
Algorithms for Big Data 
CISC5835

Fordham Univ.

Instructor: X. Zhang

Lecture 1

Outline
• What is algorithm: word origin, first algorithms,

algorithms of today’s world
• Sequential algorithms, Parallel algorithms,

approximation algorithms, randomized algorithms
• Scope of the course
• A few algorithms and pseudocode
• Introduction to algorithm analysis: fibonacci seq

calculation
• counting number of “computer steps”
• recursive formula for running time of recursive

algorithm
• Asymptotic notations
• Algorithm running time classes: P, NP 2

3

What are Algorithms?

CS 477/677 - Lecture 1 4

Algorithms Etymology

5

Goal/Scope of this course
• Goal: provide essential algorithmic background for

MS Data Analytics students
• algorithm analysis: space and time efficiency of

algorithms
• classical algorithms (sorting, searching, selection,

graph…)
• algorithms for big data
• algorithms implementation in Python

• We will not cover:
• Machine Learning algorithms (topics for Data Mining,

Machine Learning courses)
• Implementing algorithms in big data cluster environment is

left to Big Data Programming

6

Part I: computer algorithms
• a general foundations and background for computer

science
• understand difficulty of problems (P, NP…)
• understand key data structure (hash, tree)
• understand time and space efficiency of algorithm
• Basic algorithms:

• sorting, searching, selection algorithms
• algorithmic paradigm: divide & conquer, greedy,

dynamic programming, randomization
• Hashing and universal hashing
• Graph algorithms/Analytics (path/connectivity/

community/centrality analysis)
• Assumption: whole input can be stored in main memory

(organized using some data structure…)

7

Part II: Big Data Algorithms
• Big Data: volume is too big to be stored in main memory of

a single computer
• This class:

• Stream: m elements from universe of size n,

• Goal: compute a function of stream (e.g, counting,
median, longest increasing sequence…)
• limited working memory, sublunar in n and m
• access data sequentially (each element can be

accessed only once)
• process each element quickly

• Matrix operations and algorithms: for large matrices
• Such algorithms are randomized and approximate

< x1, x2, ..., xm >= 3, 5, 3, 7, 5, 4, ...

Outline

• What is algorithm: word origin, first algorithms,
algorithms of today’s world

• Scope of the course
• A few algorithms and pseudocode
• Introduction to algorithm analysis: fibonacci seq

calculation
• counting number of “computer steps”
• recursive formula for running time of recursive

algorithm
• Asymptotic notations
• Algorithm running time classes: P, NP

8

Oldest Algorithms

• Al Khwarizmi laid out basic methods for
• adding, multiplying and dividing numbers
• extracting square roots
• calculating digits of pi, …

• These procedures were precise, unambiguous,
mechanical, efficient, correct. i.e., they were
algorithms, a term coined to honor Al Khwarizmi
after decimal system was adopted in Europe
many centuries later.

9

Example: Selection Sort

• Input: a list of elements, L[1…n]
• Output: rearrange elements in List, so that

L[1]<=L[2]<=L[3]<…L[n]
• Note that “list” is an ADT (could be implemented

using array, linked list)
• Ideas (in two sentences)

• First, find location of smallest element in sub list
L[1…n], and swap it with first element in the sublist

• repeat the same procedure for sublist L[2…n], L[3…
n], …, L[n-1…n]

10

Selection Sort (idea=>pseudocode)

for i=1 to n-1
 // find location of smallest element in sub list L[i…n]
 minIndex = i;
 for k=i+1 to n
 if L[k]<L[minIndex]: minIndex=k

 //swap it with first element in the sublist
 if (minIndex!=i)
 swap (L[i], L[minIndex]);

 // Correctness: L[i] is now the i-th smallest element

11

Introduction to algorithm analysis

• Consider calculation of Fibonacci sequence, in
particular, the n-th number in sequence:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

12

Fibonacci Sequence
• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

• Formally,

• Problem: How to calculate n-th term, e.g., what
is F100, F200?

13

A recursive algorithm

• Three questions:
• Is it correct?

• yes, as the code mirrors the definition…
• Resource requirement: How fast is it? Memory

requirement?
• Can we do better? (faster?)

14

Observation: we reduce a large problem into two smaller problems

Outline

• What is algorithm: word origin, first algorithms,
algorithms of today’s world

• Scope of the course
• A few algorithms and pseudocode
• Introduction to algorithm analysis: fibonacci seq

calculation
• counting number of “computer steps”
• recursive formula for running time of recursive

algorithm
• Asymptotic notations
• Algorithm running time classes: P, NP

15

16

Efficiency of algorithms
• We want to solve problems using less resource:

• Space: how much (main) memory is needed?

• Time: how fast can we get the result?

• Usually, the bigger input, the more memory it takes and the longer it takes

• it takes longer to calculate 200-th number in Fibonacci sequence than the
10th number

• it takes longer to sort larger array

• it takes longer to multiple two large matrices

• Efficient algorithms are critical for large input size/problem instance

• Finding F100, Searching Web …
• Two different approaches to evaluate efficiency of algorithms:

Measurement vs. analysis

Experimental approach

• Measure how much time elapses from algorithm
starts to finishes

• needs to implement, instrument and deploy
e.g.,
 import time
 ….
 start_time = time.time()
 BubbleSort (listOfNumbers) # any code of yours
 end_time = time.time()
 elapsed_time = end_time - start_time

17

Example (Fib1: recursive)
n T(n)ofFib1 F(n)
10 3e-06 55
11 2e-06 89
12 4e-06 144
13 7e-06 233
14 1.1e-05 377
15 1.7e-05 610
16 2.9e-05 987
17 4.7e-05 1597
18 7.6e-05 2584
19 0.000122 4181
20 0.000198 6765
21 0.000318 10946
22 0.000515 17711
23 0.000842 28657
24 0.001413 46368
25 0.002261 75025
26 0.003688 121393
27 0.006264 196418
28 0.009285 317811
29 0.014995 514229
30 0.02429 832040
31 0.039288 1346269
32 0.063543 2178309
33 0.102821 3524578
34 0.166956 5702887
35 0.269394 9227465
36 0.435607 14930352
37 0.701372 24157817
38 1.15612 39088169
39 1.84103 63245986
40 2.9964 102334155
41 4.85536 165580141
42 7.85187 267914296
43 12.6805 433494437
44 20.513 701408733

18

n

Time (in seconds)

Running time seems to grows
exponentially as n increases

Experimental approach

• results are realistic, specific and random
• specific to language, run time system (Java VM, OS),

caching effect, other processes running
• possible to perform model-fitting to find out T(n):

running time of the algorithms given input size
• Cons:

• time consuming, maybe too late
• Does not explain why?

• Measurement is important for a “production” system/
end product; but not informative for algorithm
efficiency studies/comparison/prediction

19

Analytic approach

• Is it possible to find out how running time grows
when input size grows, analytically?
• Does running time stay constant, increase linearly,

logarithmically, quadratically, … exponentially?
• Yes: analyze pseudocode/code to calculate total

number of steps in terms of input size, and study its
order of growth
• results are general: not specific to language, run time

system, caching effect, other processes sharing computer

20

21

Running time analysis

• Given an algorithm in pseudocode or actual program
• When the input size is n, what is the total number of computer

steps executed by the algorithm, T(n)?

•Size of input: size of an array, polynomial degree, # of
elements in a matrix, vertices and edges in a graph, or # of
bits in the binary representation of input

•Computer steps: arithmetic operations, data movement, control,
decision making (if, while), comparison,…

• each step take a constant amount of time

• Ignore: overhead of function calls (call stack frame allocation, passing
parameters, and return values)

• Let T(n) be number of computer steps needed to compute
fib1(n)
• T(0)=1: when n=0, first step is executed
• T(1)=2: when n=1, first two steps are executed
• For n >1, T(n)=T(n-1)+T(n-2)+3: first two steps are executed,

fib1(n-1) is called (with T(n-1) steps), fib1(n-2) is called (T(n-2)
steps), return values are added (1 step)

• Can you see that T(n) > Fn ?

Case Studies: Fib1(n)

22

• Let T(n) be number of computer steps to compute fib1(n)
• T(0)=1
• T(1)=2
• T(n)=T(n-1)+T(n-2)+3, n>1

• Analyze running time of recursive algorithm
• first, write a recursive formula for its running time
• then, recursive formula => closed formula, asymptotic result

Running Time analysis

23

Fibonacci numbers
• F0=0, F1=1, Fn=Fn-1+Fn-2

• Fn is lower bounded by
• In fact, there is a tighter lower bound 20.694n

• Recall T(n): number of computer steps to compute
fib1(n),
• T(0)=1
• T(1)=2
• T(n)=T(n-1)+T(n-2)+3, n>1

24

T (n) > Fn � 20.694n

Fn � 2
n
2 = 20.5n

20.5n

Exponential running time
• Running time of Fib1: T(n)> 20.694n

• Running time of Fib1 is exponential in n

• calculate F200, it takes at least 2138 computer steps

• On NEC Earth Simulator (fastest computer 2002-2004)
• Executes 40 trillion (1012) steps per second, 40

teraflots
• Assuming each step takes same amount of time as

a “floating point operation”
• Time to calculate F200: at least 292 seconds, i.e.,

1.57x1020 years
• Can we throw more computing power to the problem?

• Moore’s law: computer speeds double about every
18 months (or 2 years according to newer version) 25

Exponential running time

• Running time of Fib1: T(n)> 20.694n =1.6177n

• Moore’s law: computer speeds double about
every 18 months (or 2 years according to newer
version)
• If it takes fastest CPU of this year 6 minutes to

calculate F50,

• fastest CPU in two years from today can
calculate F52 in 6 minutes

• Algorithms with exponential running time are not
efficient, not scalable
• not practical solution for large input

26

Can we do better?

• Draw recursive function call tree for fib1(5)
• Observation: wasteful repeated calculation
• Idea: Store solutions to subproblems in array (key of Dynamic Programming)

27

Running time fib2(n)

• Analyze running time of iterative (non-recursive) algorithm:
T(n)=1 // if n=0 return 0
 +n // create an array of f[0…n]
 +2 // f[0]=0, f[1]=1
 +(n-1) // for loop: repeated for n-1 times
 = 2n+2

• T(n) is a linear function of n, or fib2(n) has linear running time 28

Alternatively…

• How long does it take for fib2(n) finish?
T(n)=1000 +200n+2*60+(n-1)*800=1000n+320 // in unit of us

• Again: T(n) is a linear function of n
• Constants are not important: different on different computers
• System effects (caching, OS scheduling) makes it pointless to do

such fine-grained analysis anyway!
• Algorithm analysis focuses on how running time grows as

problem size grows (constant, linear, quadratic, exponential?)
• not actual real world time 29

Estimation based upon CPU:
takes 1000us,
takes 200n us
 each assignment takes 60us

addition and assignment takes 800us…

30

Summary: Running time analysis

• Given an algorithm in pseudocode or actual program
• When the input size is n, how many total number of computer steps

are executed?

•Size of input: size of an array, polynomial degree, # of elements in
a matrix, vertices and edges in a graph, or # of bits in the binary
representation of input

•Computer steps: arithmetic operations, data movement, control,
decision making (if, while), comparison,…

• each step take a constant amount of time

• Ignore:

• Overhead of function calls (call stack frame allocation, passing
parameters, and return values)

• Different execution time for different steps

Time for exercises/examples

1. Reading algorithms in pseudocode
2. Writing algorithms in pseudocode
3. Analyzing algorithms

31

32

Algorithm Analysis: Example

• What’s the running time of MIN?
Algorithm/Function.: MIN (a[1…n])
input: an array of numbers a[1…n]
output: the minimum number among a[1…n]

m = a[1]
for i=2 to n:
 if a[i] < m: m = a[i]
return m

• How do we measure the size of input for this algorithm?
• How many computer steps when the input’s size is n?

33

Algorithm Analysis: bubble sort
Algorithm/Function.: bubblesort (a[1…n])
input: a list of numbers a[1…n]
output: a sorted version of this list

 for endp=n to 2:
 for i=1 to endp-1:

 if a[i] > a[i+1]: swap (a[i], a[i+1])
return a

• How do you choose to measure the size of input?
• length of list a, i.e., n
• the longer the input list, the longer it takes to sort it

• Problem instance: a particular input to the algorithm
• e.g., a[1…6]={1, 4, 6, 2, 7, 3}
• e.g., a[1…6]={1, 4, 5, 6, 7, 9}

34

Algorithm Analysis: bubble sort
Algorithm/Function.: bubblesort (a[1…n])
input: an array of numbers a[1…n]
output: a sorted version of this array

 for endp=n to 2:
 for i=1 to endp-1:

 if a[i] > a[i+1]: swap (a[i], a[i+1])
return a

• endp=n: inner loop (for j=1 to endp-1) repeats for n-1 times
• endp=n-1: inner loop repeats for n-2 times
• endp=n-2: inner loop repeats for n-3 times
• …
• endp=2: inner loop repeats for 1 times
• Total # of steps: T(n) = (n-1)+(n-2)+(n-3)+…+1=n(n-1)/2

a compute step

Matrix and Vector

Matrix: a 2D (rectangular) array of numbers, symbols, or
expressions, arranged in rows and columns.

 e.g., a 2 × 3 matrix B=

Row vector of a matrix is a vector made up of a row of elements from
the matrix: [1 9 -13] is a row vector of B

Column vector of a matrix is a vector made up of a column of elements 35

a matrix m⇥ n

Each element of a matrix is denoted by a
variable with two subscripts, A2,1 element at
second row and first column of a matrix A

Matrix Multiplication:

C2,2=[2 7 5 3] x [4 7 0 1] = 2*4+7*7+5*0+3*1=60

Matrix Multiplication

36

Dimension of A, B, and A x B?

The (i,j) element of AB is the dot product of i-th row of A with the j-th column of B

Matrix Multiplication:

Matrix Multiplication

37

Dimension of A, B, and A x B?

Total (scalar) multiplication: 4x2x3=24

Total (scalar) multiplication: n2xn1xn3

38

Algorithm Analysis: Binary Search
Algorithm/Function.: search (a[L…R], value)
input: a list of numbers a[L…R] sorted in ascending order, a number value
output: the index of value in list a (if value is in it), or -1 if not found

if (L>R): return -1
m = (L+R)/2
if (a[m]==value):
 return m
else:
 if (a[m]>value):

 return search (a[L…m-1], value)
else:
 return search (a[m+1…R], value)

• What’s the size of input in this algorithm?
• length of list a[L…R]

39

Algorithm Analysis: Binary Search
Algorithm/Function.: search (a[L…R], value)
input: a list of numbers a[L…R] sorted in ascending order, a number value
output: the index of value in list a (if value is in it), or -1 if not found

if (L>R): return -1
m = (L+R)/2
if (a[m]==value):
 return m
else:
 if (a[m]>value):

 return search (a[L…m-1], value)
else:
 return search (a[m+1…R], value)

• Let T(n) be number of steps to search an list of size n
• best case (value is in middle point), T(n)=3
• worst case (when value is not in list) provides an upper

bound

40

Algorithm Analysis: Binary Search
Algorithm/Function.: search (a[L…R], value)
input: a list of numbers a[L…R] sorted in ascending order, a number value
output: the index of value in list a (if value is in it), or -1 if not found

if (L>R): return -1
m = (L+R)/2
if (a[m]==value):
 return m
else:
 if (a[m]>value):

 return search (a[L…m-1], value)
else:
 return search (a[m+1…R], value)

• Let T(n) be number of steps to search an list of size n in worst case
• T(0)=1 //base case, when L>R
• T(n)=3+T(n/2) //general case, reduce problem size by half

• Next chapter: master theorem solving T(n)=log2n

Outline
• What is algorithm: word origin, first algorithms,

algorithms of today’s world
• Sequential algorithms, Parallel algorithms,

approximation algorithms, randomized algorithms
• Scope of the course
• A few algorithms and pseudocode
• Introduction to algorithm analysis: fibonacci seq

calculation
• counting number of “computer steps”
• recursive formula for running time of recursive

algorithm
• Asymptotic growth rate, big-O notations
• Algorithm running time classes: P, NP 41

42

Growth Rate of functions

• f(x)=2x: constant growth rate (slope is 2)
• : growth rate increases as x

increases (see figure above)
• : growth rate decreases as x

increases

f(x) = 2x

f(x) = log2x

• Growth rate: How
fast f(x) increases as
x increases
• slope (derivative)

f(x+�x)� f(x)

�x

Derivatives of Common Functions

43

44

Asymptotic Growth Rate of functions

• e.g., f(x)=2x: asymptotic growth rate is 2
• : very big! f(x) = 2x

(Asymptotic) Growth rate of functions of n (from low to high):
log(n) < n < nlog(n) < n2 < n3 < n4 < ….< 1.5n < 2n < 3n

• Asymptotic Growth
rate: growth rate of
function when
• slope (derivative)

when x is very big
• The larger asym. growth

rate, the larger f(x) when

x ! 1

x ! 1

• Two sorting algorithms:
• yours:
• your friend:

• Which one is better (for large arrays)?
• evaluate their ratio when n is large

45

Compare Growth Rate of functions(2)

They are same! In general, the lower order term can be dropped.

2n2

2n2 + 100n

2n2 + 100n

2n2
= 1 +

100n

2n2
= 1 +

50

n
! 1, when n ! 1

• In answering “How fast T(n) grows as n grows?”, leave out
• lower-order terms
• constant coefficient: not reliable info. (arbitrarily counts # of

computer steps), and hardware difference makes them not
important

• Note: you still want to optimize your code to bring down
constant coefficients. It’s only that they don’t affect
“asymptotic growth rate”

• e.g. bubble sort executes

steps to sort a list of n elements

• bubble sort’s running time, T(n)’s (asymptotic) growth
rate is same as n2, i.e.,

• bubble sort has a quadratic running time

Focus on Asymptotic Growth Rate

46

T (n) = ⇥(n2)

Outline
• What is algorithm: word origin, first algorithms,

algorithms of today’s world
• Sequential algorithms, Parallel algorithms,

approximation algorithms, randomized algorithms
• Scope of the course
• A few algorithms and pseudocode
• Introduction to algorithm analysis: fibonacci seq

calculation
• counting number of “computer steps”
• recursive formula for running time of recursive

algorithm
• Asymptotic growth rate, big-O notations
• Algorithm running time classes: P, NP 47

Big-O notation
• f(n) and g(n): two functions from positive integers

to positive real numbers

48

In reference textbook (CLR),
for all n>n0, f(n)  c · g(n)

f grows no faster than g,
g is asymptotic upper
bound of f

f grows no slower than g,
g is asymptotic lower
bound of f

f grows no slower and no
faster than g, f grows at
same rate as g

GR(f)  GR(g) GR(f) � GR(g) GR(f) == GR(g)

• Some books write ,
• O(g) denotes the set of all functions h(n) for which

there is a constant c>0, such that

Big-O notation
• f=O(g) if there is a constant c>0

and n0, such that for all n>n0,

• f(n) is smaller than some positive
constant times g(n) for all n that is
large enough

• e.g., f(n)=100n2, g(n)=n3

49

f(n)=O(g(n)), as there exists c=100, n0=1, such that for all n>n0, f(n)<=c*g(n)
Looking to bound by a positive constant for all n large enough…f(n)

g(n)

h(n)  c · g(n)

Big-O: Exercise

• For the following four pairs of f(), g(), is f(n)=O(g(n)) ?
• f(n)=1, g(n)=2n

• f(n)=100n2+8n, g(n)=n2

• f(n)=nlog(n), g(n)=n2

•

•

50

f(n) = 2n, g(n) = 3n

f(n) =
(n� 1)n

2
, g(n) = n

• Consider this pairs of f, g:

• f(n)=O(g(n)) is not true:

• impossible to find c, n0, s.t., for all
n>n0,

• instead, let c=0.5, n0=2, then for all
n>=n0,

• f(n) grows no slower than g(n), i.e.,
f=Ω(g) (g is asymptotic lower bound of f)

• if and only if there is a positive constant
c, n0, such that for all n,

Big-Ω notations

51

f(n) =
(n� 1)n

2
, g(n) = n

f(n)

g(n)
=

n� 1

2

f(n)

g(n)
 c

f(n)

g(n)
=

n� 1

2
� 1

2

• For following pairs of f(n), g(n), is
• f(n)=100n2, g(n)=n

• f(n)=100n2+8n, g(n)=n2

• f(n)=2n, g(n)=n8

Big-Ω notations Exercises

52

f(n) = ⌦(g(n))

• Consider f(n)=100n2+8n,
g(n)=n2

• i.e., f grows no faster, an no
slower faster than g, f grows at
same rate as g asymptotically

• We denote this as
• Def: there are constants c1,

c2, no>0, s.t.,

Big- notations

53

f = ⇥(g)

f can be sandwiched between g
by two constant factors

f(n) = O(g(n)), f(n) = ⌦(g(n))

c1 · g(n)  f(n)  c2 · g(n), for any n � n0

• For following pairs of f and g, is ?
• (1) f(n)=10000n2, g(n)=n2

• (2)

• (3)

Big- Exercise

54

f(n) = ⇥(g(n))

f(n) =
0.684c

2
(n2 + n� 2) + n+ 3, g(n) = n2

f(n) = log2 n, g(n) = log10n

mini-summary
• in analyzing running time of algorithms, what’s important

is scalability (perform well for large input)
• focus on higher order which dominates lower order parts

• a three-level nested loop dominates a single-level loop
• multiplicative constants can be omitted: 14n2 becomes n2

• na dominates nb if a>b, e.g.,
• any exponential dominates any polynomial:

• 3n dominates n5
• any polynomial dominates any logarithms: n dominates

(logn)3
• E.g.,

55

14n2 = ⇥(n2)

n3 = ⌦(n2.5)

3n = ⌦(n5)

T (n) = 0.56n3 + 10000n+ 0.45 · 3n = ⇥(3n)

Outline
• What is algorithm: word origin, first algorithms,

algorithms of today’s world
• Sequential algorithms, Parallel algorithms,

approximation algorithms, randomized algorithms
• Scope of the course
• A few algorithms and pseudocode
• Introduction to algorithm analysis: fibonacci seq

calculation
• counting number of “computer steps”
• recursive formula for running time of recursive

algorithm
• Asymptotic growth rate and big-O notations
• Problem complexity class: P, NP 56

57

Typical Running Time
• 1 (constant running time):

– Instructions are executed once or a few times
• log(n) (logarithmic), e.g., binary search

– A big problem is solved by cutting original problem in smaller sizes,
by a constant fraction at each step

• n (linear): linear search, calculate mean, variance, …
– A small amount of processing is done on each input element

• n log(n): merge sort
– A problem is solved by dividing it into smaller problems, solving

them independently and combining the solution

58

Typical Running Time Functions
• n2 (quadratic): bubble sort

• Typical for algorithms that process all pairs of data items (double

nested loops)

• n3 (cubic)

– matrix multiplication

• nK (polynomial)

• 20.694n (exponential): Fib1

• 2n (exponential):

– Few exponential algorithms are appropriate for practical use

– 3n (exponential), …

• P: the set of problems that have
known polynomial algorithms

• NP: the set of problems for which
there exists a polynomial alg. to verify
a solution
• Many NP problems have no polynomial

time algorithms … yet, despite intensive
research by many

• Will we ever find one? Not likely…
• we’ve tried a long time
• many problems in NPC (if we can
• solve one in polynomial, then we can

solve all others in polynomial.

P=NP?

59

• Given n vertices 1, . . . , n, and all n(n − 1)/2 distances between them,
as well as a budget b.

• Output: find a tour (a cycle that passes through every vertex exactly
once) of total cost b or less – or to report that no such tour exists.

• TSP as a search problem
• given an instance, find a tour within the budget (or report that none

exists).

• Usually, TSP is posed as optimization problem

• find shortest possible tour

• 1->2->3->4, total cost: 60

• TSP is NP problem

NPC: Traveling Salesman Problem

60

Summary

• This class focused on algorithm running time
analysis

• start with running time function, expressing
number of computer steps in terms of input size

• Focus on very large problem size, i.e.,
asymptotic running time
• big-O notations => focus on dominating terms

in running time function
• Constant, linear, polynomial, exponential time

algorithms …
• NP, NP complete problem

61

62

Assignment

• Lab1

• Chapter 0 of DPV

