Z^2] = \mathbb{E}\left(\sum_{i=1}^n r_i x_i\right)^2 = \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right)$$
$$= \mathbb{E}\left(\sum_{i,j=1}^n r_i x_i r_j x_j\right) = \sum_{i,j=1}^n x_i x_j \mathbb{E}[r_i r_j]$$

But

- For i ≠ j, we have E[r_ir_j] = E[r_i]E[r_j] = 0, and so term disappears.
- For i = j, we have $\mathbb{E}[r_i r_j] = \mathbb{E}[r_i^2] = \mathbb{E}[1] = 1$.

So

$$\mathbb{E}[Z^2] = \sum_{i=1}^n x_i^2 = \|x\|_{\ell_2}^2$$

and hence Z^2 is an unbiased estimator of $||x||_{\ell_2}^2$.

► We have

$$\mathsf{Var}[Z^2] = \mathbb{E}[(Z^2)^2] - (\mathbb{E}[Z^2])^2 = \mathbb{E}[Z^4] - \|x\|_{\ell_2}^4$$

We have

$$\mathsf{Var}[Z^2] = \mathbb{E}[(Z^2)^2] - \left(\mathbb{E}[Z^2]
ight)^2 = \mathbb{E}[Z^4] - \|x\|_{\ell_2}^4$$

$$Z^4 = \left(\sum_{i=1}^n r_i x_i\right)^4$$

(ロ)、(型)、(E)、(E)、 E) の(の)

We have

$$\mathsf{Var}[Z^2] = \mathbb{E}[(Z^2)^2] - \left(\mathbb{E}[Z^2]\right)^2 = \mathbb{E}[Z^4] - \|x\|_{\ell_2}^4$$

$$Z^4 = \left(\sum_{i=1}^n r_i x_i\right)^4$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Decompose into a sum of

We have

$$\mathsf{Var}[Z^2] = \mathbb{E}[(Z^2)^2] - (\mathbb{E}[Z^2])^2 = \mathbb{E}[Z^4] - \|x\|_{\ell_2}^4$$

Now

$$Z^4 = \left(\sum_{i=1}^n r_i x_i\right)^4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Decompose into a sum of
 - $\sum_{i=1}^{n} (r_i x_i)^4$, with expectation $\sum_{i=1}^{n} x_i^4$.

We have

$$\mathsf{Var}[Z^2] = \mathbb{E}[(Z^2)^2] - \left(\mathbb{E}[Z^2]
ight)^2 = \mathbb{E}[Z^4] - \|x\|_{\ell_2}^4$$

Now

$$Z^4 = \left(\sum_{i=1}^n r_i x_i\right)^4$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Decompose into a sum of

- $\sum_{i=1}^{n} (r_i x_i)^4$, with expectation $\sum_{i=1}^{n} x_i^4$.
- $\overline{6\sum_{i,j=1}^{n}}(r_ir_jx_ix_j)^2$, with expectation $6\sum_{1\leq i< j\leq n}x_i^2x_j^2$

We have

$$\mathsf{Var}[Z^2] = \mathbb{E}[(Z^2)^2] - \left(\mathbb{E}[Z^2]
ight)^2 = \mathbb{E}[Z^4] - \|x\|_{\ell_2}^4$$

Now

$$Z^4 = \left(\sum_{i=1}^n r_i x_i\right)^4$$

Decompose into a sum of

- $\sum_{i=1}^{n} (r_i x_i)^4$, with expectation $\sum_{i=1}^{n} x_i^4$.
- $\overline{6\sum_{i,j=1}^{n}}(r_ir_jx_ix_j)^2$, with expectation $6\sum_{1 \le i < j \le n} x_i^2 x_j^2$
- ► Terms involving no repeated multipliers (such as r₁x₁r₂x₂r₃x₃r₄x₄), with expectation 0.
AMS Algorithm: Bounding the Variance

We have

$$\mathsf{Var}[Z^2] = \mathbb{E}[(Z^2)^2] - \left(\mathbb{E}[Z^2]
ight)^2 = \mathbb{E}[Z^4] - \|x\|_{\ell_2}^4$$

Now

$$Z^4 = \left(\sum_{i=1}^n r_i x_i\right)^4$$

Decompose into a sum of

- $\sum_{i=1}^{n} (r_i x_i)^4$, with expectation $\sum_{i=1}^{n} x_i^4$.
- $6\sum_{i,j=1}^{n} (r_i r_j x_i x_j)^2$, with expectation $6\sum_{1 \le i < j \le n} x_i^2 x_j^2$
- Terms involving no repeated multipliers (such as $r_1x_1r_2x_2r_3x_3r_4x_4$), with expectation 0.

So

$$\mathbb{E}[Z^4] = \sum_{i=1}^n x_i^4 + 6 \sum_{1 \le i < j \le n}^n x_i^2 x_j^2$$

AMS Algorithm: Bounding the Variance (con'td)

Recall that

$$\mathbb{E}[Z^2] = \sum_{i=1}^n x_i^2 = \|x\|_{\ell_2}^2$$

and

$$\mathbb{E}[Z^4] = \sum_{i=1}^n x_i^4 + 6 \sum_{1 \le i < j \le n}^n x_i^2 x_j^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

AMS Algorithm: Bounding the Variance (con'td)

Recall that

$$\mathbb{E}[Z^2] = \sum_{i=1}^n x_i^2 = \|x\|_{\ell_2}^2$$

and

$$\mathbb{E}[Z^4] = \sum_{i=1}^n x_i^4 + 6 \sum_{1 \le i < j \le n}^n x_i^2 x_j^2$$

So

$$\begin{aligned} \operatorname{Var}[Z^2] &= \mathbb{E}[Z^4] - \left(\mathbb{E}[Z^2]\right)^2 = \mathbb{E}[Z^4] - \|x\|_{\ell_2}^4 \\ &= \sum_{i=1}^n x_i^4 + 6 \sum_{1 \le i < j \le n}^n x_i^2 x_j^2 - \left(\sum_{i=1}^n x_i^2\right)^2 \\ &= \sum_{i=1}^n x_i^4 + 6 \sum_{1 \le i < j \le n}^n x_i^2 x_j^2 - \left(\sum_{i=1}^n x_i^4 + 2 \sum_{1 \le i < j \le n}^n x_i^2 x_j^2\right) \\ &= 4 \sum_{1 \le i < j \le n}^n x_i^2 x_j^2 \le 2 \left(\sum_{i=1}^n x_i^2\right)^2 = 2 \|x\|_{\ell_2}^2. \end{aligned}$$

AMS Algorithm: Completing the Analysis

• We have an estimator $Z^2 \approx ||x||_{\ell_2}^2$, with $E[Z^2] = ||x||_{\ell_2}^2$ and $\sigma = \operatorname{Var}[Z^2] \le 2||x||_{\ell_2}^2$.

AMS Algorithm: Completing the Analysis

- ▶ We have an estimator $Z^2 \approx ||x||_{\ell_2}^2$, with $E[Z^2] = ||x||_{\ell_2}^2$ and $\sigma = \operatorname{Var}[Z^2] \le 2||x||_{\ell_2}^2$.
- Apply Chebyshev inequality

$$\mathbb{P}[|\mathbb{E}[Y] - Y| \ge c\sigma] \le rac{1}{c^2} \qquad orall c > 0$$

to find

$$\mathbb{P}\left[\left|\mathbb{E}[Z^{2}] - \|x\|_{\ell_{2}}^{2}\right| \ge c\sqrt{2}\|x\|_{\ell_{2}}^{2}\right] \le \frac{1}{c^{2}}$$

AMS Algorithm: Completing the Analysis

- We have an estimator $Z^2 \approx ||x||_{\ell_2}^2$, with $E[Z^2] = ||x||_{\ell_2}^2$ and $\sigma = \operatorname{Var}[Z^2] \le 2||x||_{\ell_2}^2$.
- Apply Chebyshev inequality

$$\mathbb{P}[|\mathbb{E}[Y] - Y| \ge c\sigma] \le rac{1}{c^2} \qquad orall c > 0$$

to find

$$\mathbb{P}\left[\left| \mathbb{E}[Z^2] - \|x\|_{\ell_2}^2 \right| \ge c\sqrt{2} \|x\|_{\ell_2}^2
ight] \le rac{1}{c^2}$$

Problem: This gives a lousy estimator if failure probability δ is small. For instance, if δ = ¹/₃, must choose c = 3, finding

$$\mathbb{P}\left[\left| \mathbb{E}[Z^2] - \|x\|_{\ell_2}^2 \right| \ge 3\sqrt{2} \|x\|_{\ell_2}^2 \right] \le \frac{1}{9}$$

But $\mathbb{E}[Z^2] \ge 0$, so this is worse than natural bound.

• Run AMS k times, getting Z_1, Z_2, \ldots, Z_k .

- Run AMS k times, getting Z_1, Z_2, \ldots, Z_k .
- Estimator is

$$Y = \frac{1}{k} \sum_{j=1}^{k} Z_j^2$$

(ロ)、

- Run AMS k times, getting Z_1, Z_2, \ldots, Z_k .
- Estimator is

$$Y = \frac{1}{k} \sum_{j=1}^{k} Z_j^2$$

We then have

$$\mathbb{E}[Y] = \frac{1}{k} \sum_{j=1}^{k} \mathbb{E}[Z_j^2] = \frac{1}{k} \cdot k \|x\|_{\ell_2}^2 = \|x\|_{\ell_2}^2.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

- Run AMS k times, getting Z_1, Z_2, \ldots, Z_k .
- Estimator is

$$Y = \frac{1}{k} \sum_{j=1}^{k} Z_j^2$$

We then have

$$\mathbb{E}[Y] = rac{1}{k} \sum_{j=1}^{k} \mathbb{E}[Z_j^2] = rac{1}{k} \cdot k \|x\|_{\ell_2}^2 = \|x\|_{\ell_2}^2.$$

Moreover,

$$\operatorname{Var}[Y] = \frac{1}{k^2} \sum_{j=1}^k \operatorname{Var}[Z_j^2] \le \frac{2}{k} \|x\|_{\ell_2}^2,$$

so that Chebyshev's inequality yields

$$\mathbb{P}\left[\left|\mathbb{E}[Y] - \|x\|_{\ell_2}^2\right| \le c\sqrt{2/k} \|x\|_{\ell_2}^2\right] < 1/c^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► Run AMS *k* times, getting

$$Z_j = \sum_{i=1}^n r_{j,i} x_i \qquad (1 \le j \le k)$$

(ロ)、

Run AMS k times, getting

$$Z_j = \sum_{i=1}^n r_{j,i} x_i \qquad (1 \le j \le k)$$

Use estimator

$$Y = \frac{1}{k} \sum_{j=1}^{k} Z_j^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Run AMS k times, getting

$$Z_j = \sum_{i=1}^n r_{j,i} x_i \qquad (1 \le j \le k)$$

$$Y = \frac{1}{k} \sum_{j=1}^{k} Z_j^2$$

We then have

 $\mathbb{E}[Y] = \|x\|_{\ell_2}^2.$

 and

$$\mathbb{P}\left[\left|\mathbb{E}[Y] - \|x\|_{\ell_2}^2\right| \le c\sqrt{2/k}\|x\|_{\ell_2}^2\right] < 1/c^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Run AMS k times, getting

$$Z_j = \sum_{i=1}^n r_{j,i} x_i \qquad (1 \le j \le k)$$

$$Y = \frac{1}{k} \sum_{j=1}^{k} Z_j^2$$

We then have

$$\mathbb{E}[Y] = \|x\|_{\ell_2}^2.$$

and

$$\mathbb{P}\left[\left|\mathbb{E}[Y] - \|x\|_{\ell_2}^2\right| \le c\sqrt{2/k}\|x\|_{\ell_2}^2\right] < 1/c^2$$

Set c to be a constant and k = O(1/ε²), get a (1 ± ε)-bit approximation with constant probability.

Run AMS k times, getting

$$Z_j = \sum_{i=1}^n r_{j,i} x_i \qquad (1 \le j \le k)$$

$$Y = \frac{1}{k} \sum_{j=1}^{k} Z_j^2$$

We then have

$$\mathbb{E}[Y] = \|x\|_{\ell_2}^2.$$

and

$$\mathbb{P}\left[\left| \mathbb{E}[Y] - \|x\|_{\ell_2}^2 \right| \le c\sqrt{2/k} \|x\|_{\ell_2}^2 \right] < 1/c^2$$

- Set c to be a constant and k = O(1/ε²), get a (1 ± ε)-bit approximation with constant probability.
- ► Space usage: $O(\log(mn)/\varepsilon^2)$ bits (not counting the r_i)

Only needed 4-wise independence of r₁,..., r_n.
 Can generate using O(log m) random bits, using 4-wise independent hash functions.

Only needed 4-wise independence of r₁,..., r_n.
 Can generate using O(log m) random bits, using 4-wise independent hash functions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► What we did:

- Only needed 4-wise independence of r₁,..., r_n.
 Can generate using O(log m) random bits, using 4-wise independent hash functions.
- What we did:
 - Maintain a "linear sketch" vector Z = Rx, where $R = [r_{j,i}]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Only needed 4-wise independence of r₁,..., r_n.
 Can generate using O(log m) random bits, using 4-wise independent hash functions.
- What we did:
 - Maintain a "linear sketch" vector Z = Rx, where $R = [r_{i,i}]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► Easily handles (say) two data streams, since R(x + x̃) = Rx + Rx̃.

- Only needed 4-wise independence of r₁,..., r_n.
 Can generate using O(log m) random bits, using 4-wise independent hash functions.
- What we did:
 - Maintain a "linear sketch" vector Z = Rx, where $R = [r_{i,i}]$

- ► Easily handles (say) two data streams, since R(x + x̃) = Rx + Rx̃.
- Estimate $||x||_{\ell_2}^2$ by $||Rx||_{\ell_2}^2/k$.

- Only needed 4-wise independence of r₁,..., r_n.
 Can generate using O(log m) random bits, using 4-wise independent hash functions.
- What we did:
 - Maintain a "linear sketch" vector Z = Rx, where $R = [r_{i,i}]$
 - ► Easily handles (say) two data streams, since R(x + x̃) = Rx + Rx̃.
 - Estimate $||x||_{\ell_2}^2$ by $||Rx||_{\ell_2}^2/k$.
 - Reduction of dimension, use Rx (with k elements) instead of x (with n elements)

- Only needed 4-wise independence of r₁,..., r_n.
 Can generate using O(log m) random bits, using 4-wise independent hash functions.
- What we did:
 - Maintain a "linear sketch" vector Z = Rx, where $R = [r_{i,i}]$
 - ► Easily handles (say) two data streams, since R(x + x̃) = Rx + Rx̃.
 - Estimate $||x||_{\ell_2}^2$ by $||Rx||_{\ell_2}^2/k$.
 - Reduction of dimension, use Rx (with k elements) instead of x (with n elements)
- Error bound too loose to be useful for small δ : For $c = O(1/\sqrt{\delta})$, need $k = O(1/(\delta \varepsilon^2))$, linear in δ . That's because we only used second moment.

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." *Contemporary Mathematics*, 26(1): 189–206, 1984.

• Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(rac{-(x-\mu)^2}{2\sigma^2}
ight) \qquad orall x \in \mathbb{R}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." *Contemporary Mathematics*, 26(1): 189–206, 1984.

• Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(rac{-(x-\mu)^2}{2\sigma^2}
ight) \qquad orall x \in \mathbb{R}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basic facts for normal distribution:

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." *Contemporary Mathematics*, 26(1): 189–206, 1984.

• Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(rac{-(x-\mu)^2}{2\sigma^2}
ight) \qquad orall x \in \mathbb{R}$$

- Basic facts for normal distribution:
 - Mean μ , variance σ^2 .

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." *Contemporary Mathematics*, 26(1): 189–206, 1984.

• Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(rac{-(x-\mu)^2}{2\sigma^2}
ight) \qquad orall x \in \mathbb{R}$$

Basic facts for normal distribution:

- Mean μ , variance σ^2 .
- ► If X and Y are independent identically distributed random variables, then X + Y is normally distributed, with Var[X] + Var[Y]

Reference: W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space." *Contemporary Mathematics*, 26(1): 189–206, 1984.

• Normal distribution $\mathcal{N}(\mu, \sigma)$ has density function

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(rac{-(x-\mu)^2}{2\sigma^2}
ight) \qquad orall x \in \mathbb{R}$$

Basic facts for normal distribution:

- Mean μ , variance σ^2 .
- If X and Y are independent identically distributed random variables, then X + Y is normally distributed, with Var[X] + Var[Y]

• $Var[cX] = c^2 Var[X]$

Basic idea:

Let R ∈ ℝ^{k×m}, where each r_{i,j} is i.i.d. random variable from N(0, 1).

Basic idea:

Let R ∈ ℝ^{k×m}, where each r_{i,j} is i.i.d. random variable from N(0, 1).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Maintain Z = Rx instead of x.

Basic idea:

Let R ∈ ℝ^{k×m}, where each r_{i,j} is i.i.d. random variable from N(0, 1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Maintain Z = Rx instead of x.
- Estimate $||x||_{\ell_2}^2$ by $Y = ||Rx||_{\ell_2}^2/k$.

Basic idea:

- Let R ∈ ℝ^{k×m}, where each r_{i,j} is i.i.d. random variable from N(0, 1).
- Maintain Z = Rx instead of x.
- Estimate $||x||_{\ell_2}^2$ by $Y = ||Rx||_{\ell_2}^2/k$.
- As before, find $\mathbb{E}[Y] = ||x||_{\ell_2}^2$, since

$$\mathbb{E}\left[\frac{1}{k}\|Rx\|_{\ell_2}^2\right] = \frac{1}{k}\mathbb{E}[x^T R^T Rx] = \frac{1}{k}x^T\mathbb{E}[R^T R]x$$
$$= \frac{1}{k}x^T \operatorname{diag}[k, k, \dots, k]x = \|x\|_{\ell_2}^2$$

Basic idea:

- Let R ∈ ℝ^{k×m}, where each r_{i,j} is i.i.d. random variable from N(0, 1).
- Maintain Z = Rx instead of x.
- Estimate $||x||_{\ell_2}^2$ by $Y = ||Rx||_{\ell_2}^2/k$.
- As before, find $\mathbb{E}[Y] = ||x||_{\ell_2}^2$, since

$$\mathbb{E}\left[\frac{1}{k}\|Rx\|_{\ell_2}^2\right] = \frac{1}{k}\mathbb{E}[x^T R^T Rx] = \frac{1}{k}x^T \mathbb{E}[R^T R]x$$
$$= \frac{1}{k}x^T \operatorname{diag}[k, k, \dots, k]x = \|x\|_{\ell_2}^2$$

• Moreover, there exists C > 0 such that

 $\mathbb{P}[|Y - \|x\|_{\ell_2}^2| > \varepsilon \|x\|_{\ell_2}^2] \le \exp(-C\varepsilon^2 k) \qquad \text{for small } \varepsilon > 0$

Basic idea:

- Let R ∈ ℝ^{k×m}, where each r_{i,j} is i.i.d. random variable from N(0, 1).
- Maintain Z = Rx instead of x.
- Estimate $||x||_{\ell_2}^2$ by $Y = ||Rx||_{\ell_2}^2/k$.
- As before, find $\mathbb{E}[Y] = ||x||_{\ell_2}^2$, since

$$\mathbb{E}\left[\frac{1}{k}\|Rx\|_{\ell_2}^2\right] = \frac{1}{k}\mathbb{E}[x^T R^T Rx] = \frac{1}{k}x^T \mathbb{E}[R^T R]x$$
$$= \frac{1}{k}x^T \operatorname{diag}[k, k, \dots, k]x = \|x\|_{\ell_2}^2$$

• Moreover, there exists C > 0 such that

 $\mathbb{P}[|Y - \|x\|_{\ell_2}^2| > \varepsilon \|x\|_{\ell_2}^2] \le \exp(-C\varepsilon^2 k) \qquad \text{for small } \varepsilon > 0$

► Set $k = O(1/\varepsilon^2 \log(1/\delta))$ to get $1 \pm \varepsilon$ approximation with probability $1 - \delta$.

JL Algorithm: Final Comments

Can use k-wise independence to generate r_is, but much messier than for AMS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

JL Algorithm: Final Comments

- Can use k-wise independence to generate r_is, but much messier than for AMS
- ► Time to compute sketch vector Z from x is O(k), bad if k is large.

JL Algorithm: Final Comments

- Can use k-wise independence to generate r_is, but much messier than for AMS
- ► Time to compute sketch vector Z from x is O(k), bad if k is large.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fast JL, sparse JL: reduce updating time