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• Dictionary ADT: a dynamic set of elements supporting 
INSERT, DELETE, SEARCH operations 
• elements have distinct key fields 
• DELETE, SEARCH by key 

• Different ways to implement Dictionary 
• unsorted array 

• insert O(1), delete O(n), search O(n) 
• sorted array 

• insert O(n), delete O(n), search O(log n) 
• binary search tree 

• insert O(log n), delete O(log n), search O(log n) 
• linked list …  

• Can we have “almost” constant time insert/delete/
search?

Support for Dictionary
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NULL

• Direct address table: use key as index into the array 
• T[i] stores the element whose key is i 

• How big is the table?  
• big enough to have one slot for every possible key

Towards constant time 
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T
Insert ( element(2,Alice)) 
   T[2]=element(2, Alice); 
Delete (element(4)) 
   T[4]=NULL; 
Search (element(5)) 
   return T[5];

2, Alice

0

1

2

4, Bob

5, Ed

….

NULL

U: the set of all 
possible key values

K: actual 
set of keys  

in your data

NULL

NULL



• A web server: maintains all active clients’ info, using IP 
addr. as key  

• Universe of keys: the set of all possible IPv4 addr., |U|=232 
• much bigger than total # of active clients  
• Too big to use direct access table: 

• a table with 232 entries, if each entry is 32bytes, then 
128GB is needed! 

• How to have constant accessing time, while not requiring huge memory usage?

Case studies 
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U: the set of all 
possible key values

K: actual 
set of keys  

in your data



• Hash Table: use a (hash) function to map key to index of 
the table (array) 
• Element x is stored in T[h(x.key)]  
• hash function: int hash (Key k) // return value 0…m-1

Hash Table
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Collision: when 
two different keys 

are mapped to 
same index. 

Can collision be 
avoided? 

Is it possible to design a hash function that is one-to-one?  
Hint: domain and condomain of hash()? 



• a large universe set U 
• A set K of actually occurred 

keys, |K| << |U| (much much 
smaller)  

• Table T of size m, 
• A hash function: 
• Given |U| > |m|, hash function 

is many-to-one 

• by pigeonhole theorem 
• Collisions cannot be avoided 

but its chances can be 
reduced using a “good” hash 
function

Hashing: unavoidable collision
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So that we don’t waste memory space



HashTable Operations
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• If there is no collision:  
• Insert 

• Table[h(“john”)]=Elem
ent(“John”, 25000) 

• Delete 

• Table[h(“john”)]=NULL 
• Search  

• return Table[h(“john”)] 
• All constant time O(1) 



Hash Function
• A hash function:                                      . Given 

an element x, x is stored in T[h(x.key)]   
• Good hash function: 

• fast to compute  
• Ideally, map any key equally likely to any of 

the slots, independent of other keys 
• Hash Function:  

• first stage: map non-integer key to integer 
• second stage: map integer to [0…m-1]
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First stage: any type to integer
• Any basic type is represented in binary  
• Composite type which is made up of basic type  

• a character string (each char is coded as an int by ASCII 
code), e.g.,“pt” 
• add all chars up, ‘p’+’t’=112+116=228 
• radix notation: ‘p’*128+’t’=14452  

• treat “pt” as base 128 number…  
• a point type: (x,y) an ordered pair of int 

• x+y 
• ax+by // pick some non-zero constants a, b 
• …  

• IP address:four integers in range of 0…255 
• add them up 
• radix notation: 150*2563+108*2562+68*256+26
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Hash Function: second stage
• Division method: divide integer by m (size of 

hash table) and take remainder 
• h(key) = key mod m 

• if key’s value are randomly uniformly distributed 
all integer values, the above hash function is 
uniform 

• But often times data are not randomly 
distributed, 
• What if m=100, all keys have same last two digits?  
• Similarly, if m=2p, then result is simply the lowest-

ordre p bits  
• Rule of thumbs: choose m to be a prime not too 

close to exact powers of 2 11



Hash Function: second stage
• Multiplication method: pick a constant A in the 

range of (0,1),  

• take fraction part of kA, and multiply with m 
• e.g., m=10000,                                

h(123456)=41. 
• Advantage: m could be exact power of 2…
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Multiplication Method
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Exercise 
• Write a hash function that maps string type to a 

hash table of size 250 
• First stage:  using radix notation  

• “Hello!” => ‘H’*128^5+’e’*128^4+…+’!’  
• Second stage:  

•  x mod 250  
• How do you implement it efficiently?  

• Recall modular arithmetic theorem? 
• (x+y) mod n = ((x mod n)+(y mod n)) mod n 
• (x * y) mod n = ((x mod n)*(y mod n)) mod n 
• (x^e) mod n = (x mod n)^e mod n 
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Exercise 
• Write a hash function that maps a point type as 

below to a hash table of size 100 
class point{ 
    int x, y; 
}
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Collision Resolution
• Recall that h(.) is not one-to-one, so it maps 

multiple keys to same slot:  
• for distinct k1, k2, h(k1)=h(k2) => collision 

• Two different ways to resolve collision 
• Chaining: store colliding keys in a linked list 

(bucket) at the hash table slot  
• dynamic memory allocation, storing 

pointers (overhead) 
• Open addressing: if slot is taken, try 

another, and another (a probing sequence)  
• clustering problem. 
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Chaining
• Chaining: store colliding elements in a linked list at 

the same hash table slot  
• if all keys are hashed to same slot, hash table 

degenerates to a linked list.  

• C++: NodePtr T[m]; 
• STL: vector<list<HashedObject>> T; 
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Here doubly-linked list is used 



Chaining: operations
• Insert (T,x):  

• insert x at the head of T[h(x.key)] 
• Running time (worst and best case): O(1) 

• Search (T,k) 
• search for an element with key x in list 

T[h(k)] 
• Delete (T,x) 

• Delete x from the list T[h(x.key)]  
• Running time of search and delete: 

proportional to length of list stored in h(x.key)
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• Consider a hash table T with m slots stores n 
elements.  
• load factor  

• If any given element is equally likely to hash 
into any of the m slots, independently of 
where any other element is hashed to, then 
average length of lists is 
• search and delete takes 

• If all keys are hashed to same slot, hash table 
degenerates to a linked list 
• search and delete takes 

Chaining: analysis
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Collision Resolution
• Open addressing: store colliding elements 

elsewhere in the table  
• Advantage: no need for dynamic allocation, 

no need to store pointers  
• When inserting: 

• examine (probe) a sequence of positions in hash table 
until find empty slot  

• e.g., linear probing: if T[h(x.key)] is taken, try slots: 
h(x.key)+1, h(x.key+2), …  

• When searching/deleting: 
• examine (probe) a sequence of positions in hash 

table until find element
20



Open Addressing
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• Hash function: extended to probe sequence (m 
functions): 

• insert element with key x: if h0(x) is taken, try 
h1(x), and then h2(x), until find an empty/deleted 
slot 

• Search for key x: if element at h0(x) is not a 
match, try h1(x), and then h2(x), ..until find 
matching element, or reach an empty slot 

• Delete key x: mark its slot as DELETED



Linear Probing
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• Probing sequence 
• hi(x)=(h(x)+i) mod m 

• probe sequence: h(x),h(x)
+1, h(x)+2, …  
• Continue until an empty 

slot is found 
• Problem: primary clustering  

• if there are multiple keys 
mapped to a slot, the slots 
after it tends to be occupied 

• Reason: all keys using 
same probing: +1, +2, … 



Quadratic Probing
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• probe sequence:  
• h0(x)=h(x) mod m  
• h1(x)=(h(x)+c1+c2) mod m  
• h2(x)=(h(x)+2c1+4c2) mod m 
• … 

• Problem:  
• secondary clustering 
• choose c1,c2,m carefully so that all slots are 

probed



Double Hashing
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• Use two functions f1,f2: 

• Probe sequence: 
• h0(x)=f1(x) mod m, 
• h1(x)=(f1(x)+f2(x)) mod m  
• h2(x)=(f1(x)+2f2(x)) mod m,… 

• f2(x) and m must be relatively prime for entire hash 
table to be searched/used 
• Two integers a, b are relatively prime with each 

other if their greatest common divisor is 1  
• e.g., m=2k, f2(x) be odd 
• or, m be prime, f2(x)<m



Design Hash Function
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• Goal: reduce collision by 
spread the hash values 
uniformly to 0…m-1 
• so that for any key, 

it’s equally likely to be 
hashed to 0, 1, …m-1 

• We know the U, the set 
of possible values that 
keys can take 

• But sometimes we don’t 
know K beforehand…  



Case studies 
• A web server: maintains all active clients’ info, using 

IP addr. as key  

• key is 32 bits long int, or x1.x2.x3.x4 (each 8 bits 
long, between 0 and 255) 

• Let’s try to use hash table to organize the data! 
• Suppose that we expect about 250 active clients… 

• So we use a table of length 250 (m=250)
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Hash function
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• A hash function h maps IP addr to positions in the table  
• Each position of table is in fact a bucket (a linked list 

that contains all IP addresses that are mapped to it) 
• (i.e., chaining is used) 



Design of Hash Function
• One possible hash function would map an IP address to 

the 8-bit number that is its last segment: 
• h(x1.x2.x3.x4) = x4 mod m  
• e.g., h(128.32.168.80) = 80 mod 250 = 250  

• But is this a good hash function? 
• Not if the last segment of an IP address tends to be a 

small number; then low-numbered buckets would be 
crowded. 

• Taking first segment of IP address also invites disaster, 
e.g., if most of our customers come from a certain area.
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How to choose a hash function?
• There is nothing inherently wrong with these two 

functions.  
• If our IP addr. were uniformly drawn from all 232 

possibilities, then these functions would behave 
well. 
• … the last segment would be equally likely to be 

any value from 0 to 255, so the table is 
balanced…  

• The problem is we have no guarantee that the 
probability of seeing all IP addresses is uniform. 
•  these are dynamic and changing over time. 
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How to choose a hash function?
• In most application:  

• fixed U, but the set of data K (i.e., IP addrs) are not 
necessarily uniformly randomly drawn from U  

• There is no single hash function that behaves well on all 
possible sets of data.  

• Given any hash function maps |U|=232  IP addrs to m=250 
slots 
• there exists a collection of at least 232/250=224 ≈16,000,000 IP 

addr that are mapped to same slot (or collide).   
• if data set K all come from this collection, hash table becomes 

linked list! 
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In General… 
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• If                         , then 
for any hash function h, 
there exists a set of N 
keys in U, such that all 
keys are hashed to 
same slot 

• Proof.(General pigeon-hole principle) if every slot 
has at most N-1 keys mapped to it under h, then 
there are at most (n-1)m elements in U. But we 
know |U| is larger than this, so …  

• Implication: no matter how careful you choose a 
hash function, there is always some input (S) that 
leads to a linear insertion/deletion/search time 



Solution: Universal Hashing
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• For any fixed hash function, h(.), there exists a 
set of n keys, such that all keys are hashed to 
same slot  

• Solution: randomly select a hash function from 
a carefully designed class of hash functions  
• For any input, we might choose a bad hash function 

on a run, and good hash function on another run… 
• averaged on different runs, performance is good



A family of hash functions

• Let us make the table size to be m = 257, a prime number! 

• Every IP address x as a quadruple x = (x1, x2, x3, x4) of integers 
(all less than m).

• Fix any four numbers (less than 257), e.g., 87, 23, 125, and 4, we 
can define a function h() as follows:

•   

• In general, for any four coefficients a1,...,a4 ∈{0,1,…, n−1}write 
a = (a1, a2, a3, a4), and define ha as follows:
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Universal hash
Consider any pair of distinct IP addresses x = (x1,...,x4) and y = 
(y1,...,y4). If the coefficients a = (a1, . . . , a4) are chosen uniformly 
at random from {0,1,..., m− 1}, then 

• Proof omitted.

• Implication: given any pair of diff keys, the randomly selected hash 
function maps them to same slot with prob. 1/m.

• For a set S of data, the average/expected chain length is |S|/m=n/m=

• => Very good average performance 
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Let

The above set of hash functions is universal: For any two 
distinct data items x and y, exactly 1/m of all the hash 
functions in H map x and y to the slot, where n is the number 
of slots.

A class of universal hash
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Two-level hash table 
• Perfect hashing: if we fix the set S, can we find a 

hash function h so that all lookups are constant 
time?  

• Use universal hash functions with 2-level 
scheme 
1. hash into a table of size m using universal 

hashing (some collision unless really lucky) 
2. rehash each slot, here we pick a random h, 

and try it out, if collision, try another one, … 
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Note: Cryptographic hash function
• It is a mathematical algorithm 

• maps data of arbitrary size to a bit string of a 
fixed size (a hash function)  

• designed to be a one-way function, that is, a 
function which is infeasible to invert. 

• only way to recreate input data from an ideal 
cryptographic hash function's output is to 
attempt a brute-force search of possible 
inputs to see if they produce a match, or use 
a "rainbow table" of matched hashes.
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Properties of crypt. hash function
• Ideally,  

• it is deterministic so the same message 
always results in the same hash 

• it is quick to compute the hash value for any given 
message 

• it is infeasible to generate a message from its hash 
value except by trying all possible messages 

• a small change to a message should change the hash 
value so extensively that the new hash value appears 
uncorrelated with the old hash value 

• it is infeasible to find two different messages with the 
same hash value
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Cryp. hash functions
• Application of crypt. hash function:  

• ensure integrity of everything from digital certificates 
for HTTPS websites, to managing commits in code 
repositories, and protecting users against forged 
documents. 

• Recently, Google announced a public collision in the 
SHA-1 algorithm 
• with enough computing power — roughly 110 years of 

computing from a single GPU — you can produce a 
collision, effectively breaking the algorithm. 

• Two PDF files were shown to be hashed to same hash  
• Allow malicious parties to tamper with Web 

contents… 
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