
HashTable

CISC5835, Computer Algorithms

CIS, Fordham Univ.

Instructor: X. Zhang

Fall 2018

Acknowledgement
• The set of slides have used materials from the

following resources
• Slides for textbook by Dr. Y. Chen from

Shanghai Jiaotong Univ.
• Slides from Dr. M. Nicolescu from UNR
• Slides sets by Dr. K. Wayne from Princeton

• which in turn have borrowed materials
from other resources

• Other online resources

2

• Dictionary ADT: a dynamic set of elements supporting
INSERT, DELETE, SEARCH operations
• elements have distinct key fields
• DELETE, SEARCH by key

• Different ways to implement Dictionary
• unsorted array

• insert O(1), delete O(n), search O(n)
• sorted array

• insert O(n), delete O(n), search O(log n)
• binary search tree

• insert O(log n), delete O(log n), search O(log n)
• linked list …

• Can we have “almost” constant time insert/delete/
search?

Support for Dictionary

3

NULL

• Direct address table: use key as index into the array
• T[i] stores the element whose key is i

• How big is the table?
• big enough to have one slot for every possible key

Towards constant time

4

T
Insert (element(2,Alice))
 T[2]=element(2, Alice);
Delete (element(4))
 T[4]=NULL;
Search (element(5))
 return T[5];

2, Alice

0

1

2

4, Bob

5, Ed

….

NULL

U: the set of all
possible key values

K: actual
set of keys

in your data

NULL

NULL

• A web server: maintains all active clients’ info, using IP
addr. as key

• Universe of keys: the set of all possible IPv4 addr., |U|=232
• much bigger than total # of active clients
• Too big to use direct access table:

• a table with 232 entries, if each entry is 32bytes, then
128GB is needed!

• How to have constant accessing time, while not requiring huge memory usage?

Case studies

5

U: the set of all
possible key values

K: actual
set of keys

in your data

• Hash Table: use a (hash) function to map key to index of
the table (array)
• Element x is stored in T[h(x.key)]
• hash function: int hash (Key k) // return value 0…m-1

Hash Table

6

Collision: when
two different keys

are mapped to
same index.

Can collision be
avoided?

Is it possible to design a hash function that is one-to-one?
Hint: domain and condomain of hash()?

• a large universe set U
• A set K of actually occurred

keys, |K| << |U| (much much
smaller)

• Table T of size m,
• A hash function:
• Given |U| > |m|, hash function

is many-to-one

• by pigeonhole theorem
• Collisions cannot be avoided

but its chances can be
reduced using a “good” hash
function

Hashing: unavoidable collision

7

So that we don’t waste memory space

HashTable Operations

8

• If there is no collision:
• Insert

• Table[h(“john”)]=Elem
ent(“John”, 25000)

• Delete

• Table[h(“john”)]=NULL
• Search

• return Table[h(“john”)]
• All constant time O(1)

Hash Function
• A hash function: . Given

an element x, x is stored in T[h(x.key)]
• Good hash function:

• fast to compute
• Ideally, map any key equally likely to any of

the slots, independent of other keys
• Hash Function:

• first stage: map non-integer key to integer
• second stage: map integer to [0…m-1]

9

First stage: any type to integer
• Any basic type is represented in binary
• Composite type which is made up of basic type

• a character string (each char is coded as an int by ASCII
code), e.g.,“pt”
• add all chars up, ‘p’+’t’=112+116=228
• radix notation: ‘p’*128+’t’=14452

• treat “pt” as base 128 number…
• a point type: (x,y) an ordered pair of int

• x+y
• ax+by // pick some non-zero constants a, b
• …

• IP address:four integers in range of 0…255
• add them up
• radix notation: 150*2563+108*2562+68*256+26

10

Hash Function: second stage
• Division method: divide integer by m (size of

hash table) and take remainder
• h(key) = key mod m

• if key’s value are randomly uniformly distributed
all integer values, the above hash function is
uniform

• But often times data are not randomly
distributed,
• What if m=100, all keys have same last two digits?
• Similarly, if m=2p, then result is simply the lowest-

ordre p bits
• Rule of thumbs: choose m to be a prime not too

close to exact powers of 2 11

Hash Function: second stage
• Multiplication method: pick a constant A in the

range of (0,1),

• take fraction part of kA, and multiply with m
• e.g., m=10000,

h(123456)=41.
• Advantage: m could be exact power of 2…

12

Multiplication Method

13

Exercise
• Write a hash function that maps string type to a

hash table of size 250
• First stage: using radix notation

• “Hello!” => ‘H’*128^5+’e’*128^4+…+’!’
• Second stage:

• x mod 250
• How do you implement it efficiently?

• Recall modular arithmetic theorem?
• (x+y) mod n = ((x mod n)+(y mod n)) mod n
• (x * y) mod n = ((x mod n)*(y mod n)) mod n
• (x^e) mod n = (x mod n)^e mod n

14

X

Exercise
• Write a hash function that maps a point type as

below to a hash table of size 100
class point{
 int x, y;
}

15

Collision Resolution
• Recall that h(.) is not one-to-one, so it maps

multiple keys to same slot:
• for distinct k1, k2, h(k1)=h(k2) => collision

• Two different ways to resolve collision
• Chaining: store colliding keys in a linked list

(bucket) at the hash table slot
• dynamic memory allocation, storing

pointers (overhead)
• Open addressing: if slot is taken, try

another, and another (a probing sequence)
• clustering problem.

16

Chaining
• Chaining: store colliding elements in a linked list at

the same hash table slot
• if all keys are hashed to same slot, hash table

degenerates to a linked list.

• C++: NodePtr T[m];
• STL: vector<list<HashedObject>> T;

17

Here doubly-linked list is used

Chaining: operations
• Insert (T,x):

• insert x at the head of T[h(x.key)]
• Running time (worst and best case): O(1)

• Search (T,k)
• search for an element with key x in list

T[h(k)]
• Delete (T,x)

• Delete x from the list T[h(x.key)]
• Running time of search and delete:

proportional to length of list stored in h(x.key)

18

• Consider a hash table T with m slots stores n
elements.
• load factor

• If any given element is equally likely to hash
into any of the m slots, independently of
where any other element is hashed to, then
average length of lists is
• search and delete takes

• If all keys are hashed to same slot, hash table
degenerates to a linked list
• search and delete takes

Chaining: analysis

19

Collision Resolution
• Open addressing: store colliding elements

elsewhere in the table
• Advantage: no need for dynamic allocation,

no need to store pointers
• When inserting:

• examine (probe) a sequence of positions in hash table
until find empty slot

• e.g., linear probing: if T[h(x.key)] is taken, try slots:
h(x.key)+1, h(x.key+2), …

• When searching/deleting:
• examine (probe) a sequence of positions in hash

table until find element
20

Open Addressing

21

• Hash function: extended to probe sequence (m
functions):

• insert element with key x: if h0(x) is taken, try
h1(x), and then h2(x), until find an empty/deleted
slot

• Search for key x: if element at h0(x) is not a
match, try h1(x), and then h2(x), ..until find
matching element, or reach an empty slot

• Delete key x: mark its slot as DELETED

Linear Probing

22

• Probing sequence
• hi(x)=(h(x)+i) mod m

• probe sequence: h(x),h(x)
+1, h(x)+2, …
• Continue until an empty

slot is found
• Problem: primary clustering

• if there are multiple keys
mapped to a slot, the slots
after it tends to be occupied

• Reason: all keys using
same probing: +1, +2, …

Quadratic Probing

23

• probe sequence:
• h0(x)=h(x) mod m
• h1(x)=(h(x)+c1+c2) mod m
• h2(x)=(h(x)+2c1+4c2) mod m
• …

• Problem:
• secondary clustering
• choose c1,c2,m carefully so that all slots are

probed

Double Hashing

24

• Use two functions f1,f2:

• Probe sequence:
• h0(x)=f1(x) mod m,
• h1(x)=(f1(x)+f2(x)) mod m
• h2(x)=(f1(x)+2f2(x)) mod m,…

• f2(x) and m must be relatively prime for entire hash
table to be searched/used
• Two integers a, b are relatively prime with each

other if their greatest common divisor is 1
• e.g., m=2k, f2(x) be odd
• or, m be prime, f2(x)<m

Design Hash Function

25

• Goal: reduce collision by
spread the hash values
uniformly to 0…m-1
• so that for any key,

it’s equally likely to be
hashed to 0, 1, …m-1

• We know the U, the set
of possible values that
keys can take

• But sometimes we don’t
know K beforehand…

Case studies
• A web server: maintains all active clients’ info, using

IP addr. as key

• key is 32 bits long int, or x1.x2.x3.x4 (each 8 bits
long, between 0 and 255)

• Let’s try to use hash table to organize the data!
• Suppose that we expect about 250 active clients…

• So we use a table of length 250 (m=250)

26

Hash function

27

• A hash function h maps IP addr to positions in the table
• Each position of table is in fact a bucket (a linked list

that contains all IP addresses that are mapped to it)
• (i.e., chaining is used) 

Design of Hash Function
• One possible hash function would map an IP address to

the 8-bit number that is its last segment:
• h(x1.x2.x3.x4) = x4 mod m
• e.g., h(128.32.168.80) = 80 mod 250 = 250

• But is this a good hash function?
• Not if the last segment of an IP address tends to be a

small number; then low-numbered buckets would be
crowded.

• Taking first segment of IP address also invites disaster,
e.g., if most of our customers come from a certain area.

28

How to choose a hash function?
• There is nothing inherently wrong with these two

functions.
• If our IP addr. were uniformly drawn from all 232

possibilities, then these functions would behave
well.
• … the last segment would be equally likely to be

any value from 0 to 255, so the table is
balanced…

• The problem is we have no guarantee that the
probability of seeing all IP addresses is uniform.
• these are dynamic and changing over time.

29

How to choose a hash function?
• In most application:

• fixed U, but the set of data K (i.e., IP addrs) are not
necessarily uniformly randomly drawn from U

• There is no single hash function that behaves well on all
possible sets of data.

• Given any hash function maps |U|=232 IP addrs to m=250
slots
• there exists a collection of at least 232/250=224 ≈16,000,000 IP

addr that are mapped to same slot (or collide).
• if data set K all come from this collection, hash table becomes

linked list!

30

In General…

31

• If , then
for any hash function h,
there exists a set of N
keys in U, such that all
keys are hashed to
same slot

• Proof.(General pigeon-hole principle) if every slot
has at most N-1 keys mapped to it under h, then
there are at most (n-1)m elements in U. But we
know |U| is larger than this, so …

• Implication: no matter how careful you choose a
hash function, there is always some input (S) that
leads to a linear insertion/deletion/search time

Solution: Universal Hashing

32

• For any fixed hash function, h(.), there exists a
set of n keys, such that all keys are hashed to
same slot

• Solution: randomly select a hash function from
a carefully designed class of hash functions
• For any input, we might choose a bad hash function

on a run, and good hash function on another run…
• averaged on different runs, performance is good

A family of hash functions

• Let us make the table size to be m = 257, a prime number!

• Every IP address x as a quadruple x = (x1, x2, x3, x4) of integers
(all less than m).

• Fix any four numbers (less than 257), e.g., 87, 23, 125, and 4, we
can define a function h() as follows:

•

• In general, for any four coefficients a1,...,a4 ∈{0,1,…, n−1}write
a = (a1, a2, a3, a4), and define ha as follows:

33

Universal hash
Consider any pair of distinct IP addresses x = (x1,...,x4) and y =
(y1,...,y4). If the coefficients a = (a1, . . . , a4) are chosen uniformly
at random from {0,1,..., m− 1}, then

• Proof omitted.

• Implication: given any pair of diff keys, the randomly selected hash
function maps them to same slot with prob. 1/m.

• For a set S of data, the average/expected chain length is |S|/m=n/m=

• => Very good average performance

34

Let

The above set of hash functions is universal: For any two
distinct data items x and y, exactly 1/m of all the hash
functions in H map x and y to the slot, where n is the number
of slots.

A class of universal hash

35

Two-level hash table
• Perfect hashing: if we fix the set S, can we find a

hash function h so that all lookups are constant
time?

• Use universal hash functions with 2-level
scheme
1. hash into a table of size m using universal

hashing (some collision unless really lucky)
2. rehash each slot, here we pick a random h,

and try it out, if collision, try another one, …

36

Note: Cryptographic hash function
• It is a mathematical algorithm

• maps data of arbitrary size to a bit string of a
fixed size (a hash function)

• designed to be a one-way function, that is, a
function which is infeasible to invert.

• only way to recreate input data from an ideal
cryptographic hash function's output is to
attempt a brute-force search of possible
inputs to see if they produce a match, or use
a "rainbow table" of matched hashes.

37

Properties of crypt. hash function
• Ideally,

• it is deterministic so the same message
always results in the same hash

• it is quick to compute the hash value for any given
message

• it is infeasible to generate a message from its hash
value except by trying all possible messages

• a small change to a message should change the hash
value so extensively that the new hash value appears
uncorrelated with the old hash value

• it is infeasible to find two different messages with the
same hash value

38

Cryp. hash functions
• Application of crypt. hash function:

• ensure integrity of everything from digital certificates
for HTTPS websites, to managing commits in code
repositories, and protecting users against forged
documents.

• Recently, Google announced a public collision in the
SHA-1 algorithm
• with enough computing power — roughly 110 years of

computing from a single GPU — you can produce a
collision, effectively breaking the algorithm.

• Two PDF files were shown to be hashed to same hash
• Allow malicious parties to tamper with Web

contents…
39

