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Outline
• What is algorithm: word origin, first algorithms, 

algorithms of today’s world 
• Sequential algorithms, Parallel algorithms, 

approximation algorithms, randomized algorithms   
• Scope of the course  
• A few algorithms and pseudocode  
• Introduction to algorithm analysis: fibonacci seq 

calculation  
• counting number of “computer steps”  
• recursive formula for running time of recursive 

algorithm 
• Asymptotic notations  
• Algorithm running time classes: P, NP 2



3

What are Algorithms?
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Algorithms Etymology
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Goal/Scope of this course
• Goal: provide essential algorithmic background for 

MS Data Analytics students  
• algorithm analysis: space and time efficiency of 

algorithms  
• classical algorithms (sorting, searching, selection, 

graph…) 
• algorithms for big data  
• algorithms implementation in Python 

• We will not cover:  
• Machine Learning algorithms (topics for Data Mining, 

Machine Learning courses)  
• Implementing algorithms in big data cluster environment is 

left to Big Data Programming  
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Part I: computer algorithms
• a general foundations and background for computer 

science 
• understand difficulty of problems (P, NP…)  
• understand key data structure (hash, tree)  
• understand time and space efficiency of algorithm 
• Basic algorithms:  

• sorting, searching, selection algorithms 
• algorithmic paradigm: divide & conquer, greedy, 

dynamic programming, randomization  
• Hashing and universal hashing 
• Graph algorithms/Analytics (path/connectivity/

community/centrality analysis) 
• Assumption: whole input can be stored in main memory 

(organized using some data structure…)
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Part II: Big Data Algorithms
• Big Data:  volume is too big to be stored in main memory of 

a single computer  
• This class:  

• Stream: m elements from universe of size n, 

• Goal: compute a function of stream (e.g, counting, 
median, longest increasing sequence…) 
• limited working memory, sublunar in n and m 
• access data sequentially (each element can be 

accessed only once) 
• process each element quickly 

• Matrix operations and algorithms: for large matrices   
• Such algorithms are randomized and approximate 

< x1, x2, ..., xm >= 3, 5, 3, 7, 5, 4, ...



Outline

• What is algorithm: word origin, first algorithms, 
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• Algorithm running time classes: P, NP 
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Oldest Algorithms

• Al Khwarizmi laid out basic methods for  
• adding, multiplying and dividing numbers 
• extracting square roots 
• calculating digits of pi, … 

• These procedures were precise, unambiguous, 
mechanical, efficient, correct. i.e., they were 
algorithms, a term coined to honor Al Khwarizmi 
after decimal system was adopted in Europe 
many centuries later.
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Example: Selection Sort

• Input: a list of elements, L[1…n] 
• Output: rearrange elements in List, so that 

L[1]<=L[2]<=L[3]<…L[n]  
• Note that “list” is an ADT (could be implemented 

using array, linked list) 
• Ideas (in two sentences) 

• First, find location of smallest element in sub list 
L[1…n], and swap it with first element in the sublist 

• repeat the same procedure for sublist L[2…n], L[3…
n], …, L[n-1…n]
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Selection Sort (idea=>pseudocode)

for i=1 to n-1 
   // find location of smallest element in sub list L[i…n] 
    minIndex = i;  
    for k=i+1 to n 
           if L[k]<L[minIndex]: minIndex=k 

   //swap it with first element in the sublist 
   if (minIndex!=i) 
         swap (L[i], L[minIndex]); 

   // Correctness: L[i] is now the i-th smallest element
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Introduction to algorithm analysis

• Consider calculation of Fibonacci sequence, in 
particular, the n-th number in sequence: 

       0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … 

12



Fibonacci Sequence
• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … 

• Formally,


• Problem: How to calculate n-th term, e.g., what 
is F100, F200? 
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A recursive algorithm

• Three questions:  
• Is it correct?  

• yes, as the code mirrors the definition…  
• Resource requirement: How fast is it? Memory 

requirement?  
• Can we do better? (faster?) 
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Observation: we reduce a large problem into two smaller problems 
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Efficiency of algorithms
• We want to solve problems using less resource:  

• Space: how much (main) memory is needed?  

• Time: how fast can we get the result? 

• Usually, the bigger input, the more memory it takes and the longer it takes   

• it takes longer to calculate 200-th number in Fibonacci sequence than the 
10th number   

• it takes longer to sort larger array 

• it takes longer to multiple two large matrices  

• Efficient algorithms are critical for large input size/problem instance 

• Finding F100, Searching Web …  
• Two different approaches to evaluate efficiency of algorithms: 

Measurement vs. analysis 



Experimental approach

• Measure how much time elapses from algorithm 
starts to finishes 

• needs to implement, instrument and deploy 
e.g.,  
       import time 
       …. 
       start_time = time.time() 
        BubbleSort (listOfNumbers)  # any code of yours  
        end_time = time.time() 
        elapsed_time = end_time - start_time

17



Example (Fib1: recursive)
n   T(n)ofFib1    F(n) 
10      3e-06    55 
11      2e-06    89 
12      4e-06    144 
13      7e-06    233 
14      1.1e-05    377 
15      1.7e-05    610 
16      2.9e-05    987 
17      4.7e-05    1597 
18      7.6e-05    2584 
19      0.000122    4181 
20      0.000198    6765 
21      0.000318    10946 
22      0.000515    17711 
23      0.000842    28657 
24      0.001413    46368 
25      0.002261    75025 
26      0.003688    121393 
27      0.006264    196418 
28      0.009285    317811 
29      0.014995    514229 
30      0.02429    832040 
31      0.039288    1346269 
32      0.063543    2178309 
33      0.102821    3524578 
34      0.166956    5702887 
35      0.269394    9227465 
36      0.435607    14930352 
37      0.701372    24157817 
38      1.15612    39088169 
39      1.84103    63245986 
40      2.9964    102334155 
41      4.85536    165580141 
42      7.85187    267914296 
43      12.6805    433494437 
44      20.513    701408733 
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n

Time (in seconds)

Running time seems to grows  
exponentially as n increases



Experimental approach

• results are realistic, specific and random 
• specific to language, run time system (Java VM, OS), 

caching effect, other processes running 
• possible to perform model-fitting to find out T(n): 

running time of the algorithms given input size 
• Cons: 

• time consuming, maybe too late  
• Does not explain why? 

•  Measurement is important for a “production” system/
end product; but not informative for algorithm 
efficiency studies/comparison/prediction 
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Analytic approach

• Is it possible to find out how running time grows 
when input size grows, analytically?  
• Does running time stay constant, increase linearly, 

logarithmically, quadratically, … exponentially?  
• Yes: analyze pseudocode/code to calculate total 

number of steps in terms of input size, and study its 
order of growth  
• results are general: not specific to language, run time 

system, caching effect, other processes sharing computer

20
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Running time analysis

• Given an algorithm in pseudocode or actual program 
• When the input size is n, what is the total number of computer 

steps executed by the algorithm, T(n)? 

•Size of input: size of an array, polynomial degree, # of 
elements in a matrix, vertices and edges in a graph, or # of 
bits in the binary representation of input 

•Computer steps: arithmetic operations, data movement, control, 
decision making (if, while), comparison,… 

• each step take a constant amount of time 

•  Ignore: overhead of function calls (call stack frame allocation, passing 
parameters, and return values)



• Let T(n) be number of computer steps needed to compute 
fib1(n)
• T(0)=1: when n=0, first step is executed 
• T(1)=2: when n=1, first two steps are executed
• For n >1,  T(n)=T(n-1)+T(n-2)+3: first two steps are executed, 

fib1(n-1) is called (with T(n-1) steps), fib1(n-2) is called (T(n-2) 
steps), return values are added (1 step)  

• Can you see that T(n) > Fn ?

Case Studies: Fib1(n)
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• Let T(n) be number of computer steps to compute fib1(n)
• T(0)=1 
• T(1)=2
• T(n)=T(n-1)+T(n-2)+3, n>1

• Analyze running time of recursive algorithm
• first, write a recursive formula for its running time
• then, recursive formula => closed formula, asymptotic result

Running Time analysis

23



Fibonacci numbers
• F0=0, F1=1, Fn=Fn-1+Fn-2 

• Fn is lower bounded by  
• In fact, there is a tighter lower bound 20.694n 

• Recall T(n): number of computer steps to compute 
fib1(n),
• T(0)=1 
• T(1)=2
• T(n)=T(n-1)+T(n-2)+3, n>1

24

T (n) > Fn � 20.694n

Fn � 2
n
2 = 20.5n

20.5n



Exponential running time
• Running time of Fib1:  T(n)> 20.694n  

• Running time of Fib1 is exponential in n 

• calculate F200, it takes at least 2138 computer steps 

• On NEC Earth Simulator (fastest computer 2002-2004) 
• Executes 40 trillion (1012) steps per second, 40 

teraflots 
• Assuming each step takes same amount of time as 

a “floating point operation” 
• Time to calculate F200: at least 292 seconds, i.e.,

1.57x1020 years  
• Can we throw more computing power to the problem?  

• Moore’s law: computer speeds double about every 
18 months (or 2 years according to newer version) 25



Exponential running time

• Running time of Fib1:  T(n)> 20.694n =1.6177n 

• Moore’s law: computer speeds double about 
every 18 months (or 2 years according to newer 
version)  
• If it takes fastest CPU of this year 6 minutes to 

calculate F50, 

• fastest CPU in two years from today can 
calculate F52 in 6 minutes  

• Algorithms with exponential running time are not 
efficient, not scalable 
• not practical solution for large input

26



Can we do better? 

• Draw recursive function call tree for fib1(5)  
• Observation:  wasteful repeated calculation 
• Idea: Store solutions to subproblems in array (key of Dynamic Programming)

27



Running time fib2(n)

• Analyze running time of iterative (non-recursive) algorithm:  
T(n)=1   // if n=0 return 0 
       +n   // create an array of f[0…n] 
       +2    // f[0]=0, f[1]=1 
       +(n-1)  // for loop: repeated for n-1 times  
      = 2n+2  

• T(n) is a linear function of n, or fib2(n) has linear running time 28



Alternatively… 

• How long does it take for fib2(n) finish?  
T(n)=1000  +200n+2*60+(n-1)*800=1000n+320  // in unit of us    

• Again: T(n) is a linear function of n 
• Constants are not important: different on different computers 
• System effects (caching, OS scheduling) makes it pointless to do 

such fine-grained analysis anyway!  
• Algorithm analysis focuses on how running time grows as 

problem size grows (constant, linear, quadratic, exponential?) 
• not actual real world time 29

Estimation based upon CPU:   
takes 1000us, 
takes 200n us 
 each assignment takes 60us 

addition and assignment takes 800us…
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Summary: Running time analysis

• Given an algorithm in pseudocode or actual program 
• When the input size is n, how many total number of computer steps 

are executed? 

•Size of input: size of an array, polynomial degree, # of elements in 
a matrix, vertices and edges in a graph, or # of bits in the binary 
representation of input 

•Computer steps: arithmetic operations, data movement, control, 
decision making (if, while), comparison,… 

• each step take a constant amount of time 

•  Ignore:  

• Overhead of function calls (call stack frame allocation, passing 
parameters, and return values) 

• Different execution time for different steps



Time for exercises/examples 

1. Reading algorithms in pseudocode  
2. Writing algorithms in pseudocode 
3. Analyzing algorithms 

31
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Algorithm Analysis: Example

• What’s the running time of MIN?  
Algorithm/Function.: MIN (a[1…n])
input: an array of numbers a[1…n]
output: the minimum number among a[1…n]

m = a[1]
for i=2 to n:
 if a[i] < m: m = a[i]
return m

• How do we measure the size of input for this algorithm? 
• How many computer steps when the input’s size is n? 
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Algorithm Analysis: bubble sort
Algorithm/Function.: bubblesort (a[1…n])
input: a list of numbers a[1…n]
output: a sorted version of this list

 for endp=n to 2:
  for i=1 to endp-1:

      if a[i] > a[i+1]:  swap (a[i], a[i+1])
return a

• How do you choose to measure the size of input? 
• length of list a, i.e., n 
• the longer the input list, the longer it takes to sort it 

• Problem instance: a particular input to the algorithm
• e.g., a[1…6]={1, 4, 6, 2, 7, 3}
• e.g., a[1…6]={1, 4, 5, 6, 7, 9} 
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Algorithm Analysis: bubble sort
Algorithm/Function.: bubblesort (a[1…n])
input: an array of numbers a[1…n]
output: a sorted version of this array

  for endp=n to 2:
  for i=1 to endp-1:

      if a[i] > a[i+1]:  swap (a[i], a[i+1])
return a

• endp=n:   inner loop (for j=1 to endp-1) repeats for n-1 times
• endp=n-1:   inner loop repeats for n-2 times
• endp=n-2:  inner loop repeats for n-3 times       
• … 
• endp=2: inner loop repeats for 1 times 
• Total # of steps:  T(n) = (n-1)+(n-2)+(n-3)+…+1=n(n-1)/2            

a compute step



Matrix and Vector

Matrix:  a 2D (rectangular) array of numbers, symbols, or 
expressions, arranged in rows and columns. 

 e.g., a 2 × 3 matrix  B= 

Row vector of a matrix is a vector made up of a row of elements from 
the matrix:  [1 9 -13] is a row vector of B 

Column vector of a matrix is a vector made up of a column of elements 35

a                  matrix m⇥ n

Each element of a matrix is denoted by a 
variable with two subscripts, A2,1 element at 
second row and first column of a matrix A



Matrix Multiplication:  

C2,2=[2 7 5 3 ] x [4 7 0 1] = 2*4+7*7+5*0+3*1=60 

Matrix Multiplication

36

Dimension of A, B, and A x B?

The (i,j) element of AB is the dot product of i-th row of A with the j-th column of B



Matrix Multiplication:  

Matrix Multiplication

37

Dimension of A, B, and A x B?

Total (scalar) multiplication: 4x2x3=24  

Total (scalar) multiplication: n2xn1xn3 
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Algorithm Analysis: Binary Search
Algorithm/Function.: search (a[L…R], value)
input: a list of numbers a[L…R] sorted in ascending order, a number value 
output: the index of value in list a (if value is in it), or -1 if not found

if (L>R): return -1
m = (L+R)/2
if (a[m]==value):
    return m
else:
   if (a[m]>value):

    return search (a[L…m-1], value)
else: 
    return search (a[m+1…R], value)

• What’s the size of input in this algorithm?  
• length of list a[L…R]
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Algorithm Analysis: Binary Search
Algorithm/Function.: search (a[L…R], value)
input: a list of numbers a[L…R] sorted in ascending order, a number value 
output: the index of value in list a (if value is in it), or -1 if not found

if (L>R): return -1
m = (L+R)/2
if (a[m]==value):
    return m
else:
   if (a[m]>value):

    return search (a[L…m-1], value)
else: 
    return search (a[m+1…R], value) 

• Let T(n) be number of steps to search an list of size n 
• best case (value is in middle point), T(n)=3 
• worst case (when value is not in list) provides an upper 

bound
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Algorithm Analysis: Binary Search
Algorithm/Function.: search (a[L…R], value)
input: a list of numbers a[L…R] sorted in ascending order, a number value 
output: the index of value in list a (if value is in it), or -1 if not found

if (L>R): return -1
m = (L+R)/2
if (a[m]==value):
    return m
else:
   if (a[m]>value):

    return search (a[L…m-1], value)
else: 
    return search (a[m+1…R], value) 

• Let T(n) be number of steps to search an list of size n in worst case 
• T(0)=1        //base case, when L>R 
• T(n)=3+T(n/2) //general case, reduce problem size by half  

• Next chapter: master theorem solving T(n)=log2n



Outline
• What is algorithm: word origin, first algorithms, 

algorithms of today’s world 
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Growth Rate of functions

• f(x)=2x: constant growth rate (slope is 2)  
•                   : growth rate increases as x 

increases (see figure above)  
•                     : growth rate decreases as x 

increases 

f(x) = 2x

f(x) = log2x

• Growth rate: How 
fast f(x) increases as 
x increases 
• slope (derivative)

f(x+�x)� f(x)

�x



Derivatives of Common Functions

43
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Asymptotic Growth Rate of functions

• e.g., f(x)=2x: asymptotic growth rate is 2 
•                   : very big!  f(x) = 2x

(Asymptotic) Growth rate of functions of n (from low to high):   
log(n)  < n <  nlog(n) < n2 <    n3  <   n4  <    ….< 1.5n < 2n < 3n

• Asymptotic Growth 
rate: growth rate of 
function when  
• slope (derivative) 

when x is very big 
• The larger asym. growth 

rate, the larger f(x) when 

x ! 1

x ! 1



• Two sorting algorithms:  
• yours: 
• your friend:  

• Which one is better (for large arrays)?  
• evaluate their ratio when n is large

45

Compare Growth Rate of functions(2)

They are same! In general, the lower order term can be dropped. 

2n2

2n2 + 100n

2n2 + 100n

2n2
= 1 +

100n

2n2
= 1 +

50

n
! 1, when n ! 1



• In answering “How fast T(n) grows as n grows?”, leave out   
• lower-order terms 
• constant coefficient: not reliable info. (arbitrarily counts # of 

computer steps), and hardware difference makes them not 
important 

• Note: you still want to optimize your code to bring down 
constant coefficients. It’s only that they don’t affect 
“asymptotic growth rate”  

• e.g. bubble sort executes                                                           

steps to sort a list of n elements  

• bubble sort’s running time, T(n)’s (asymptotic) growth 
rate is same as n2, i.e.,  

• bubble sort has a quadratic running time 

Focus on Asymptotic Growth Rate

46

T (n) = ⇥(n2)
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Big-O notation
• f(n) and g(n): two functions from positive integers 

to positive real numbers

48

In reference textbook (CLR),  
for all n>n0, f(n)  c · g(n)

f grows no faster than g,  
g is asymptotic upper  
bound of f 
  

f grows no slower than g,  
g is asymptotic lower 
bound of f

f grows no slower and no  
faster than g, f grows at  
same rate as g 

GR(f)  GR(g) GR(f) � GR(g) GR(f) == GR(g)



• Some books write             ,   
• O(g) denotes the set of all functions h(n) for which 

there is a constant c>0, such that 

Big-O notation
• f=O(g) if there is a constant c>0 

and n0, such that for all n>n0,                                        
            

• f(n) is smaller than some positive 
constant times g(n) for all n that is 
large enough 

• e.g., f(n)=100n2, g(n)=n3 

49

f(n)=O(g(n)), as there exists c=100, n0=1, such that for all n>n0, f(n)<=c*g(n) 
Looking to bound            by a positive constant for all n large enough…f(n)

g(n)

h(n)  c · g(n)



Big-O: Exercise

• For the following four pairs of f(), g(), is f(n)=O(g(n)) ? 
• f(n)=1, g(n)=2n 

• f(n)=100n2+8n, g(n)=n2  

• f(n)=nlog(n), g(n)=n2  

•     

•                                     

50

f(n) = 2n, g(n) = 3n

f(n) =
(n� 1)n

2
, g(n) = n



• Consider this pairs of f, g:  

• f(n)=O(g(n)) is not true: 

• impossible to find c, n0, s.t., for all 
n>n0, 

• instead, let c=0.5, n0=2, then for all 
n>=n0,  

• f(n) grows no slower than g(n), i.e., 
f=Ω(g) (g is asymptotic lower bound of f) 

• if and only if there is a positive constant 
c, n0, such that for all n,                                      

Big-Ω notations
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f(n) =
(n� 1)n

2
, g(n) = n

f(n)

g(n)
=

n� 1

2

f(n)

g(n)
 c

f(n)

g(n)
=

n� 1

2
� 1

2



• For following pairs of f(n), g(n), is  
•  f(n)=100n2, g(n)=n 

• f(n)=100n2+8n, g(n)=n2 

•  f(n)=2n, g(n)=n8                       

Big-Ω notations Exercises

52

f(n) = ⌦(g(n))



• Consider f(n)=100n2+8n, 
g(n)=n2 

• i.e., f grows no faster, an no 
slower faster than g, f grows at 
same rate as g asymptotically  

• We denote this as          
• Def: there are constants c1, 

c2, no>0, s.t., 

Big-     notations
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f = ⇥(g)

f can be sandwiched between g 
by two constant factors

f(n) = O(g(n)), f(n) = ⌦(g(n))

c1 · g(n)  f(n)  c2 · g(n), for any n � n0



• For following pairs of f and g, is                       ? 
• (1) f(n)=10000n2, g(n)=n2 

•  (2) 

• (3)     

                   

Big-     Exercise

54

f(n) = ⇥(g(n))

f(n) =
0.684c

2
(n2 + n� 2) + n+ 3, g(n) = n2

f(n) = log2 n, g(n) = log10n



mini-summary 
• in analyzing running time of algorithms, what’s important 

is scalability (perform well for large input)  
• focus on higher order which dominates lower order parts 

• a three-level nested loop dominates a single-level loop  
• multiplicative constants can be omitted: 14n2 becomes n2 

• na dominates nb if a>b, e.g.,  
• any exponential dominates any polynomial:  

• 3n dominates n5  
• any polynomial dominates any logarithms: n dominates 

(logn)3 
• E.g.,

55

14n2 = ⇥(n2)

n3 = ⌦(n2.5)

3n = ⌦(n5)

T (n) = 0.56n3 + 10000n+ 0.45 · 3n = ⇥(3n)
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Typical Running Time
• 1 (constant running time):  

– Instructions are executed once or a few times 
• log(n) (logarithmic), e.g., binary search  

– A big problem is solved by cutting original problem in smaller sizes, 
by a constant fraction at each step 

• n (linear): linear search, calculate mean, variance, …  
– A small amount of processing is done on each input element 

• n log(n): merge sort  
– A problem is solved by dividing it into smaller problems, solving 

them independently and combining the solution
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Typical Running Time Functions
• n2 (quadratic): bubble sort  

• Typical for algorithms that process all pairs of data items (double 

nested loops) 

• n3 (cubic) 

– matrix multiplication  

• nK (polynomial) 

• 20.694n (exponential): Fib1  

• 2n (exponential): 

– Few exponential algorithms are appropriate for practical use 

–  3n (exponential), … 



• P: the set of problems that have 
known polynomial algorithms 

• NP: the set of problems for which 
there exists a polynomial alg. to verify 
a solution 
• Many NP problems have no polynomial 

time algorithms … yet, despite intensive 
research by many 

• Will we ever find one? Not likely…  
• we’ve tried a long time 
• many problems in NPC (if we can 
• solve one in polynomial, then we can 

solve all others in polynomial. 

P=NP?

59



• Given n vertices 1, . . . , n, and all n(n − 1)/2 distances between them, 
as well as a budget b. 

• Output: find a tour (a cycle that passes through every vertex exactly 
once) of total cost b or less – or to report that no such tour exists. 

• TSP as a search problem 
• given an instance, find a tour within the budget (or report that none 

exists). 

• Usually, TSP is posed as optimization problem  

• find shortest possible tour 

• 1->2->3->4, total cost: 60 

• TSP is NP problem

NPC: Traveling Salesman Problem
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Summary

• This class focused on algorithm running time 
analysis  

• start with running time function, expressing 
number of computer steps in terms of input size 

• Focus on very large problem size, i.e., 
asymptotic running time  
• big-O notations => focus on dominating terms 

in running time function  
• Constant, linear, polynomial, exponential time 

algorithms … 
• NP, NP complete problem 
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Assignment

• Lab1  

• Chapter 0 of DPV


