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Basic Data Stream Model

I Single pass over the data i1, i2, . . . , in ∈ [m].
Here, [m] = {1, 2, . . . ,m}.

I Bounded storage (often logO(1) n)

I Units of storage: bits, words, “elements” (e.g., points,
nodes/edges)

I Randomness and approximation OK (almost always necessary)

I Last lecture: estimating the number of distinct elements

P(relative error < ε) > 2
3

with space O(log n + (1/ε)2).
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Generalization

I Vector x = (x1, x2, . . . , xm), where each xi is number of times
i ∈ [m] has been seen so far.

I Stream: sequence of updates (i , a), meaning xi ← xi + a.

I Basic streaming model: Corresponds to updates (i , 1).

I Note that a < 0 is possible, but maybe problematic with
algorithms for queries.

I Number of distinct elements = number of non-zero
coordinates in x , denote by ‖x‖0.
Algorithm from last time can also be used in this model.

I Will consider two methods for calculating
‖x‖2`2 =

∑n
i=1 x

2
i

I Alon-Matias-Szegedy (AMS)
I Johnson-Lindenstrauss
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Why Calculate `2 norm?

I General `p norms:

‖x‖`p =

{
(
∑n

i=1 |xi |p)1/p if p <∞,
max1≤i≤n |xi | if p =∞.

I ‖x‖1/n: average of |x1|, . . . , |xn|.
I ‖x‖`2 measures spikiness of x :

If ‖x‖1 is fixed, then ‖x2‖ is minimized if
x1 = x2 = · · · = xn = 1/‖x‖1.

I `2-norm estimation also arises in database applications.
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AMS Algorithm
Reference: N. Alon, Y. Matias, M. Szegedy, “The Space
Complexity of Approximating the Frequency Moments.” J.
Comput. Syst. Sci., 58(1): 137–147. 1999.

I Choose r1, . . . , rm to be independently identically distributed
random variables, with

P[ri = 1] = P[ri = −1] = 1
2 (1 ≤ i ≤ n)

I Maintain

Z = 〈r , x〉 =
n∑

i=1

rixi

under increments to the xi .
Since Z is linear in x :

update x by (i , a) simply via Z ← Z + ria

I Return Z 2 as our estimator for ‖x‖2`2 .

I Analysis?

I Compute expectation of Z 2.
I Bound the variance of Z 2.
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AMS Algorithm: Compute Expectation

I We have

E[Z 2] = E
( n∑

i=1

rixi

)2

= E
( n∑

i ,j=1

rixi rjxj

)

= E
( n∑

i ,j=1

rixi rjxj

)
=

n∑
i ,j=1

xixjE[ri rj ]

I But

I For i 6= j , we have E[ri rj ] = E[ri ]E[rj ] = 0, and so term
disappears.

I For i = j , we have E[ri rj ] = E[r2i ] = E[1] = 1.

I So

E[Z 2] =
n∑

i=1

x2i = ‖x‖2`2

and hence Z 2 is an unbiased estimator of ‖x‖2`2 .



AMS Algorithm: Compute Expectation

I We have

E[Z 2] = E
( n∑

i=1

rixi

)2

= E
( n∑

i ,j=1

rixi rjxj

)

= E
( n∑

i ,j=1

rixi rjxj

)
=

n∑
i ,j=1

xixjE[ri rj ]

I But

I For i 6= j , we have E[ri rj ] = E[ri ]E[rj ] = 0, and so term
disappears.

I For i = j , we have E[ri rj ] = E[r2i ] = E[1] = 1.

I So

E[Z 2] =
n∑

i=1

x2i = ‖x‖2`2

and hence Z 2 is an unbiased estimator of ‖x‖2`2 .



AMS Algorithm: Compute Expectation

I We have

E[Z 2] = E
( n∑

i=1

rixi

)2

= E
( n∑

i ,j=1

rixi rjxj

)

= E
( n∑

i ,j=1

rixi rjxj

)
=

n∑
i ,j=1

xixjE[ri rj ]

I But
I For i 6= j , we have E[ri rj ] = E[ri ]E[rj ] = 0, and so term

disappears.

I For i = j , we have E[ri rj ] = E[r2i ] = E[1] = 1.

I So

E[Z 2] =
n∑

i=1

x2i = ‖x‖2`2

and hence Z 2 is an unbiased estimator of ‖x‖2`2 .



AMS Algorithm: Compute Expectation

I We have

E[Z 2] = E
( n∑

i=1

rixi

)2

= E
( n∑

i ,j=1

rixi rjxj

)

= E
( n∑

i ,j=1

rixi rjxj

)
=

n∑
i ,j=1

xixjE[ri rj ]

I But
I For i 6= j , we have E[ri rj ] = E[ri ]E[rj ] = 0, and so term

disappears.
I For i = j , we have E[ri rj ] = E[r2i ] = E[1] = 1.

I So

E[Z 2] =
n∑

i=1

x2i = ‖x‖2`2

and hence Z 2 is an unbiased estimator of ‖x‖2`2 .



AMS Algorithm: Compute Expectation

I We have

E[Z 2] = E
( n∑

i=1

rixi

)2

= E
( n∑

i ,j=1

rixi rjxj

)

= E
( n∑

i ,j=1

rixi rjxj

)
=

n∑
i ,j=1

xixjE[ri rj ]

I But
I For i 6= j , we have E[ri rj ] = E[ri ]E[rj ] = 0, and so term

disappears.
I For i = j , we have E[ri rj ] = E[r2i ] = E[1] = 1.

I So

E[Z 2] =
n∑

i=1

x2i = ‖x‖2`2

and hence Z 2 is an unbiased estimator of ‖x‖2`2 .



AMS Algorithm: Bounding the Variance

I We have

Var[Z 2] = E[(Z 2)2]−
(
E[Z 2]

)2
= E[Z 4]− ‖x‖4`2

I Now

Z 4 =

( n∑
i=1

rixi

)4

I Decompose into a sum of

I
∑n

i=1(rixi )
4, with expectation

∑n
i=1 x

4
i .

I 6
∑n

i,j=1(ri rjxixj)
2, with expectation 6

∑
1≤i<j≤n x

2
i x

2
j

I Terms involving no repeated multipliers (such as
r1x1r2x2r3x3r4x4), with expectation 0.

I So

E[Z 4] =
n∑

i=1

x4i + 6
n∑

1≤i<j≤n

x2i x
2
j
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AMS Algorithm: Bounding the Variance (con’td)
I Recall that

E[Z 2] =
n∑
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and
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I So

Var[Z 2] = E[Z 4]−
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AMS Algorithm: Bounding the Variance (con’td)
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AMS Algorithm: Completing the Analysis

I We have an estimator Z 2 ≈ ‖x‖2`2 , with E [Z 2] = ‖x‖2`2 and

σ = Var[Z 2] ≤ 2‖x‖2`2 .

I Apply Chebyshev inequality

P[|E[Y ]− Y | ≥ cσ] ≤ 1

c2
∀ c > 0

to find

P
[∣∣E[Z 2]− ‖x‖2`2

∣∣ ≥ c
√

2‖x‖2`2
]
≤ 1

c2

I Problem: This gives a lousy estimator if failure probability δ is
small. For instance, if δ = 1

3 , must choose c = 3, finding

P
[∣∣E[Z 2]− ‖x‖2`2

∣∣ ≥ 3
√

2‖x‖2`2
]
≤ 1

9

But E[Z 2] ≥ 0, so this is worse than natural bound.
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AMS+ Algorithm
I Run AMS k times, getting Z1,Z2, . . . ,Zk .

I Estimator is

Y =
1

k

k∑
j=1

Z 2
j

I We then have

E[Y ] =
1

k

k∑
j=1

E[Z 2
j ] =

1

k
· k‖x‖2`2 = ‖x‖2`2 .

I Moreover,

Var[Y ] =
1

k2

k∑
j=1

Var[Z 2
j ] ≤ 2

k
‖x‖2`2 ,

so that Chebyshev’s inequality yields

P
[∣∣E[Y ]− ‖x‖2`2

∣∣ ≤ c
√

2/k‖x‖2`2
]
< 1/c2
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AMS+Algorithm (cont’d)

I Run AMS k times, getting

Zj =
n∑

i=1

rj ,ixi (1 ≤ j ≤ k)

I Use estimator

Y =
1

k

k∑
j=1

Z 2
j

I We then have
E[Y ] = ‖x‖2`2 .

and
P
[∣∣E[Y ]− ‖x‖2`2

∣∣ ≤ c
√

2/k‖x‖2`2
]
< 1/c2

I Set c to be a constant and k = O(1/ε2), get a (1± ε)-bit
approximation with constant probability.

I Space usage:O(log(mn)/ε2) bits (not counting the ri )
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AMS: Final Comments

I Only needed 4-wise independence of r1, . . . , rn.
Can generate using O(log m) random bits, using 4-wise
independent hash functions.

I What we did:

I Maintain a “linear sketch” vector Z = Rx , where R = [rj,i ]
I Easily handles (say) two data streams, since

R(x + x̃) = Rx + Rx̃ .
I Estimate ‖x‖2`2 by ‖Rx‖2`2/k .
I Reduction of dimension, use Rx (with k elements) instead of x

(with n elements)

I Error bound too loose to be useful for small δ:
For c = O(1/

√
δ), need k = O

(
1/(δε2

)
, linear in δ.

That’s because we only used second moment.
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JL Algorithm

Reference: W. B. Johnson and J. Lindenstrauss, “Extensions of
Lipschitz mappings into a Hilbert space.” Contemporary
Mathematics, 26(1): 189–206, 1984.

I Normal distribution N (µ, σ) has density function

f (x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
∀ x ∈ R

I Basic facts for normal distribution:

I Mean µ, variance σ2.
I If X and Y are independent identically distributed random

variables, then X + Y is normally distributed, with
Var[X ] + Var[Y ]

I Var[cX ] = c2 Var[X ]
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JL Algorithm (cont’d)
Basic idea:

I Let R ∈ Rk×m, where each ri ,j is i.i.d. random variable
from N (0, 1).

I Maintain Z = Rx instead of x .

I Estimate ‖x‖2`2 by Y = ‖Rx‖2`2/k.

I As before, find E[Y ] = ‖x‖2`2 , since

E
[

1

k
‖Rx‖2`2

]
=

1

k
E[xTRTRx ] =

1

k
xTE[RTR]x

=
1

k
xT diag[k , k , . . . , k]x = ‖x‖2`2

I Moreover, there exists C > 0 such that

P[|Y − ‖x‖2`2 | > ε‖x‖2`2 ] ≤ exp(−Cε2k) for small ε > 0

I Set k = O(1/ε2 log(1/δ)) to get 1± ε approximation with
probability 1− δ.
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JL Algorithm: Final Comments

I Can use k-wise independence to generate ri s, but much
messier than for AMS

I Time to compute sketch vector Z from x is O(k), bad if k is
large.

I Fast JL, sparse JL: reduce updating time
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