
Hadoop Distributed Filesystem
& I/O

Spring 2015,
X. Zhang

Fordham Univ.

MapReduce Programming Model

2

Input: a set of
 [key,value] pairs Output: a set of

 [key,value] pairs

Split

intermediate
 [key,value]
pairs

 [k1,v11,v12,
…]
 [k2,v21,v22,
…]
…

Shuffle

Target Usage of HDFS

• storing very large files: MB, GB, TB, PB…
• streaming data access: data is write-

once and read-many-times; data analysis
involve a large potion or all data
• optimize time to read whole data

(from beginning to the end…)
• Commodity hardware (of various

vendors), fault-tolerant

3

HDFS not suited for

• Low-latency data access
• Storing lots of small files
• incur too much memory overhead in name

node (which keeps meta data in memory)
• Multiple writers
• can only be written by a single writer

(program)
• Writing to arbitrary offsets in file
• only support writing to the end of file

4

File systems blocks

• Disk drive has a block size (e.g., 512 B) => basic
unit of data for disk read and write
•When reading/writing disk, we don’t go by bytes…

• Filesystems blocks, an integral multiple of disk
block size, typically a few kilobytes
•file system space is allocated in terms of block
•A file is stored as multiple blocks, each stored as
independent units (might be in different place in disk)
•Transparent to filesystem user/programmer:
• read(), write() calls take any length

• Commands such as df and fsck, operates on filesystem
block level 5

HDFS blocks

• 64MB per block by default
• Files in HDFS are broken into block-size

chunks, stored as independent units
• File smaller than 64 MB does not take a whole

block of storage …
• Different blocks of a file can be stored on different
nodes.
• Support very large files
• Each block replicated (for fault-tolerance and
availability)
• Map tasks normally operates on one block at a time =>
parallel processing, aggregate disk transfer rate… 6

HDFS: NameNode, DataNode

7

Master

Worker/Slaves

HDFS namenode
• Each HDFS cluster has one node operating as namenode

(master)
• Manages file system namespace, i.e.,
• filesystem tree structure
• metadata for all files/directories: e.g., permission info,

owner, last modification time, etc.
• Above info. stored in namenode’s local disk (i.e., local file

system) as two files:
• namespace image
• edit log

• Also cached in memory: where blocks of file are located …
(reconstructed from datanodes…)

• HDFS federation: allow multiple namenodes each manage a
subspace => support larger HDFS

8

HDFS datanode: worker/slave
• Stores file blocks and checksum for it.
• Retrieve blocks when client requests for it
• Update namenode with block information periodically

• before updating: verify checksums
• If checksum is incorrect for a particular block i.e. there is a disk

level corruption for that block, it skips that block while
reporting block information to namenode. => namenode
replicates block somewhere else.

• Send heartbeat message to namenode => namenode detects
datanode failure, and initiates replication of blocks

• Talk to each other to rebalance data, move and copy data around
and keep replication high.

9

HDFS namenode error resilience

• Namenode failure renders whole filesystem
useless
• as it acts as a map to filesystem

• Ways to make namenode resilient to failure
• backup to multiple filesystems (local

disk, and a remote NFS)
• secondary namenode
• periodically merge namespace image

and edit log of name node
• lags behind namenode 10

HDFS High Availability
• a pair of namenodes in an active- standby configuration. 	

• When active namenode fails, standby takes over its duties to continue servicing client
requests without a significant interruption. 	

• A few architectural changes are needed to allow this to happen:	

	

 •	

 The namenodes must use highly-available shared storage to share the edit log. (In
the initial implementation of HA this will require an NFS filer, but in future releases
more options will be provided, such as a BookKeeper-based system built on Zoo-
Keeper.) When a standby namenode comes up it reads up to the end of the shared
edit log to synchronize its state with the active namenode, and then continues to read
new entries as they are written by the active namenode. 	

	

 •	

 Datanodes must send block reports to both namenodes since the block mappings are
stored in a namenode’s memory, and not on disk. 	

	

 •	

 Clients must be configured to handle namenode failover, which uses a mechanism
that is transparent to users. 11

Outline

• Design of HDFS
• HDFS Concepts
• Command line interface (HDFS commands)
• URI and various file systems
• Accessing HDFS through HTTP, i.e., Web UI
• Java Programming API to HDFS

Access HDFS through commands
• Pseudo-distributed mode configuration

• Currently the default setting used …
!

	

 Two property: 	

	

 fs.default.name, set to hdfs://localhost/, a default filesystem for Hadoop (i.e., unless otherwise specified,
commands are referring to this file system)	

	

 e.g., hadoop fs -ls // list the default file system 	

	

 	

 Filesystems are specified by a URI: hdfs URI to configure Hadoop to use HDFS by default. 	

 HDFS daemons will use this property to determine the host and port for HDFS namenode. (Here
it’s on localhost, on the default HDFS port, 8020.)	

!
 And HDFS clients will use this property to work out where the namenode is running so they can
connect to it.	

 dfs.replication set to 1 13

File System Operations
• Read files, creating directories, moving files, copying files, deleting files, and

listing directories
• hadoop fs -help ## to see a summary of all filesystem commands
% hadoop fs -copyFromLocal input/docs/quangle.txt hdfs://localhost/user/tom/ quangle.txt	

% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt	

% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt	

Other commands: ls, mkdir … 	

!
[zhang@puppet ~]$ hadoop fs -ls
Found 12 items
-rw-r--r-- 1 zhang supergroup 1494 2015-01-27 16:20 Filter.class
-rw-r--r-- 1 zhang supergroup 1353 2015-01-27 16:20 Max.class
drwxr-xr-x - zhang supergroup 0 2015-01-18 16:37 in0
drwxr-xr-x - zhang supergroup 0 2015-01-13 17:36 input
drwxr-xr-x - zhang supergroup 0 2015-01-18 16:35 ncdc
drwxr-xr-x - zhang supergroup 0 2015-02-03 20:37 out2
drwxr-xr-x - zhang supergroup 0 2015-02-03 19:21 out3
drwxr-xr-x - zhang supergroup 0 2015-01-18 16:46 out_streaming
drwxr-xr-x - zhang supergroup 0 2015-01-18 16:58 out_streaming_new
drwxr-xr-x - zhang supergroup 0 2015-01-28 16:35 out_streaming_new3
drwxr-xr-x - zhang supergroup 0 2015-02-08 14:04 output
drwxr-xr-x - zhang supergroup 0 2015-01-27 16:00 record_count

14

Pseudo-distributed mode

15
To check whether they are running:
!
ps -aef | grep namenode

Apache Hadoop Main 2.6.0 API

• For now, focus on Package
org.apache.hadoop.mapreduce (replace
org.apache.hadoop.mapred).

• Use Index to look up class/interface by
name
• Mapper, Reducer: a generic type (C++

template class) with type parameters
• TextInputFormat, default InputFormat

used by mapper, decides how input data is
parsed into <key,value> pairs …

16

Outline
• Design of HDFS
• HDFS Concepts
• Command line interface (HDFS commands)
• URI and various file systems
• Accessing HDFS through HTTP, i.e., Web UI
• Java Programming API to HDFS
• Code walk-through
• Learn from example Codes
• Use the Apache online manual for MapReduce API

• Data Flows
• Advanced topics: data ingest, distcp, archives

Read HDFS File

18

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
public class FileSystemDoubleCat {
!
 public static void main(String[] args) throws Exception {
 String uri = args[0];
 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(URI.create(uri), conf);
 FSDataInputStream in = null;
 try {
 in = fs.open(new Path(uri));
 IOUtils.copyBytes(in, System.out, 4096, false);
 in.seek(0); // go back to the start of the file
 IOUtils.copyBytes(in, System.out, 4096, false);
 } finally {
 IOUtils.closeStream(in);
 }
 }
}

HDFS File Read Operation

• For now, focus on Package
org.apache.hadoop.mapreduce (replace
org.apache.hadoop.mapred).

• Use Index to look up class/interface by
name
• Mapper, Reducer: a generic type (C++

template class) with type parameters
• TextInputFormat, default InputFormat

used by mapper, decides how input data is
parsed into <key,value> pairs …

19

1. FileSystem fs = FileSystem.get(URI.create(uri), conf);
 FSDataInputStream in = null;
 in = fs.open(new Path(uri));

Remote Process Calls

FSDataInputStream:
stores locations of initial
blocks of file (returned by
NameNode)
connect to closest datenode.

NameNode: how does it work?
	

 •	

 a Listener object listens to TCP port serving RPC requests from client,	

	

 	

 accepts new connections, and adds to Server object’s connectionList	

	

 •	

 a number of RPC Reader threads read requests from connections in

connectionList, decode the RPC requests, and add them to rpc call queue –
Server.callQueue.	

	

 •	

 Actual worker threads kick in – these are the Handler threads. 	

	

 	

 The threads pick up RPC calls and process them. The processing involves

the following:	

	

 ◦	

 First grab the write lock for the namespace	

	

 ◦	

 Change the in-memory namespace	

	

 ◦	

 Write to the in-memory FSEdits log (journal)	

	

 •	

 Now, release the write lock on the namespace. Note that the journal has not

been sync’d yet – this means we cannot return success to the RPC client yet	

	

 •	

 Next, each handler thread calls logSync. Upon returning from this call, it is

guaranteed that the logfile modification have been sync’d to disk.

20

HDFS Write Operation

21

 FileSystem fs = FileSystem.get(
 URI.create(dst), conf);
 outputStream out =
 fs.create(new
 Path(dst),..)

data queue, ack queue

Default Replication Strategy

• two properties
• dfs.replication.min
• dfs.replication

• First replica: same node
as client

• Second replica: off-rack
at random

• third replica: same rack
as second one, at
random

• other replica: randomly
placed on the cluster 22

Coherency Model
A coherency model for a filesystem describes the data visibility of reads and
writes for a file.	

After creating a file, it is visible in filesystem namespace, as expected:	

Path p = new Path("p"); fs.create(p); assertThat(fs.exists(p), is(true));	

However, any content written to the file is not guaranteed to be visible, even if the stream is flushed. So the file appears to
have a length of zero:	

Path p = new Path("p"); 
OutputStream out = fs.create(p); out.write("content".getBytes("UTF-8")); out.flush(); assertThat(fs.getFileStatus(p).getLen(), is(0L));	

• it is always the current block being written that is not visible to other readers.HDFS
provides a method for forcing all buffers to be synchronized to the datanodes via the sync()
method on FSDataOutputStream. After a successful return from sync(), HDFS guarantees that the
data written up to that point in the file is persisted and visible to all new readers:8	

Path p = new Path("p"); 
FSDataOutputStream out = fs.create(p); out.write("content".getBytes("UTF-8"));  
out.flush(); 
out.sync(); 
assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));	

23

Outline
• Design of HDFS
• HDFS Concepts
• Command line interface (HDFS commands)
• URI and various file systems
• Accessing HDFS through HTTP, i.e., Web UI
• Java Programming API to HDFS
• Code walk-through
• Learn from example Codes
• Use the Apache online manual for MapReduce API

• Data Flows
• Advanced topics: data ingest, distcp, archives
• Hadoop I/O: compression/decompression, splittable compression

scheme, serialization (writables)

25

