Big-Data Algorithms:
Computing the 5 Norm

Reference: http://www.sketchingbigdata.org/falll7/lec/lec3.pdf

http://www.sketchingbigdata.org/fall17/lec/lec03.pdf

Basic Data Stream Model

» Single pass over the data i1, i, ..., I, € [m].
Here, [m] = {1,2,..., m}.

Basic Data Stream Model

» Single pass over the data i1, i2, ..., i, € [m].
Here, [m] = {1,2,..., m}.

» Bounded storage (often log®t) n)

Basic Data Stream Model

» Single pass over the data i1, i2, ..., i, € [m].
Here, [m] = {1,2,..., m}.
» Bounded storage (often log®®) n)

» Units of storage: bits, words, “elements” (e.g., points,
nodes/edges)

Basic Data Stream Model

» Single pass over the data i1, i2, ..., i, € [m].
Here, [m] = {1,2,..., m}.
» Bounded storage (often log®®) n)

» Units of storage: bits, words, “elements” (e.g., points,
nodes/edges)

» Randomness and approximation OK (almost always necessary)

Basic Data Stream Model

v

Single pass over the data i1, i, ..., i, € [m].
Here, [m] = {1,2,..., m}.

Bounded storage (often log®®) n)

v

» Units of storage: bits, words, “elements” (e.g., points,
nodes/edges)

v

Randomness and approximation OK (almost always necessary)

v

Last lecture: estimating the number of distinct elements

P(relative error <) >

WIN

with space O(log n+ (1/¢)?).

Generalization

» Vector x = (x1,%2,...,Xm), Where each x; is number of times
i € [m] has been seen so far.

Generalization

» Vector x = (x1,X2,...,Xm), Where each x; is number of times
i € [m] has been seen so far.

» Stream: sequence of updates (i, a), meaning x; < x; + a.

Generalization

» Vector x = (x1,X2,...,Xm), Where each x; is number of times
i € [m] has been seen so far.

» Stream: sequence of updates (7, a), meaning x; < x; + a.

» Basic streaming model: Corresponds to updates (7, 1).

Generalization

v

Vector x = (x1, X2, . .., Xm), Where each x; is number of times
i € [m] has been seen so far.

» Stream: sequence of updates (7, a), meaning x; < x; + a.

v

Basic streaming model: Corresponds to updates (i, 1).

v

Note that a < 0 is possible, but maybe problematic with
algorithms for queries.

Generalization

» Vector x = (x1,X2,...,Xm), Where each x; is number of times
i € [m] has been seen so far.

» Stream: sequence of updates (7, a), meaning x; < x; + a.
» Basic streaming model: Corresponds to updates (i, 1).

» Note that a < 0 is possible, but maybe problematic with
algorithms for queries.

» Number of distinct elements = number of non-zero
coordinates in x, denote by ||x||o.
Algorithm from last time can also be used in this model.

Generalization

» Vector x = (x1,X2,...,Xm), Where each x; is number of times
i € [m] has been seen so far.

» Stream: sequence of updates (7, a), meaning x; < x; + a.
» Basic streaming model: Corresponds to updates (i, 1).

» Note that a < 0 is possible, but maybe problematic with
algorithms for queries.

» Number of distinct elements = number of non-zero
coordinates in x, denote by ||x||o.
Algorithm from last time can also be used in this model.

» Will consider two methods for calculating
2 _\on 2
”XHez = i1 X

Generalization

» Vector x = (x1,X2,...,Xm), Where each x; is number of times
i € [m] has been seen so far.

» Stream: sequence of updates (7, a), meaning x; < x; + a.
» Basic streaming model: Corresponds to updates (i, 1).

> Note that a < 0 is possible, but maybe problematic with
algorithms for queries.

» Number of distinct elements = number of non-zero
coordinates in x, denote by ||x||o.
Algorithm from last time can also be used in this model.

» Will consider two methods for calculating
2 _ om0
||X||z2 = i1 X
» Alon-Matias-Szegedy (AMS)

Generalization

» Vector x = (x1,X2,...,Xm), Where each x; is number of times
i € [m] has been seen so far.

» Stream: sequence of updates (7, a), meaning x; < x; + a.

» Basic streaming model: Corresponds to updates (i, 1).

> Note that a < 0 is possible, but maybe problematic with
algorithms for queries.

» Number of distinct elements = number of non-zero
coordinates in x, denote by ||x||o.
Algorithm from last time can also be used in this model.
» Will consider two methods for calculating
2 _ om0
||X||z2 = i1 X
» Alon-Matias-Szegedy (AMS)
» Johnson-Lindenstrauss

Why Calculate ¢, norm?

» General £, norms:

S PP i p < oo,
HXHe,,—

maXi<i<n ‘X," if P = OQ.

Why Calculate ¢, norm?

> General £, norms:

(X0, xilP)YP i p < oo,
Ix[lg, = =

maxi<i<n ‘X," if p = OQ.

> ||x||1/n: average of [x1],...,|xal.

Why Calculate ¢, norm?

> General £, norms:

(X0, xilP)YP i p < oo,
Ix[lg, = =

maxi<i<n |X," if p = OQ.

> ||x||1/n: average of [x1],...,|Xal.

> ||x||¢, measures spikiness of x:
If ||x]|1 is fixed, then ||x2|| is minimized if
x1=xp=-=x,=1/||x||1.

Why Calculate ¢, norm?

v

General £, norms:

(X0, xilP)YP i p < oo,
x[le, = 4 =

maxi<i<n ‘X," if p = OQ.

v

||x||1/n: average of |x1], ..., |xnl.

v

||x||¢, measures spikiness of x:
If ||x]|1 is fixed, then ||x2|| is minimized if
X1 =Xy ="+=x,=1/|x]1.

v

f>-norm estimation also arises in database applications.

AMS Algorithm
Reference: N. Alon, Y. Matias, M. Szegedy, “The Space
Complexity of Approximating the Frequency Moments.” J.
Comput. Syst. Sci., 58(1): 137-147. 1999.

» Choose ri,...,rm to be independently identically distributed
random variables, with

Pl =1 =Pl =-1=1 (1<i<n)

AMS Algorithm
Reference: N. Alon, Y. Matias, M. Szegedy, “The Space
Complexity of Approximating the Frequency Moments.” J.
Comput. Syst. Sci., 58(1): 137-147. 1999.

» Choose r1,..., rm to be independently identically distributed
random variables, with

Plr=1=P[=-1]=% (1<i<n)

» Maintain
n

Z={(rx)= Z riX;
i=1
under increments to the x;.
Since Z is linear in x:
update x by (/,a) simply via Z < Z + r;a

AMS Algorithm
Reference: N. Alon, Y. Matias, M. Szegedy, “The Space
Complexity of Approximating the Frequency Moments.” J.
Comput. Syst. Sci., 58(1): 137-147. 1999.

» Choose r1,..., rm to be independently identically distributed
random variables, with

Plri=1]=Plr=-1=3% (1<i<n)
» Maintain

Z = <I‘,X> = ir;x,-
i=1

under increments to the x;.
Since Z is linear in x:
update x by (/,a) simply via Z < Z + r;a
> Return Z2 as our estimator for ||x||7 .

AMS Algorithm

Reference: N. Alon, Y. Matias, M. Szegedy, “The Space
Complexity of Approximating the Frequency Moments.” J.
Comput. Syst. Sci., 58(1): 137-147. 1999.

» Choose r1,..., rm to be independently identically distributed
random variables, with
Plri=1=Plr=-1=3% (1<i<n)
» Maintain

Z = <I‘,X> = ir;x,-
i=1

under increments to the x;.
Since Z is linear in x:
update x by (/,a) simply via Z < Z + r;a
> Return Z2 as our estimator for ||x||7 .

AMS Algorithm

Reference: N. Alon, Y. Matias, M. Szegedy, “The Space
Complexity of Approximating the Frequency Moments.” J.
Comput. Syst. Sci., 58(1): 137-147. 1999.

» Choose r1,..., rm to be independently identically distributed
random variables, with
Plri=1=Plr=-1=3% (1<i<n)
» Maintain

Z = <I‘,X> = ir;x,-
i=1

under increments to the x;.
Since Z is linear in x:
update x by (/,a) simply via Z < Z + r;a
> Return Z2 as our estimator for ||x||7 .

AMS Algorithm
Reference: N. Alon, Y. Matias, M. Szegedy, “The Space
Complexity of Approximating the Frequency Moments.” J.
Comput. Syst. Sci., 58(1): 137-147. 1999.
» Choose r1,..., rm to be independently identically distributed
random variables, with

Plri=1=Plr=-1=3% (1<i<n)
» Maintain

Z = <I‘,X> = ir;x,-
i=1

under increments to the x;.
Since Z is linear in x:
update x by (/,a) simply via Z < Z + r;a
> Return Z2 as our estimator for ||x||7 .
> Analysis?
» Compute expectation of Z2.

AMS Algorithm
Reference: N. Alon, Y. Matias, M. Szegedy, “The Space
Complexity of Approximating the Frequency Moments.” J.
Comput. Syst. Sci., 58(1): 137-147. 1999.
» Choose r1,..., rm to be independently identically distributed
random variables, with

Plri=1=Plr=-1=3% (1<i<n)
» Maintain

Z = <I‘,X> = ir;x,-
i=1

under increments to the x;.
Since Z is linear in x:
update x by (/,a) simply via Z < Z + r;a
> Return Z2 as our estimator for ||x||7 .
> Analysis?
» Compute expectation of Z2.
» Bound the variance of Z2.

AMS Algorithm: Compute Expectation
> We have

E[Z%] = E(zn: r,-X,-)2 = E(i erfijj)

i—1 ij=1

n
= E(finijj> = > xixElrir]

ij=1 ij=1

[

AMS Algorithm: Compute Expectation
> We have

E[Z’]=E <§n: r,-X,-) . E (zn: erfijj)

i=1 ij=1

n
= E(fixffjxj) = > xixElrr]

ij=1 ij=1

<

» But

AMS Algorithm: Compute Expectation
> We have

E[Z’]=E <§n: r,-X,-) . E (zn: erfijj)

i=1 ij=1

n
= E(fixffjxj) = > xixElrr]

ij=1 ij=1

o

» But
» For i # j, we have E[r;rj] = E[r]E[r;j] =0, and so term
disappears.

AMS Algorithm: Compute Expectation
> We have

E[Z’]=E <§n: r,-X,-) . E (zn: erfijj)

i=1 ij=1

n
= E(fixffjxj) = > xixElrr]

ij=1 ij=1

<

> But
» For i # j, we have E[r;rj] = E[r;]E[rj] = 0, and so term
disappears.
» For i = j, we have E[r;r;j] = E[r?] = E[1] = 1.

AMS Algorithm: Compute Expectation
> We have

E[Z’]=E <§n: r,-X,-) . E (zn: erfijj)

i=1 ij=1

n
= E(fixffjxj) = > xixElrr]

ij=1 ij=1

<

> But
» For i # j, we have E[r;rj] = E[r;]E[rj] = 0, and so term
disappears.
» For i = j, we have E[r;irj] = E[r?] = E[1] = 1.

» So .
E[Z%] = x7 = |IxII3,
i=1

and hence Z? is an unbiased estimator of ||x||?2

AMS Algorithm: Bounding the Variance

» We have

Var[22] = E[(2%)?] - (B[2%])® = B[Z*] — |x|&

AMS Algorithm: Bounding the Variance
> We have
Var[2?] = E[(22)%] - (E[2%))” = E[2*] - ||II3

» Now

(G

i=1

AMS Algorithm: Bounding the Variance
> We have
Var[2?] = E[(22)%] - (E[2%))” = E[2*] - ||II3

» Now

(G

i=1

» Decompose into a sum of

AMS Algorithm: Bounding the Variance

» We have
Var[22] = E[(2%)?] - (B[2%])® = B[Z*] — |x|&

» Now . .
Z4 = (Z r,-x,->
i=1

» Decompose into a sum of
» S0 (rixi)*, with expectation Y7 | x*.

AMS Algorithm: Bounding the Variance

» We have
Var[22] = E[(2%)?] - (B[2%])® = B[Z*] — |x|&

» Now

(G

i=1

» Decompose into a sum of
» > (rix;)*, with expectation Y | x*.
2,2

n 2 . .
> 6> ;4 (rirxix;)?, with expectation 6, ;. X7 X;

AMS Algorithm: Bounding the Variance

» We have
Var[22] = E[(2%)?] - (B[2%])® = B[Z*] — |x|&

» Now

(G

i=1

» Decompose into a sum of
» >, (rix;)*, with expectation Y | x*.
> 62Zj=1(r,-rjx,-xj)2, with expectation 6>, ;- x,-2xj2
» Terms involving no repeated multipliers (such as
rx1rXxar3xsraxs), with expectation 0.

AMS Algorithm: Bounding the Variance

» We have
Var[22] = E[(2%)?] - (B[2%])® = B[Z*] — |x|&

» Now

n 4
4
" = (E r,-x,->
i=1
» Decompose into a sum of

» >, (rix;)*, with expectation Y | x*.
> 62;’7j=1(r,-rjx,-xj) with expectation 621<,<J<n X2XJ2
» Terms involving no repeated multipliers (such as

1 X1rXar3XsryXs), With expectation 0.

» So

E[Z4]_ZX +6 Z x?

1<i<j<n

AMS Algorithm: Bounding the Variance (con’td)

» Recall that

E[Z%] =) 7 = |xI

i=1

E[Z“]—Zx +6 Z XPx?

1<i<j<n

and

AMS Algorithm: Bounding the Variance (con’td)

» Recall that .
E[Z°] =5 =|IxII7,
i=1
and
]E[Z4]—Zx +6 Z xx
1<i<j<n
» So

Var[Z7?] = E[Z4] = (E[Z2])2 = E[Z%] - |IxIl%,

_Zx +6 Z XPx? <zn:x,?>2

1<,<J<n i=1
—Zx+6 Z XX<Zx+2 Z XX)
1<i<j<n 1<i<j<n

2
=4 Z X2X2<2<Z) :2HX||%2.

1<i<j<n

AMS Algorithm: Completing the Analysis

> We have an estimator Z? = ||x||7 , with E[Z?] = ||x||?, and
o = VarlZ?] < 2|,

AMS Algorithm: Completing the Analysis

> We have an estimator Z? = ||x||7 , with E[Z?] = ||x||?, and
o = Var[Z?] < 2|x|]2,.
» Apply Chebyshev inequality

1
PE[Y] - Y|>col <5 Ve>0

to find

1
P [|B1Z%] - IxIIE,| = ev2IxIE | < =

AMS Algorithm: Completing the Analysis

> We have an estimator Z? = ||x||7 , with E[Z?] = ||x||?, and
o = Var[2?] < 2||x|2..
> Apply Chebyshev inequality

1
PIE[Y] - Y| > col< 5 Ve>0

to find 1
P [[E[22] - I, | > eVl | < 5

» Problem: This gives a lousy estimator if failure probability ¢ is

small. For instance, if 6 = % must choose ¢ = 3, finding

P[|E[Z%] - IxI| > 3v2lIxI3] < §

But E[Z?] > 0, so this is worse than natural bound.

AMS—+ Algorithm
» Run AMS k times, getting Z1, 2o, ..., Zk.

AMS—+ Algorithm

» Run AMS k times, getting Z1, 2o, ..., Zk.
» Estimator is

AMS—+ Algorithm

» Run AMS k times, getting Z1, 2o, ..., Zk.
» Estimator is

» We then have

k

1 1
E[Y] =7 > E[Z] = - kllxIIZ, = lIxII7,
j=1

AMS—+ Algorithm

» Run AMS k times, getting Z1, 2o, ..., Zk.
» Estimator is

» We then have

k
1 1
E[Y] = . D BIZZ = o KIxE, = X2,
j=1

» Moreover,
1 & 2
VarlY] = 5 > Var[Z?] < ZIxIIZ,.
j=1

so that Chebyshev's inequality yields

P [[BLY] - IIxI3| < ev/2/KIxI,] < 1/¢?

AMS+Algorithm (cont'd)
» Run AMS k times, getting

Zi=> nrixi (1<j<k)
i—1

AMS+Algorithm (cont'd)
» Run AMS k times, getting

Zi=) rxi (1<j<k)
P

» Use estimator

AMS+Algorithm (cont'd)
» Run AMS k times, getting

Zi=) rxi (1<j<k)
P

» Use estimator

» We then have
E[Y] = [Ix]17,-

and

P[[BLY] - IIxIE| < ev/2/KIxI,| < 1/¢?

AMS+Algorithm (cont'd)
» Run AMS k times, getting

Zi=> nrixi (1<j<k)
P

» Use estimator

» We then have
E[Y] = [|Ix]]7,-

and

P[[BLY] - IIxIZ| < ev/2/KIxI,] < 1/¢?

» Set c to be a constant and k = O(1/£?), get a (1 =+ ¢)-bit
approximation with constant probability.

AMS+Algorithm (cont'd)
» Run AMS k times, getting

Zi=> nrixi (1<j<k)
i—1

Use estimator

v

We then have

v

E[Y] = |Ix]I7,-
and

P[[BLY] - IIxIZ| < ev/2/KIxI,] < 1/¢?

Set c to be a constant and k = O(1/¢2), get a (1 + ¢)-bit
approximation with constant probability.

v

v

Space usage: O(log(mn)/<?) bits (not counting the r;)

AMS: Final Comments

» Only needed 4-wise independence of ry, ..., r,.
Can generate using O(log m) random bits, using 4-wise
independent hash functions.

AMS: Final Comments

» Only needed 4-wise independence of ry, ..., r,.
Can generate using O(log m) random bits, using 4-wise
independent hash functions.

» What we did:

AMS: Final Comments

» Only needed 4-wise independence of ry, ..., r,.

Can generate using O(log m) random bits, using 4-wise
independent hash functions.

» What we did:

» Maintain a “linear sketch” vector Z = Rx, where R = [r;]

AMS: Final Comments

» Only needed 4-wise independence of ry, ..., r,.
Can generate using O(log m) random bits, using 4-wise
independent hash functions.
> What we did:
» Maintain a “linear sketch” vector Z = Rx, where R = [r;]

» Easily handles (say) two data streams, since
R(x + X) = Rx + RX.

AMS: Final Comments

» Only needed 4-wise independence of ry, ..., r,.
Can generate using O(log m) random bits, using 4-wise
independent hash functions.
> What we did:
» Maintain a “linear sketch” vector Z = Rx, where R = [r;]
» Easily handles (say) two data streams, since
R(x + X) = Rx + RX.
» Estimate ||x\|§2 by HRxHi/k.

AMS: Final Comments

» Only needed 4-wise independence of ry, ..., r,.
Can generate using O(log m) random bits, using 4-wise
independent hash functions.

» What we did:

>

| 4

Maintain a “linear sketch” vector Z = Rx, where R = [r; ;]
Easily handles (say) two data streams, since
R(x 4+ X) = Rx + RX.

> Estimate ||x||Z by |[Rx||7,/k.
» Reduction of dimension, use Rx (with k elements) instead of x

(with n elements)

AMS: Final Comments

» Only needed 4-wise independence of ry, ..., r,.
Can generate using O(log m) random bits, using 4-wise
independent hash functions.
» What we did:
» Maintain a “linear sketch” vector Z = Rx, where R = [r;]
» Easily handles (say) two data streams, since
R(x + X) = Rx + RX.
> Estimate ||x||Z by |[Rx||7,/k.
» Reduction of dimension, use Rx (with k elements) instead of x
(with n elements)

» Error bound too loose to be useful for small §:
For ¢ = O(1/V/4), need k = O(1/(3¢?), linear in 4.
That's because we only used second moment.

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, “Extensions of
Lipschitz mappings into a Hilbert space.” Contemporary
Mathematics, 26(1): 189-206, 1984.

» Normal distribution N (1, o) has density function

1 —(x—p)?
= VxeR
f(x) — exp < = X €

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, “Extensions of
Lipschitz mappings into a Hilbert space.” Contemporary
Mathematics, 26(1): 189-206, 1984.

» Normal distribution A (1, o) has density function

f(x) = \/;7 exp <_(X2;2“)2> VxeR

» Basic facts for normal distribution:

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, “Extensions of
Lipschitz mappings into a Hilbert space.” Contemporary
Mathematics, 26(1): 189-206, 1984.

» Normal distribution A (1, o) has density function

f(x) = \/;7 exp <_(X2;2“)2> VxeR

» Basic facts for normal distribution:

» Mean p, variance o2,

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, “Extensions of
Lipschitz mappings into a Hilbert space.” Contemporary
Mathematics, 26(1): 189-206, 1984.

» Normal distribution A (1, o) has density function

e)2
\/2172 exp < (Xzazlu)) Vx eR
TOo

» Basic facts for normal distribution:

» Mean p, variance o2,

» If X and Y are independent identically distributed random
variables, then X 4 Y is normally distributed, with
Var[X] + Var[Y]

f(x) =

JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, “Extensions of
Lipschitz mappings into a Hilbert space.” Contemporary
Mathematics, 26(1): 189-206, 1984.

» Normal distribution A (1, o) has density function

f(x) = \/;7 exp <_(X2;2“)2> VxeR

» Basic facts for normal distribution:

» Mean p, variance o2,

» If X and Y are independent identically distributed random
variables, then X 4 Y is normally distributed, with
Var[X] + Var[Y]

» Var[cX] = c? Var[X]

JL Algorithm (cont’d)
Basic idea:

» Let R € RkX™M \where each rij is i.i.d. random variable
from N (0, 1).

JL Algorithm (cont'd)
Basic idea:
» Let R € Rk*™ where each rij is i.i.d. random variable
from N(0,1).
» Maintain Z = Rx instead of x.

JL Algorithm (cont'd)
Basic idea:
» Let R € Rk*™ where each rij is i.i.d. random variable
from N(0,1).
» Maintain Z = Rx instead of x.
» Estimate HXH%2 by Y = ||Rx\|%2/k.

JL Algorithm (cont'd)
Basic idea:
» Let R € Rk*™ where each rij is i.i.d. random variable
from N(0,1).
» Maintain Z = Rx instead of x.
» Estimate ||x||§2 by Y = ||Rx||§2/k.
> As before, find E[Y] = ||x||7, since

1 1 1
E {k\in] = ;E[XTRTRx] = ;XTE[RTR]X

1
= ;xT diaglk, k, ..., klx = [|x||2

JL Algorithm (cont'd)
Basic idea:
» Let R € Rk*™ where each rij is i.i.d. random variable
from N(0,1).
Maintain Z = Rx instead of x.
Estimate Hx||§2 by Y = ||Rx||%2/k.
As before, find E[Y] = HxHi, since

v

v

v

1 1 1
E —HRxHi = —E[x"RTRx] = =x"E[RT R]x
k k k
1
= ;deiag[k, k... klx = ||x|Z,

» Moreover, there exists C > 0 such that

P[lY — Hx||§2| > 5||x|]f2] < exp(—Ce?k) for small e > 0

JL Algorithm (cont'd)
Basic idea:
» Let R € Rk*™ where each rij is i.i.d. random variable
from N(0,1).
» Maintain Z = Rx instead of x.
» Estimate Hx||§2 by Y = ||Rx||%2/k.
> As before, find E[Y] = HxHi, since

1 1 1
E —HRXH%Q = —E[x"RTRx] = =x"E[RT R]x
k k k
1
= ;deiag[k, k... klx = ||x|Z,

» Moreover, there exists C > 0 such that
P[lY — ||x||%2| > 5||x||%2] < exp(—Ce?k) for small € > 0

» Set k = O(1/<? log(1/9)) to get 1 4 ¢ approximation with
probability 1 — 4.

JL Algorithm: Final Comments

» Can use k-wise independence to generate r;s, but much
messier than for AMS

JL Algorithm: Final Comments

» Can use k-wise independence to generate r;s, but much
messier than for AMS

» Time to compute sketch vector Z from x is O(k), bad if k is
large.

JL Algorithm: Final Comments

» Can use k-wise independence to generate r;s, but much
messier than for AMS

» Time to compute sketch vector Z from x is O(k), bad if k is
large.

» Fast JL, sparse JL: reduce updating time

