Algorithms for Big Data CISC5835 Fordham Univ.

Instructor: X. Zhang

Lecture 1

Outline

- What is algorithm: word origin, first algorithms, algorithms of today's world
- Sequential algorithms, Parallel algorithms, approximation algorithms, randomized algorithms
- Scope of the course
- A few algorithms and pseudocode
- Introduction to algorithm analysis: fibonacci seq calculation
- counting number of "computer steps"
- recursive formula for running time of recursive algorithm
- Asymptotic notations
- Algorithm running time classes: P, NP

What are Algorithms?

" A procedure for solving a mathematical problem (as of finding the greatest common divisor) in a finite number of steps that
frequently involves repetition of an operation." - webster.com

Etymology. [Knuth, TAOCP]

- Algorism $=$ process of doing arithmetic using Arabic numerals.
- A misperception: algiros [painful] + arithmos [number].
- True origin: Abu 'Abd Allah Muhammad ibn Musa al-Khwarizm was a famous 9th century Persian textbook author who wrote Kitäb al-jabr wa'l-muqābala, which evolved into today's high school algebra text.

Goal/Scope of this course

- Goal: provide essential algorithmic background for MS Data Analytics students
- algorithm analysis: space and time efficiency of algorithms
- classical algorithms (sorting, searching, selection, graph...)
- algorithms for big data
- algorithms implementation in Python
- We will not cover:
- Machine Learning algorithms (topics for Data Mining, Machine Learning courses)
- Implementing algorithms in big data cluster environment is left to Big Data Programming

Part I: computer algorithms

- a general foundations and background for computer science
- understand difficulty of problems (P, NP...)
- understand key data structure (hash, tree)
- understand time and space efficiency of algorithm
- Basic algorithms:
- sorting, searching, selection algorithms
- algorithmic paradigm: divide \& conquer, greedy, dynamic programming, randomization
- Hashing and universal hashing
- Graph algorithms/Analytics (path/connectivity/ community/centrality analysis)
- Assumption: whole input can be stored in main memory (organized using some data structure...)

Part II: Big Data Algorithms

- Big Data: volume is too big to be stored in main memory of a single computer
- This class:
- Stream: m elements from universe of size n , $<x_{1}, x_{2}, \ldots, x_{m}>=3,5,3,7,5,4, \ldots$
- Goal: compute a function of stream (e.g, counting, median, longest increasing sequence...)
- limited working memory, sublunar in n and m
- access data sequentially (each element can be accessed only once)
- process each element quickly
- Matrix operations and algorithms: for large matrices
- Such algorithms are randomized and approximate

Outline

- What is algorithm: word origin, first algorithms, algorithms of today's world
- Scope of the course
- A few algorithms and pseudocode
- Introduction to algorithm analysis: fibonacci seq calculation
- counting number of "computer steps"
- recursive formula for running time of recursive algorithm
- Asymptotic notations
- Algorithm running time classes: P, NP

Oldest Algorithms

- Al Khwarizmi laid out basic methods for
- adding, multiplying and dividing numbers
- extracting square roots
- calculating digits of pi, ...
- These procedures were precise, unambiguous, mechanical, efficient, correct. i.e., they were algorithms, a term coined to honor Al Khwarizmi after decimal system was adopted in Europe many centuries later.

Example: Selection Sort

- Input: a list of elements, $\mathrm{L}[1 \ldots \mathrm{n}]$
- Output: rearrange elements in List, so that $\mathrm{L}[1]<=\mathrm{L}[2]<=\mathrm{L}[3]<\ldots \mathrm{L}[\mathrm{n}]$
- Note that "list" is an ADT (could be implemented using array, linked list)
- Ideas (in two sentences)
- First, find location of smallest element in sub list $\mathrm{L}[1 \ldots \mathrm{n}]$, and swap it with first element in the sublist
- repeat the same procedure for sublist $\mathrm{L}[2 \ldots \mathrm{n}], \mathrm{L}[3 \ldots$ $\mathrm{n}], \ldots, \mathrm{L}[\mathrm{n}-1 \ldots \mathrm{n}]$

Selection Sort (idea=>pseudocode)

for $\mathrm{i}=1$ to $\mathrm{n}-1$
// find location of smallest element in sub list L[i...n]
minIndex = i;
for $\mathrm{k}=\mathrm{i}+1$ to n
if $L[k]<L[m i n I n d e x]$: minIndex=k
//swap it with first element in the sublist if (minlndex!=i)
swap (L[i], L[minIndex]);
// Correctness: L[i] is now the i-th smallest element

Introduction to algorithm analysis

- Consider calculation of Fibonacci sequence, in particular, the n-th number in sequence:
$0,1,1,2,3,5,8,13,21,34, \ldots$

Fibonacci helped the spread of the decimal system in Europe, primarily through
the publication in the early 13 th century of his
the publication in the early
Abaci. (Source: Wikipedia)

Fibonacci Sequence

- $0,1,1,2,3,5,8,13,21,34, \ldots$
- Formally,

$$
F_{n}= \begin{cases}F_{n-1}+F_{n-2} & \text { if } n>1 \\ 1 & \text { if } n=1 \\ 0 & \text { if } n=0 .\end{cases}
$$

- Problem: How to calculate n-th term, e.g., what is F_{100}, F_{200} ?

A recursive algorithm

function fib1 (n)
if $\mathrm{n}=0$: return 0
if $\mathrm{n}=1$: return 1
return fib1 $(\mathrm{n}-1)+\mathrm{fib1}(\mathrm{n}-2)$
Observation: we reduce a large problem into two smaller problems

- Three questions:
- Is it correct?
- yes, as the code mirrors the definition...
- Resource requirement: How fast is it? Memory requirement?
- Can we do better? (faster?)

Outline

- What is algorithm: word origin, first algorithms, algorithms of today's world
- Scope of the course
- A few algorithms and pseudocode
- Introduction to algorithm analysis: fibonacci seq calculation
- counting number of "computer steps"
- recursive formula for running time of recursive algorithm
- Asymptotic notations
- Algorithm running time classes: P, NP

Efficiency of algorithms

- We want to solve problems using less resource:
- Space: how much (main) memory is needed?
- Time: how fast can we get the result?
- Usually, the bigger input, the more memory it takes and the longer it takes
- it takes longer to calculate 200-th number in Fibonacci sequence than the 10th number
- it takes longer to sort larger array
- it takes longer to multiple two large matrices
- Efficient algorithms are critical for large input size/problem instance
- Finding F_{100}, Searching Web ..
- Two different approaches to evaluate efficiency of algorithms: Measurement vs. analysis

Experimental approach

- Measure how much time elapses from algorithm starts to finishes

- needs to implement, instrument and deploy e.g.,
import time
start_time = time.time()
BubbleSort (listOfNumbers) \# any code of yours
end_time = time.time()
elapsed_time = end_time - start_time

Example (Fib1: recursive)

Experimental approach

- results are realistic, specific and random
- specific to language, run time system (Java VM, OS), caching effect, other processes running
- possible to perform model-fitting to find out $T(n)$: running time of the algorithms given input size
- Cons:
- time consuming, maybe too late
- Does not explain why?
- Measurement is important for a "production" system/ end product; but not informative for algorithm efficiency studies/comparison/prediction

Analytic approach

- Is it possible to find out how running time grows when input size grows, analytically?
- Does running time stay constant, increase linearly, logarithmically, quadratically, ... exponentially?
- Yes: analyze pseudocode/code to calculate total number of steps in terms of input size, and study its order of growth
- results are general: not specific to language, run time system, caching effect, other processes sharing computer

Running time analysis

- Given an algorithm in pseudocode or actual program
- When the input size is n , what is the total number of computer steps executed by the algorithm, $T(n)$?
- Size of input: size of an array, polynomial degree, \# of elements in a matrix, vertices and edges in a graph, or \# of bits in the binary representation of input
- Computer steps: arithmetic operations, data movement, control, decision making (if, while), comparison,...
- each step take a constant amount of time
- Ignore: overhead of function calls (call stack frame allocation, passing parameters, and return values)

Case Studies: Fib1(n)

```
    function fib1(n)
    if n = 0: return 0
    if n = 1: return 1
    return fib1(n - 1) + fib1(n - 2)
```

- Let $T(n)$ be number of computer steps needed to compute fib1(n)
- $T(0)=1$: when $\mathrm{n}=0$, first step is executed
- $T(1)=2$: when $n=1$, first two steps are executed
- For $\mathrm{n}>1, \mathrm{~T}(\mathrm{n})=\mathbf{T}(\mathrm{n}-1)+\mathbf{T}(\mathrm{n}-2)+3$: first two steps are executed, fib1 $(n-1)$ is called (with $T(n-1)$ steps), fib1 $(n-2)$ is called ($T(n-2)$ steps), return values are added (1 step)
- Can you see that $T(n)>F_{n}$?

Running Time analysis

```
function fib1(n)
if n = 0: return 0
if n = 1: return 1
return fib1(n-1) + fib1(n - 2)
```

- Let $T(n)$ be number of computer steps to compute fib1(n)
- $T(0)=1$
- $T(1)=2$
- $T(n)=T(n-1)+T(n-2)+3, n>1$
- Analyze running time of recursive algorithm
- first, write a recursive formula for its running time
- then, recursive formula => closed formula, asymptotic result

Fibonacci numbers

- $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$

$$
F_{n} \geq 2^{\frac{n}{2}}=2^{0.5 n}
$$

- Fn is lower bounded by $2^{0.5 n}$
- In fact, there is a tighter lower bound $2^{0.694 n}$
- Recall $T(n)$: number of computer steps to compute fib1(n),
- $T(0)=1$
- $T(1)=2$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2)+3, \mathrm{n}>1$
$T(n)>F_{n} \geq 2^{0.694 n}$

Exponential running time

- Running time of Fib1: $T(n)>2^{0.694 n}$
- Running time of Fib1 is exponential in n
- calculate F_{200}, it takes at least 2^{138} computer steps
- On NEC Earth Simulator (fastest computer 2002-2004)
- Executes 40 trillion $\left(10^{12}\right)$ steps per second, 40 teraflots
- Assuming each step takes same amount of time as a "floating point operation"
- Time to calculate F_{200} : at least 2^{92} seconds, i.e., 1.57×10^{20} years
- Can we throw more computing power to the problem?
- Moore's law: computer speeds double about every 18 months (or 2 years according to newer version) ${ }_{25}$

Exponential running time

- Running time of Fib1: $\mathrm{T}(\mathrm{n})>2^{0.694 \mathrm{n}}=1.6177^{\mathrm{n}}$
- Moore's law: computer speeds double about every 18 months (or 2 years according to newer version)
- If it takes fastest CPU of this year 6 minutes to calculate F_{50},
- fastest CPU in two years from today can calculate F_{52} in 6 minutes
- Algorithms with exponential running time are not efficient, not scalable
- not practical solution for large input

Can we do better?

```
function fib1(n)
if n = 0: return 0
if n = 1: return 1
return fib1(n - 1) + fib1(n - 2)
```

- Draw recursive function call tree for fib1(5)
- Observation: wasteful repeated calculation
- Idea: Store solutions to subproblems in array (key of Dynamic Programming)
function fib2(n)
if $n=0$ return 0
create an array f [0...n]
$f[0]=0, f[1]=1$
for $i=2 \ldots n$:
$f[i]=f[i-1]+f[i-2]$
return $f[n]$

Running time fib2(n)

```
    function fib2(n)
    if n = 0 return 0
    create an array f[0...n]
    f[0] = 0, f[1] = 1
    for i = 2...n:
        f[i] = f[i - 1] + f[i - 2]
    return f[n]
```

- Analyze running time of iterative (non-recursive) algorithm:
$T(n)=1 / /$ if $n=0$ return 0
$+\mathrm{n} / /$ create an array of $\mathrm{f}[0 \ldots \mathrm{n}]$
$+2 / / f[0]=0, f[1]=1$
$+(\mathrm{n}-1)$ // for loop: repeated for $\mathrm{n}-1$ times
$=2 n+2$
- $T(n)$ is a linear function of n, or fib2(n) has linear running time 28

Summary: Running time analysis

- Given an algorithm in pseudocode or actual program
- When the input size is n , how many total number of computer steps are executed?
- Size of input: size of an array, polynomial degree, \# of elements in a matrix, vertices and edges in a graph, or \# of bits in the binary representation of input
- Computer steps: arithmetic operations, data movement, control,
decision making (if, while), comparison,...
- each step take a constant amount of time
- Ignore:
- Overhead of function calls (call stack frame allocation, passing parameters, and return values)
- Different execution time for different steps

Time for exercises/examples

1. Reading algorithms in pseudocode
2. Writing algorithms in pseudocode
3. Analyzing algorithms

Algorithm Analysis: Example

- What's the running time of MIN?

Algorithm/Function.: MIN (a[I...n])
input: an array of numbers a[l...n]
output: the minimum number among a[I...n]
$\mathrm{m}=\mathrm{a}[\mathrm{I}]$
for $\mathrm{i}=2$ to n :
if $\mathrm{a}[\mathrm{i}]<\mathrm{m}: \mathrm{m}=\mathrm{a}[\mathrm{i}]$
return m

- How do we measure the size of input for this algorithm?
- How many computer steps when the input's size is n ?

Algorithm Analysis: bubble sort

Algorithm/Function.: bubblesort (a[I...n])
input: a list of numbers a[1...n]
output: a sorted version of this list for endp=n to 2 :
for $\mathrm{i}=\mathrm{I}$ to endp- I :

$$
\text { if a[i] >a[i+l]: swap }(a[i], a[i+1])
$$

return a

- How do you choose to measure the size of input?
- length of list a, i.e., n
- the longer the input list, the longer it takes to sort it
- Problem instance: a particular input to the algorithm
- e.g., a[I...6] $=\{1,4,6,2,7,3\}$
- e.g., $a[I \ldots 6]=\{I, 4,5,6,7,9\}$

Algorithm Analysis: bubble sort

Algorithm/Function.: bubblesort (a[I...n])
input: an array of numbers a[1...n]
output: a sorted version of this array
for endp=n to 2 :
for $i=1$ to endp- I :
if $a[i]>a[i+1]: \operatorname{swap}(a[i], a[i+1])$
return a
a compute step

- endp $=\mathrm{n}$: inner loop (for $\mathrm{j}=\mathrm{I}$ to endp-I) repeats for n - I times
- endp=n-I: inner loop repeats for n - 2 times
- endp $=n-2$: inner loop repeats for $\mathrm{n}-3$ times
- ...
- endp=2: inner loop repeats for I times
- Total \# of steps: $T(n)=(n-I)+(n-2)+(n-3)+\ldots+I=n(n-I) / 2$

Matrix and Vector

Matrix: a 2D (rectangular) array of numbers, symbols, or expressions, arranged in rows and columns.
e.g., a 2×3 matrix $B=\left[\begin{array}{ccc}1 & 9 & -13 \\ 20 & 5 & -6\end{array}\right]$.
a $m \times n$ matrix $\mathbf{A}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$
Each element of a matrix is denoted by a variable with two subscripts, $A_{2,1}$ element at second row and first column of a matrix A

Row vector of a matrix is a vector made up of a row of elements from the matrix: [19-13] is a row vector of B
Column vector of a matrix is a vector made up of a column of elements 35

Algorithm Analysis: Binary Search

Algorithm/Function.: search (a[L...R], value)

input: a list of numbers a[L...R] sorted in ascending order, a number value
output: the index of value in list a (if value is in it), or -I if not found
if ($L>R$): return - I
$m=(L+R) / 2$
if (a[m]==value):
return m
else:
if (a[m]>value):
return search (a[L...m-I], value)
else:
return search (a[m+l...R], value)

- What's the size of input in this algorithm?
- length of list a[L...R]

Algorithm Analysis: Binary Search

```
Algorithm/Function.: search (a[L...R], value)
input: a list of numbers a[L...R] sorted in ascending order, a number value
output: the index of value in list a (if value is in it), or \(-I\) if not found
    if (L>R): return -I
    \(m=(L+R) / 2\)
    if \((\mathrm{a}[\mathrm{m}]==\) value \()\)
        return \(m\)
    else:
    if ( \(\mathrm{a}[\mathrm{m}]>\) value ):
        return search (a[L...m-I], value)
    else:
    return search (a[m+l...R], value)
- Let \(T(n)\) be number of steps to search an list of size \(n\)
    - best case (value is in middle point), \(T(n)=3\)
    - worst case (when value is not in list) provides an upper
        bound
```


Algorithm Analysis: Binary Search

```
Algorithm/Function.: search (a[L...R], value)
input: a list of numbers a[L...R] sorted in ascending order, a number value
output: the index of value in list a (if value is in it), or -I if not found
    if (L>R): return -I
    m}=(L+R)/
if (a[m]==value):
        return m
else:
    if (a[m]>value):
                return search (a[L\ldots.m-I], value)
else:
    return search (a[m+l ...R], value)
```

- Let $T(n)$ be number of steps to search an list of size n in worst case
 - $T(0)=1 \quad / /$ base case, when $L>R$
 - $T(n)=3+T(n / 2) / /$ general case, reduce problem size by half
- Next chapter: master theorem solving $T(n)=\log _{2} n$

Outline

- What is algorithm: word origin, first algorithms, algorithms of today's world
- Sequential algorithms, Parallel algorithms, approximation algorithms, randomized algorithms
- Scope of the course
- A few algorithms and pseudocode
- Introduction to algorithm analysis: fibonacci seq calculation
- counting number of "computer steps"
- recursive formula for running time of recursive algorithm
- Asymptotic growth rate, big-O notations
- Algorithm running time classes: P, NP
Growth Rate of functions

Derivatives of Common Functions

	Function	Derivative
Common Functions	c	0
Constant	x	1
Line	$a x$	a
	x^{2}	$2 x$
Square	\sqrt{x}	$(1 / 2) x^{-1 / 2}$
Square Root	e^{x}	e^{x}
Exponential	a^{x}	$\ln (a) a^{x}$
	$\ln (x)$	$1 / x$
Logarithms	$\log _{a}(x)$	$1 /(x \ln (a))$

Asymptotic Growth Rate of functions

- e.g., $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$: asymptotic growth rate is 2
- $f(x)=2^{x}$: very big!
(Asymptotic) Growth rate of functions of n (from low to high):
$\log (\mathrm{n})<\mathrm{n}<\operatorname{nlog}(\mathrm{n})<\mathrm{n}^{2}<\mathrm{n}^{3}<\mathrm{n}^{4}<\ldots . .<1.5^{n}<2^{n}<3^{n}$

Compare Growth Rate of functions(2)

- Two sorting algorithms:
- yours: $2 n^{2}+100 n$
- your friend: $2 n^{2}$
- Which one is better (for large arrays)?
- evaluate their ratio when n is large
$\frac{2 n^{2}+100 n}{2 n^{2}}=1+\frac{100 n}{2 n^{2}}=1+\frac{50}{n} \rightarrow 1$, when $n \rightarrow \infty$

They are same! In general, the lower order term can be dropped.

- In answering "How fast $T(n)$ grows as n grows?", leave out
- lower-order terms
- constant coefficient: not reliable info. (arbitrarily counts \# of computer steps), and hardware difference makes them not important
- Note: you still want to optimize your code to bring down constant coefficients. It's only that they don't affect "asymptotic growth rate"

steps to sort a list of n elenacino
- bubble sort's running time, $\mathrm{T}(\mathrm{n})$'s (asymptotic) growth rate is same as n^{2}, i.e., $T(n)=\Theta\left(n^{2}\right)$
- bubble sort has a quadratic running time

Outline

- What is algorithm: word origin, first algorithms, algorithms of today's world
- Sequential algorithms, Parallel algorithms, approximation algorithms, randomized algorithms
- Scope of the course
- A few algorithms and pseudocode
- Introduction to algorithm analysis: fibonacci seq calculation
- counting number of "computer steps"
- recursive formula for running time of recursive algorithm
- Asymptotic growth rate, big-O notations
- Algorithm running time classes: P, NP

Big-O notation

- $f(n)$ and $g(n)$: two functions from positive integers to positive real numbers

f grows no faster than g , g is asymptotic upper bound of f
$G R(f) \leq G R(g)$

f grows no slower than g, g is asymptotic lower bound of f $G R(f) \geq G R(g)$

f grows no slower and no faster than g, f grows at same rate as g $G R(f)==G R(g \not)_{8}$

Big-O notation

- $\mathrm{f}=\mathrm{O}(\mathrm{g})$ if there is a constant $\mathrm{c}>0$ and n_{0}, such that for all $\mathrm{n}>\mathrm{n}_{0}$,
$f(n) \leq c \cdot g(n)$
- $f(n)$ is smaller than some positive constant times $g(n)$ for all n that is large enough
- e.g., $f(n)=100 n^{2}, g(n)=n^{3}$
$\frac{f(n)}{g(n)}=\frac{100 n^{2}}{n^{3}}=\frac{100}{n} \leq 100$

$f(n)=O(g(n))$, as there exists $c=100, n_{0}=1$, such that for all $n>n_{0}, f(n)<=c^{\star} g(n)$ Looking to bound $\frac{f(n)}{(n)}$ by a positive constant for all n large enough...
- Some books write $f \in O(g)$
- O(g) denotes the set of all functions $h(n)$ for which there is a constant $c>0$, such that $h(n) \leq c \cdot g(n)$

Big-O: Exercise

- For the following four pairs of $f(), g()$, is $f(n)=O(g(n))$?
- $f(n)=1, g(n)=2 n$
- $f(n)=100 n^{2}+8 n, g(n)=n^{2}$
- $f(n)=n \log (n), g(n)=n^{2}$
- $f(n)=2^{n}, g(n)=3^{n}$
- $f(n)=\frac{(n-1) n}{2}, g(n)=n$

Big- Ω notations

- Consider this pairs of f, g :

$f(n)=\frac{(n-1) n}{2}, g(n)=n$

- $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is not true:

$$
\frac{f(n)}{g(n)}=\frac{n-1}{2}
$$

- impossible to find $\mathrm{c}, \mathrm{n}_{0}$, s.t., for all $\mathrm{n}>\mathrm{n}_{0}, \frac{f(n)}{g(n)} \leq c$

- instead, let $\mathrm{c}=0.5, \mathrm{n}_{0}=2$, then for all $\mathrm{n}>=\mathrm{n}_{0}, \quad \frac{f(n)}{g(n)}=\frac{n-1}{2} \geq \frac{1}{2}$
- $f(n)$ grows no slower than $g(n)$, i.e., $\mathrm{f}=\Omega(\mathrm{g})$ (g is asymptotic lower bound of f)
- if and only if there is a positive constant
c, n_{0}, such that for all n,

$$
f(n) \geq c \cdot g(n)
$$

Big- Ω notations Exercises

- For following pairs of $\mathrm{f}(\mathrm{n}), \mathrm{g}(\mathrm{n})$, is $f(n)=\Omega(g(n))$
- $f(n)=100 n^{2}, g(n)=n$
- $f(n)=100 n^{2}+8 n, g(n)=n^{2}$
- $f(n)=2^{n}, g(n)=n^{8}$

Big- Θ notations

- Consider $\mathrm{f}(\mathrm{n})=100 \mathrm{n}^{2}+8 \mathrm{n}$ $\mathrm{g}(\mathrm{n})=\mathrm{n}^{2}$
$f(n)=O(g(n)), f(n)=\Omega(g(n))$
- i.e., f grows no faster, an no slower faster than g, f grows a same rate as g asymptotically
- We denote this as $f=\Theta(g)$
- Def: there are constants C_{1} $\mathrm{C}_{2}, \mathrm{n}_{0}>0$, s.t.,
$c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)$, for any $n \geq n_{0}$

f can be sandwiched between g by two constant factors

Big- Θ Exercise

- For following pairs of f and g , is $f(n)=\Theta(g(n))$?
- (1) $f(n)=10000 n^{2}, g(n)=n^{2}$
- (2) $f(n)=\frac{0.684 c}{2}\left(n^{2}+n-2\right)+n+3, g(n)=n^{2}$
- (3) $f(n)=\log _{2} n, g(n)=\log _{10} n$

mini-summary

- in analyzing running time of algorithms, what's important is scalability (perform well for large input)
- focus on higher order which dominates lower order parts
- a three-level nested loop dominates a single-level loop
- multiplicative constants can be omitted: $14 \mathrm{n}^{2}$ becomes n^{2}

$$
14 n^{2}=\Theta\left(n^{2}\right)
$$

- n^{a} dominates n^{b} if $\mathrm{a}>\mathrm{b}$, e.g., $n^{3}=\Omega\left(n^{2.5}\right)$
- any exponential dominates any polynomial:
- 3^{n} dominates $n^{5} \quad 3^{n}=\Omega\left(n^{5}\right)$
- any polynomial dominates any logarithms: n dominates (logn) ${ }^{3}$
- E.g., $T(n)=0.56 n^{3}+10000 n+0.45 \cdot 3^{n}=\Theta\left(3^{n}\right)$

Outline

- What is algorithm: word origin, first algorithms, algorithms of today's world
- Sequential algorithms, Parallel algorithms, approximation algorithms, randomized algorithms
- Scope of the course
- A few algorithms and pseudocode
- Introduction to algorithm analysis: fibonacci seq calculation
- counting number of "computer steps"
- recursive formula for running time of recursive algorithm
- Asymptotic growth rate and big-O notations
- Problem complexity class: P, NP

Typical Running Time

- 1 (constant running time):
- Instructions are executed once or a few times
- $\log (\mathrm{n})$ (logarithmic), e.g., binary search
- A big problem is solved by cutting original problem in smaller sizes,
by a constant fraction at each step
- n (linear): linear search, calculate mean, variance, ...
- A small amount of processing is done on each input element
- $\mathrm{n} \log (\mathrm{n})$: merge sort

[^0]
Typical Running Time Functions

- n^{2} (quadratic): bubble sort
• Typical for algorithms that process all pairs of data items (double
nested loops)
- n^{3} (cubic)
\quad - matrix multiplication
- n^{K} (polynomial)
- $2^{0.694 \mathrm{n}}$ (exponential): Fib1
- 2^{n} (exponential):
\quad - Few exponential algorithms are appropriate for practical use
-3^{n} (exponential), ...

$P=N P ?$

- P: the set of problems that have known polynomial algorithms
- NP: the set of problems for which there exists a polynomial alg. to verify a solution
- Many NP problems have no polynomial time algorithms ... yet, despite intensive research by many
- Will we ever find one? Not likely...
- we've tried a long time
- many problems in NPC (if we can
- solve one in polynomial, then we can solve all others in polynomial.

NPC: Traveling Salesman Problem

- Given n vertices $1, \ldots, n$, and all $n(n-1) / 2$ distances between them, as well as a budget b.
- Output: find a tour (a cycle that passes through every vertex exactly once) of total cost b or less - or to report that no such tour exists.
- TSP as a search problem
- given an instance, find a tour within the budget (or report that none exists).
- Usually, TSP is posed as optimization problem
- find shortest possible tour
- 1->2->3->4, total cost: 60
- TSP is NP problem

Summary

- This class focused on algorithm running time analysis
- start with running time function, expressing number of computer steps in terms of input size
- Focus on very large problem size, i.e., asymptotic running time
- big-O notations => focus on dominating terms in running time function
- Constant, linear, polynomial, exponential time algorithms ...
- NP, NP complete problem

[^0]: - A problem is solved by dividing it into smaller problems, solving them independently and combining the solution

