
CISC 1100: Structures of Computer Science
Chapter 8
Algorithms

Gary M. Weiss

Fordham University
Department of Computer and Information Sciences

Fall, 2010

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



What is an algorithm?

There are many ways to define an algorithm

An algorithm is a step-by-step procedure for carrying out a
task or solving a problem
an unambiguous computational procedure that takes some
input and generates some output
a set of well-defined instructions for completing a task with a
finite amount of effort in a finite amount of time
a set of instructions that can be mechanically performed in
order to solve a problem

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



What is an algorithm?

There are many ways to define an algorithm

An algorithm is a step-by-step procedure for carrying out a
task or solving a problem

an unambiguous computational procedure that takes some
input and generates some output
a set of well-defined instructions for completing a task with a
finite amount of effort in a finite amount of time
a set of instructions that can be mechanically performed in
order to solve a problem

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



What is an algorithm?

There are many ways to define an algorithm

An algorithm is a step-by-step procedure for carrying out a
task or solving a problem
an unambiguous computational procedure that takes some
input and generates some output

a set of well-defined instructions for completing a task with a
finite amount of effort in a finite amount of time
a set of instructions that can be mechanically performed in
order to solve a problem

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



What is an algorithm?

There are many ways to define an algorithm

An algorithm is a step-by-step procedure for carrying out a
task or solving a problem
an unambiguous computational procedure that takes some
input and generates some output
a set of well-defined instructions for completing a task with a
finite amount of effort in a finite amount of time

a set of instructions that can be mechanically performed in
order to solve a problem

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



What is an algorithm?

There are many ways to define an algorithm

An algorithm is a step-by-step procedure for carrying out a
task or solving a problem
an unambiguous computational procedure that takes some
input and generates some output
a set of well-defined instructions for completing a task with a
finite amount of effort in a finite amount of time
a set of instructions that can be mechanically performed in
order to solve a problem

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Key aspects of an algorithm

An algorithm must be precise

The description of an algorithm must be clear and detailed
enough so that someone (or something) can execute it
One way to ensure this is to describe it using actual computer
code, which is guaranteed to be unambiguous
This is hard to read so pseudocode is often used instead, which
is designed to be readable by humans
Since we assume no programming background, we will use
English but will try hard to be clear and precise

An algorithm operates on input and generates output

An algorithm completes in a finite number of steps

This is a non-trivial requirement since certain methods may
sometimes run forever!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Key aspects of an algorithm

An algorithm must be precise

The description of an algorithm must be clear and detailed
enough so that someone (or something) can execute it

One way to ensure this is to describe it using actual computer
code, which is guaranteed to be unambiguous
This is hard to read so pseudocode is often used instead, which
is designed to be readable by humans
Since we assume no programming background, we will use
English but will try hard to be clear and precise

An algorithm operates on input and generates output

An algorithm completes in a finite number of steps

This is a non-trivial requirement since certain methods may
sometimes run forever!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Key aspects of an algorithm

An algorithm must be precise

The description of an algorithm must be clear and detailed
enough so that someone (or something) can execute it
One way to ensure this is to describe it using actual computer
code, which is guaranteed to be unambiguous

This is hard to read so pseudocode is often used instead, which
is designed to be readable by humans
Since we assume no programming background, we will use
English but will try hard to be clear and precise

An algorithm operates on input and generates output

An algorithm completes in a finite number of steps

This is a non-trivial requirement since certain methods may
sometimes run forever!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Key aspects of an algorithm

An algorithm must be precise

The description of an algorithm must be clear and detailed
enough so that someone (or something) can execute it
One way to ensure this is to describe it using actual computer
code, which is guaranteed to be unambiguous
This is hard to read so pseudocode is often used instead, which
is designed to be readable by humans

Since we assume no programming background, we will use
English but will try hard to be clear and precise

An algorithm operates on input and generates output

An algorithm completes in a finite number of steps

This is a non-trivial requirement since certain methods may
sometimes run forever!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Key aspects of an algorithm

An algorithm must be precise

The description of an algorithm must be clear and detailed
enough so that someone (or something) can execute it
One way to ensure this is to describe it using actual computer
code, which is guaranteed to be unambiguous
This is hard to read so pseudocode is often used instead, which
is designed to be readable by humans
Since we assume no programming background, we will use
English but will try hard to be clear and precise

An algorithm operates on input and generates output

An algorithm completes in a finite number of steps

This is a non-trivial requirement since certain methods may
sometimes run forever!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Key aspects of an algorithm

An algorithm must be precise

The description of an algorithm must be clear and detailed
enough so that someone (or something) can execute it
One way to ensure this is to describe it using actual computer
code, which is guaranteed to be unambiguous
This is hard to read so pseudocode is often used instead, which
is designed to be readable by humans
Since we assume no programming background, we will use
English but will try hard to be clear and precise

An algorithm operates on input and generates output

An algorithm completes in a finite number of steps

This is a non-trivial requirement since certain methods may
sometimes run forever!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Key aspects of an algorithm

An algorithm must be precise

The description of an algorithm must be clear and detailed
enough so that someone (or something) can execute it
One way to ensure this is to describe it using actual computer
code, which is guaranteed to be unambiguous
This is hard to read so pseudocode is often used instead, which
is designed to be readable by humans
Since we assume no programming background, we will use
English but will try hard to be clear and precise

An algorithm operates on input and generates output

An algorithm completes in a finite number of steps

This is a non-trivial requirement since certain methods may
sometimes run forever!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Applications of algorithms

Algorithms can implement many of the operations we study in
this book, such as set membership and union

Data structures and the algorithms that operate on them are
so important to CS that most CS majors are required to take a
course on data structures

Sets and Sequences are examples of data structures
membership is a set operation implemented using an algorithm
union and intersection are also set operations implemented
using an algorithm
How might you implement these operations?

Without such structures and without efficient algorithms for
operating on them, you could never play a video game

Algorithms can also used to implement mathematical
processes/entities. Most mathematical functions are
implemented using computer algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Applications of algorithms

Algorithms can implement many of the operations we study in
this book, such as set membership and union

Data structures and the algorithms that operate on them are
so important to CS that most CS majors are required to take a
course on data structures

Sets and Sequences are examples of data structures
membership is a set operation implemented using an algorithm
union and intersection are also set operations implemented
using an algorithm
How might you implement these operations?

Without such structures and without efficient algorithms for
operating on them, you could never play a video game

Algorithms can also used to implement mathematical
processes/entities. Most mathematical functions are
implemented using computer algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Applications of algorithms

Algorithms can implement many of the operations we study in
this book, such as set membership and union

Data structures and the algorithms that operate on them are
so important to CS that most CS majors are required to take a
course on data structures

Sets and Sequences are examples of data structures

membership is a set operation implemented using an algorithm
union and intersection are also set operations implemented
using an algorithm
How might you implement these operations?

Without such structures and without efficient algorithms for
operating on them, you could never play a video game

Algorithms can also used to implement mathematical
processes/entities. Most mathematical functions are
implemented using computer algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Applications of algorithms

Algorithms can implement many of the operations we study in
this book, such as set membership and union

Data structures and the algorithms that operate on them are
so important to CS that most CS majors are required to take a
course on data structures

Sets and Sequences are examples of data structures
membership is a set operation implemented using an algorithm

union and intersection are also set operations implemented
using an algorithm
How might you implement these operations?

Without such structures and without efficient algorithms for
operating on them, you could never play a video game

Algorithms can also used to implement mathematical
processes/entities. Most mathematical functions are
implemented using computer algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Applications of algorithms

Algorithms can implement many of the operations we study in
this book, such as set membership and union

Data structures and the algorithms that operate on them are
so important to CS that most CS majors are required to take a
course on data structures

Sets and Sequences are examples of data structures
membership is a set operation implemented using an algorithm
union and intersection are also set operations implemented
using an algorithm

How might you implement these operations?

Without such structures and without efficient algorithms for
operating on them, you could never play a video game

Algorithms can also used to implement mathematical
processes/entities. Most mathematical functions are
implemented using computer algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Applications of algorithms

Algorithms can implement many of the operations we study in
this book, such as set membership and union

Data structures and the algorithms that operate on them are
so important to CS that most CS majors are required to take a
course on data structures

Sets and Sequences are examples of data structures
membership is a set operation implemented using an algorithm
union and intersection are also set operations implemented
using an algorithm
How might you implement these operations?

Without such structures and without efficient algorithms for
operating on them, you could never play a video game

Algorithms can also used to implement mathematical
processes/entities. Most mathematical functions are
implemented using computer algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Applications of algorithms

Algorithms can implement many of the operations we study in
this book, such as set membership and union

Data structures and the algorithms that operate on them are
so important to CS that most CS majors are required to take a
course on data structures

Sets and Sequences are examples of data structures
membership is a set operation implemented using an algorithm
union and intersection are also set operations implemented
using an algorithm
How might you implement these operations?

Without such structures and without efficient algorithms for
operating on them, you could never play a video game

Algorithms can also used to implement mathematical
processes/entities. Most mathematical functions are
implemented using computer algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Applications of algorithms

Algorithms can implement many of the operations we study in
this book, such as set membership and union

Data structures and the algorithms that operate on them are
so important to CS that most CS majors are required to take a
course on data structures

Sets and Sequences are examples of data structures
membership is a set operation implemented using an algorithm
union and intersection are also set operations implemented
using an algorithm
How might you implement these operations?

Without such structures and without efficient algorithms for
operating on them, you could never play a video game

Algorithms can also used to implement mathematical
processes/entities. Most mathematical functions are
implemented using computer algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Real World applications of algorithms

Algorithms are also used to solve specific, complex, real world
problems:

Google’s success is largely due to its PageRank algorithm,
which determines the “importance” of every web page

Prim’s algorithm can be used by a cable company to
determine how to connect all of the homes in a town using
the least amount of cable

Dijkstra’s algorithm can be used to find the shortest route
between a city and all other cities

The RSA encryption algorithm makes e-commerce possible by
allowing for secure transactions over the Web

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Real World applications of algorithms

Algorithms are also used to solve specific, complex, real world
problems:

Google’s success is largely due to its PageRank algorithm,
which determines the “importance” of every web page

Prim’s algorithm can be used by a cable company to
determine how to connect all of the homes in a town using
the least amount of cable

Dijkstra’s algorithm can be used to find the shortest route
between a city and all other cities

The RSA encryption algorithm makes e-commerce possible by
allowing for secure transactions over the Web

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Real World applications of algorithms

Algorithms are also used to solve specific, complex, real world
problems:

Google’s success is largely due to its PageRank algorithm,
which determines the “importance” of every web page

Prim’s algorithm can be used by a cable company to
determine how to connect all of the homes in a town using
the least amount of cable

Dijkstra’s algorithm can be used to find the shortest route
between a city and all other cities

The RSA encryption algorithm makes e-commerce possible by
allowing for secure transactions over the Web

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Real World applications of algorithms

Algorithms are also used to solve specific, complex, real world
problems:

Google’s success is largely due to its PageRank algorithm,
which determines the “importance” of every web page

Prim’s algorithm can be used by a cable company to
determine how to connect all of the homes in a town using
the least amount of cable

Dijkstra’s algorithm can be used to find the shortest route
between a city and all other cities

The RSA encryption algorithm makes e-commerce possible by
allowing for secure transactions over the Web

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Real World applications of algorithms

Algorithms are also used to solve specific, complex, real world
problems:

Google’s success is largely due to its PageRank algorithm,
which determines the “importance” of every web page

Prim’s algorithm can be used by a cable company to
determine how to connect all of the homes in a town using
the least amount of cable

Dijkstra’s algorithm can be used to find the shortest route
between a city and all other cities

The RSA encryption algorithm makes e-commerce possible by
allowing for secure transactions over the Web

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Algorithms and Computers

Algorithms have been used for thousands of years and have
been executed by humans (possibly with pencil and paper)

We all know the algorithm for performing long division

Work on algorithms exploded with the development of fast
digital computers and are a cornerstone of Computer Science

Many algorithms are only feasible when implemented on
computers

But even with today’s fast computers, some problems still
cannot be solved using existing algorithms

The search for better and more efficient algorithms continues

Interestingly enough, some problems have been shown to have
no algorithmic solution (e.g., the “halting problem”)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Algorithms and Computers

Algorithms have been used for thousands of years and have
been executed by humans (possibly with pencil and paper)

We all know the algorithm for performing long division

Work on algorithms exploded with the development of fast
digital computers and are a cornerstone of Computer Science

Many algorithms are only feasible when implemented on
computers

But even with today’s fast computers, some problems still
cannot be solved using existing algorithms

The search for better and more efficient algorithms continues

Interestingly enough, some problems have been shown to have
no algorithmic solution (e.g., the “halting problem”)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Algorithms and Computers

Algorithms have been used for thousands of years and have
been executed by humans (possibly with pencil and paper)

We all know the algorithm for performing long division

Work on algorithms exploded with the development of fast
digital computers and are a cornerstone of Computer Science

Many algorithms are only feasible when implemented on
computers

But even with today’s fast computers, some problems still
cannot be solved using existing algorithms

The search for better and more efficient algorithms continues

Interestingly enough, some problems have been shown to have
no algorithmic solution (e.g., the “halting problem”)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Algorithms and Computers

Algorithms have been used for thousands of years and have
been executed by humans (possibly with pencil and paper)

We all know the algorithm for performing long division

Work on algorithms exploded with the development of fast
digital computers and are a cornerstone of Computer Science

Many algorithms are only feasible when implemented on
computers

But even with today’s fast computers, some problems still
cannot be solved using existing algorithms

The search for better and more efficient algorithms continues

Interestingly enough, some problems have been shown to have
no algorithmic solution (e.g., the “halting problem”)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Algorithms and Computers

Algorithms have been used for thousands of years and have
been executed by humans (possibly with pencil and paper)

We all know the algorithm for performing long division

Work on algorithms exploded with the development of fast
digital computers and are a cornerstone of Computer Science

Many algorithms are only feasible when implemented on
computers

But even with today’s fast computers, some problems still
cannot be solved using existing algorithms

The search for better and more efficient algorithms continues

Interestingly enough, some problems have been shown to have
no algorithmic solution (e.g., the “halting problem”)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Algorithms and Computers

Algorithms have been used for thousands of years and have
been executed by humans (possibly with pencil and paper)

We all know the algorithm for performing long division

Work on algorithms exploded with the development of fast
digital computers and are a cornerstone of Computer Science

Many algorithms are only feasible when implemented on
computers

But even with today’s fast computers, some problems still
cannot be solved using existing algorithms

The search for better and more efficient algorithms continues

Interestingly enough, some problems have been shown to have
no algorithmic solution (e.g., the “halting problem”)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Searching and Sorting Algorithms

Two of the most studied classes of algorithms in CS are
searching and sorting algorithms

Search algorithms are important because quickly locating
information is central to many tasks
Sorting algorithms are important because information can be
located much more quickly if it is first sorted

Searching and sorting algorithms are often used to introduce
the topic of algorithms and we follow this convention

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Search Algorithms

Problem: determine if an element x is in a list L

We will look at two simple search algorithms

Linear search
Binary search

The elements in L have some ordering, so that there is a first
element, second element, etc.

These algorithms can easily be applied to sets since we do not
exploit this ordering (i.e., we do not assume the elements are
sorted).

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Linear Search Algorithm

The algorithm below will search for an element x in List L and will
return “FOUND” if x is in the list and “NOT FOUND” otherwise.
L has n items and L[i ] refers to the i th element in L.

Linear Search Algorithm

1 repeat as i varies from 1 to n

2 if L[i ] = x then return “FOUND” and stop

3 return “NOT FOUND”

Note: The repeat loop spans lines 1 and 2.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Efficiency of Linear Search Algorithm

If x appears once in L, on average how many comparisons
(line 2) would you expect the algorithm to make on average?

On average n/2 comparisons

If x does not appear in L, how many comparisons would you
expect the algorithm to make?

n comparisons

Would such an algorithm be useful for finding someone in a
large (unsorted) phone book?

No, it would require scanning through the entire phone book
(phone books are sorted for a reason)!

What if we had to check 1,000 people to see if they are in the
phone book?

Then it would be even worse!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Efficiency of Linear Search Algorithm

If x appears once in L, on average how many comparisons
(line 2) would you expect the algorithm to make on average?

On average n/2 comparisons

If x does not appear in L, how many comparisons would you
expect the algorithm to make?

n comparisons

Would such an algorithm be useful for finding someone in a
large (unsorted) phone book?

No, it would require scanning through the entire phone book
(phone books are sorted for a reason)!

What if we had to check 1,000 people to see if they are in the
phone book?

Then it would be even worse!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Efficiency of Linear Search Algorithm

If x appears once in L, on average how many comparisons
(line 2) would you expect the algorithm to make on average?

On average n/2 comparisons

If x does not appear in L, how many comparisons would you
expect the algorithm to make?

n comparisons

Would such an algorithm be useful for finding someone in a
large (unsorted) phone book?

No, it would require scanning through the entire phone book
(phone books are sorted for a reason)!

What if we had to check 1,000 people to see if they are in the
phone book?

Then it would be even worse!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Efficiency of Linear Search Algorithm

If x appears once in L, on average how many comparisons
(line 2) would you expect the algorithm to make on average?

On average n/2 comparisons

If x does not appear in L, how many comparisons would you
expect the algorithm to make?

n comparisons

Would such an algorithm be useful for finding someone in a
large (unsorted) phone book?

No, it would require scanning through the entire phone book
(phone books are sorted for a reason)!

What if we had to check 1,000 people to see if they are in the
phone book?

Then it would be even worse!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Efficiency of Linear Search Algorithm

If x appears once in L, on average how many comparisons
(line 2) would you expect the algorithm to make on average?

On average n/2 comparisons

If x does not appear in L, how many comparisons would you
expect the algorithm to make?

n comparisons

Would such an algorithm be useful for finding someone in a
large (unsorted) phone book?

No, it would require scanning through the entire phone book
(phone books are sorted for a reason)!

What if we had to check 1,000 people to see if they are in the
phone book?

Then it would be even worse!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Efficiency of Linear Search Algorithm

If x appears once in L, on average how many comparisons
(line 2) would you expect the algorithm to make on average?

On average n/2 comparisons

If x does not appear in L, how many comparisons would you
expect the algorithm to make?

n comparisons

Would such an algorithm be useful for finding someone in a
large (unsorted) phone book?

No, it would require scanning through the entire phone book
(phone books are sorted for a reason)!

What if we had to check 1,000 people to see if they are in the
phone book?

Then it would be even worse!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Efficiency of Linear Search Algorithm

If x appears once in L, on average how many comparisons
(line 2) would you expect the algorithm to make on average?

On average n/2 comparisons

If x does not appear in L, how many comparisons would you
expect the algorithm to make?

n comparisons

Would such an algorithm be useful for finding someone in a
large (unsorted) phone book?

No, it would require scanning through the entire phone book
(phone books are sorted for a reason)!

What if we had to check 1,000 people to see if they are in the
phone book?

Then it would be even worse!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Efficiency of Linear Search Algorithm

If x appears once in L, on average how many comparisons
(line 2) would you expect the algorithm to make on average?

On average n/2 comparisons

If x does not appear in L, how many comparisons would you
expect the algorithm to make?

n comparisons

Would such an algorithm be useful for finding someone in a
large (unsorted) phone book?

No, it would require scanning through the entire phone book
(phone books are sorted for a reason)!

What if we had to check 1,000 people to see if they are in the
phone book?

Then it would be even worse!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Binary Search Algorithm Overview

The binary search algorithm assumes that L is sorted

This algorithm need not need explicitly examine each element

at any given time it maintains a “window” in which element x
may reside

The window is defined by the indices min and max which
specify the leftmost and rightmost boundaries in L

At each iteration of the algorithm the window is cut in half

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Binary Search Algorithm

Binary Search Algorithm

1 Initialize min← 1 and max ← n

2 Repeat until min > max

3 midpoint = 1
2(min + max)

4 compare x to L[midpoint]

(a) if x = L[midpoint] then return “FOUND”
(b) if x > L[midpoint] then min← midpoint + 1
(c) if x < L[midpoint] then min← midpoint − 1

5 return “NOT FOUND”

Note: the repeat loop spans lines 2 - 4.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Binary Search Example

Use binary search to find the element “4” in the sorted list
(1 3 4 5 6 7 8 9). List the values of min, max and midpoint after
each iteration of step 4. How many values are compared to “4”?

1 Min = 1 and max = 8 and midpoint = 1
2(1 + 8) = 4 (round

down). Since L[4] = 5 and since 4 < 5 we execute step 4c and
max = midpoint − 1 = 3.

2 Now min = 1, max = 3 and midpoint = 1
2(1 + 3) = 2. Since

L[2] = 3 and 4 > 3, we execute step 4b and
min = midpoint + 1 = 3.

3 Now min = 3, max = 3 and midpoint = 1
2(3 + 3) = 3. Since

L[3] = 4 and 4 = 4, we execute step 4a and return “FOUND.”

During execution of the algorithm we check three values: 3, 4, and
5. Since we cut the list in half each iteration, it will shrink very
quickly (the search will require about log2 n comparisons).

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Binary Search Example

Use binary search to find the element “4” in the sorted list
(1 3 4 5 6 7 8 9). List the values of min, max and midpoint after
each iteration of step 4. How many values are compared to “4”?

1 Min = 1 and max = 8 and midpoint = 1
2(1 + 8) = 4 (round

down). Since L[4] = 5 and since 4 < 5 we execute step 4c and
max = midpoint − 1 = 3.

2 Now min = 1, max = 3 and midpoint = 1
2(1 + 3) = 2. Since

L[2] = 3 and 4 > 3, we execute step 4b and
min = midpoint + 1 = 3.

3 Now min = 3, max = 3 and midpoint = 1
2(3 + 3) = 3. Since

L[3] = 4 and 4 = 4, we execute step 4a and return “FOUND.”

During execution of the algorithm we check three values: 3, 4, and
5. Since we cut the list in half each iteration, it will shrink very
quickly (the search will require about log2 n comparisons).

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Binary Search Example

Use binary search to find the element “4” in the sorted list
(1 3 4 5 6 7 8 9). List the values of min, max and midpoint after
each iteration of step 4. How many values are compared to “4”?

1 Min = 1 and max = 8 and midpoint = 1
2(1 + 8) = 4 (round

down). Since L[4] = 5 and since 4 < 5 we execute step 4c and
max = midpoint − 1 = 3.

2 Now min = 1, max = 3 and midpoint = 1
2(1 + 3) = 2. Since

L[2] = 3 and 4 > 3, we execute step 4b and
min = midpoint + 1 = 3.

3 Now min = 3, max = 3 and midpoint = 1
2(3 + 3) = 3. Since

L[3] = 4 and 4 = 4, we execute step 4a and return “FOUND.”

During execution of the algorithm we check three values: 3, 4, and
5. Since we cut the list in half each iteration, it will shrink very
quickly (the search will require about log2 n comparisons).

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Binary Search Example

Use binary search to find the element “4” in the sorted list
(1 3 4 5 6 7 8 9). List the values of min, max and midpoint after
each iteration of step 4. How many values are compared to “4”?

1 Min = 1 and max = 8 and midpoint = 1
2(1 + 8) = 4 (round

down). Since L[4] = 5 and since 4 < 5 we execute step 4c and
max = midpoint − 1 = 3.

2 Now min = 1, max = 3 and midpoint = 1
2(1 + 3) = 2. Since

L[2] = 3 and 4 > 3, we execute step 4b and
min = midpoint + 1 = 3.

3 Now min = 3, max = 3 and midpoint = 1
2(3 + 3) = 3. Since

L[3] = 4 and 4 = 4, we execute step 4a and return “FOUND.”

During execution of the algorithm we check three values: 3, 4, and
5. Since we cut the list in half each iteration, it will shrink very
quickly (the search will require about log2 n comparisons).

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search

In the worst case, linear search will need to go through the
entire list of n elements

In the worst case, binary search will need to go through about
log2 n elements

Binary search is much more efficient

If n = 1K we have 1, 024 vs. 10 comparisons
If n = 1M we have ˜1, 000, 000 vs. 100 comparisons
If n = 1G we have ˜1, 000, 000, 000 vs 1000 comparisons

The drawback is that binary search requires sorting, and this
requires a decent amount of work

But sorting only has to be done once and this will be
worthwhile if we need to search the list many times

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search

In the worst case, linear search will need to go through the
entire list of n elements

In the worst case, binary search will need to go through about
log2 n elements

Binary search is much more efficient

If n = 1K we have 1, 024 vs. 10 comparisons
If n = 1M we have ˜1, 000, 000 vs. 100 comparisons
If n = 1G we have ˜1, 000, 000, 000 vs 1000 comparisons

The drawback is that binary search requires sorting, and this
requires a decent amount of work

But sorting only has to be done once and this will be
worthwhile if we need to search the list many times

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search

In the worst case, linear search will need to go through the
entire list of n elements

In the worst case, binary search will need to go through about
log2 n elements

Binary search is much more efficient

If n = 1K we have 1, 024 vs. 10 comparisons
If n = 1M we have ˜1, 000, 000 vs. 100 comparisons
If n = 1G we have ˜1, 000, 000, 000 vs 1000 comparisons

The drawback is that binary search requires sorting, and this
requires a decent amount of work

But sorting only has to be done once and this will be
worthwhile if we need to search the list many times

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search

In the worst case, linear search will need to go through the
entire list of n elements

In the worst case, binary search will need to go through about
log2 n elements

Binary search is much more efficient

If n = 1K we have 1, 024 vs. 10 comparisons
If n = 1M we have ˜1, 000, 000 vs. 100 comparisons
If n = 1G we have ˜1, 000, 000, 000 vs 1000 comparisons

The drawback is that binary search requires sorting, and this
requires a decent amount of work

But sorting only has to be done once and this will be
worthwhile if we need to search the list many times

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Sorting Algorithms

Sorting algorithms are one of the most heavily studied topics
in Computer Science

Sorting is critical if information is to be found efficiently (as
we saw binary search exploits the fact that a list is sorted)

There are many well known sorting algorithms in Computer
Science

We will study 2 sorting algorithms

Bubblesort: a very simple but inefficient sorting algorithm
Mergesort: a slightly more complex but efficient sorrting
algorithm

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Bubblesort Algorithm Overview

Bubblesort works by repeatedly scanning the list and in each
iteration “bubbles” the largest element in the unsorted part of
the list to the end

After 1 iteration largest element in last position
After 2 iterations largest element in last position and second
largest element in second to last position
...

requires n − 1 iterations since at last iteration the only item
left must already be in proper position (i.e., the smallest must
be in the leftmost position)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Bubblesort Algorithm

Bublesort will sort the n-element list L = (l1, l2, ...ln)

Bublesort Algorithm

1 Repeat as i varies from n down to 2

2 Repeat as j varies from 1 to i − 1

3 If lj > lj+1 swap lj with lj+1

The outer loop controls how much of the list is checked each
iteration. Only the unsorted part is checked. In the first
iteration we check everything.

The inner loop allows us to bubble up the largest element in
the unsorted part of the list

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Bubblesort Example

Use Bubblesort to sort the list of number (9 2 8 4 1 3) into
increasing order. Note that corresponds to example 8.3 in the text.

Try it and compare your solution to the solution in the text.

How many comparisons did you do each iteration?

Can you find a pattern?

This will be useful later when we analyze the performance of
the algorithm.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Mergesort Algorithm Overview

Mergesort is a divide-and-conquer algorithm

this means it divides the sorting problem into smaller problems
solves the smaller problems
then combines the solutions to the smaller problems to solve
the original problem

this deceptively simple algorithm is nonetheless much more
efficient than the bubblesort algorithm

It exploits the fact that combining two sorted lists is very easy

How would you sort (1 4 7 8) and (2 5 9)?

You would place your finger at the start of each list, copy over
the smaller element under each finger, then advance that one
finger.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Mergesort Algorithm Overview

Mergesort is a divide-and-conquer algorithm

this means it divides the sorting problem into smaller problems
solves the smaller problems
then combines the solutions to the smaller problems to solve
the original problem

this deceptively simple algorithm is nonetheless much more
efficient than the bubblesort algorithm

It exploits the fact that combining two sorted lists is very easy

How would you sort (1 4 7 8) and (2 5 9)?
You would place your finger at the start of each list, copy over
the smaller element under each finger, then advance that one
finger.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Mergesort Algorithm

Mergesort Algorithm

function mergesort(L)

1 if L has one element then return(L); otherwise continue

2 l1 ← mergesort(left half of L)

3 l2 ← mergesort(right half of L)

4 L← merge(l1, l2)

5 return(L)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Description of Mergesort Algorithm

Mergesort is a recursive function

That means it calls itself

If the input list contains one element it is trivially sorted so
mergesort is done

Otherwise mergesort calls itself on the left and right half of
the list and then merges the two lists

Each of these two calls to itself may lead to additional calls to
itself

Note that mergesort will completely sort the left side of the
original list before it actually starts sorting the right side

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Example of Mergesort Algorithm

How would mergesort sort the list (9 2 8 4 1 3) into increasing
order?

To help show what is going on, the sorted lists that are about to
be merged are shown in bold.

9 2 8 4 1 3 → 9 2 8 4 1 3 → 9 2 8 4 1 3

9 2 8 4 1 3 → 2 9 8 4 1 3 → 2 8 9 4 1 3

2 8 9 4 1 3 → 2 8 9 4 1 3 → 2 8 9 4 1 3

2 8 9 1 4 3 → 2 8 9 1 3 4 → 1 2 3 4 8 9

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Algorithms

An algorithm is a set of instructions that solves a problem for
all input instances

But there may be many algorithms that can solve a problem
and all of these are not equally good

One criteria for evaluating an algorithm is efficiency

The task of determining the efficiency of an algorithm is
referred to as the analysis of algorithms

Here we will learn to analyze only simple algorithms

There are entire courses on analysis of algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



How do we Measure Efficiency?

When solving tasks, what are we most concerned with?

Hopefully most of us are concerned with correctness. But to
be considered an algorithm the procedure must be correct
(although a designer needs to make sure of this).
Most of us are pretty concerned with time and time is actually
the main concern in evaluating the efficiency of algorithms
Space is also a concern, which, for algorithms, means what is
the maximium amount of memory the algorithm will require at
any one time
We will focus on time, although for some problems, space can
actually be the main concern.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



How do we Measure Efficiency?

When solving tasks, what are we most concerned with?

Hopefully most of us are concerned with correctness. But to
be considered an algorithm the procedure must be correct
(although a designer needs to make sure of this).

Most of us are pretty concerned with time and time is actually
the main concern in evaluating the efficiency of algorithms
Space is also a concern, which, for algorithms, means what is
the maximium amount of memory the algorithm will require at
any one time
We will focus on time, although for some problems, space can
actually be the main concern.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



How do we Measure Efficiency?

When solving tasks, what are we most concerned with?

Hopefully most of us are concerned with correctness. But to
be considered an algorithm the procedure must be correct
(although a designer needs to make sure of this).
Most of us are pretty concerned with time and time is actually
the main concern in evaluating the efficiency of algorithms

Space is also a concern, which, for algorithms, means what is
the maximium amount of memory the algorithm will require at
any one time
We will focus on time, although for some problems, space can
actually be the main concern.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



How do we Measure Efficiency?

When solving tasks, what are we most concerned with?

Hopefully most of us are concerned with correctness. But to
be considered an algorithm the procedure must be correct
(although a designer needs to make sure of this).
Most of us are pretty concerned with time and time is actually
the main concern in evaluating the efficiency of algorithms
Space is also a concern, which, for algorithms, means what is
the maximium amount of memory the algorithm will require at
any one time

We will focus on time, although for some problems, space can
actually be the main concern.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



How do we Measure Efficiency?

When solving tasks, what are we most concerned with?

Hopefully most of us are concerned with correctness. But to
be considered an algorithm the procedure must be correct
(although a designer needs to make sure of this).
Most of us are pretty concerned with time and time is actually
the main concern in evaluating the efficiency of algorithms
Space is also a concern, which, for algorithms, means what is
the maximium amount of memory the algorithm will require at
any one time
We will focus on time, although for some problems, space can
actually be the main concern.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



How do we Measure the Time of an Algorithm?

We could run the algorithm on a computer and measure the
time it takes to complete

But what computer do we run it on? Different computers have
different speeds.
We could pick one benchmark computer, but it would not stick
around forever
Worse yet, the time taken by the algorithm is usually impacted
by the specific input, so how do we handle that?

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



The Run Time Complexity of an Algorithm

The standard solution is to focus on the run-time complexity
of an algorithm

We determine how the number of operations involved in the
algorithms grows relative to the length of the input

Since inputs of the same length may still take different
numbers of operations, we usually focus on the worst-case
performance

We assume that the input is the hardest input possible

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



The Running Time of BubbleSort and MergeSort

We can implement BubbleSort and MergeSort as a computer
program

Then we can run them on various length lists and record the
number of operations performed
Let bubblesortOps(n) and mergesortOps(n) represent the
number of operations performed when the list has n elements

The results might look like those below

n 2 4 8 16 32 64

bubblesortOps(n) 4 16 64 256 1024 4096
mergesortOps(n) 2 8 24 64 160 384

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



The Running Time of BubbleSort and MergeSort

We can plot the data from the previous table to get a better
visual picture of the growth rate for these functions

æ æ
æ

æ

æ

æ

à à à
à

à

à

10 20 30 40 50 60

500

1000

1500

2000

2500

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Run Time Complexity of BubbleSort and MergeSort

Using the data in the Table, can we determine closed formulas
for bubblesortOps and mergesortOps?

We can see that bubblesortOps(n) = n2

This is not easy to see, but mergesortOps(n) = n log n, where
we take the log base 2 of n (not log base 10).

Normally one does not determine the run time complexity this
way, but rather by analyzing the algorithm.

We will show how to do this for some simple algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Run Time Complexity of BubbleSort and MergeSort

Using the data in the Table, can we determine closed formulas
for bubblesortOps and mergesortOps?

We can see that bubblesortOps(n) = n2

This is not easy to see, but mergesortOps(n) = n log n, where
we take the log base 2 of n (not log base 10).

Normally one does not determine the run time complexity this
way, but rather by analyzing the algorithm.

We will show how to do this for some simple algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Run Time Complexity of BubbleSort and MergeSort

Using the data in the Table, can we determine closed formulas
for bubblesortOps and mergesortOps?

We can see that bubblesortOps(n) = n2

This is not easy to see, but mergesortOps(n) = n log n, where
we take the log base 2 of n (not log base 10).

Normally one does not determine the run time complexity this
way, but rather by analyzing the algorithm.

We will show how to do this for some simple algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Run Time Complexity of BubbleSort and MergeSort

Using the data in the Table, can we determine closed formulas
for bubblesortOps and mergesortOps?

We can see that bubblesortOps(n) = n2

This is not easy to see, but mergesortOps(n) = n log n, where
we take the log base 2 of n (not log base 10).

Normally one does not determine the run time complexity this
way, but rather by analyzing the algorithm.

We will show how to do this for some simple algorithms

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Linear Search Algorithm

Linear Search Algorithm

1 repeat as i varies from 1 to n

2 if L[i ] = x then return “FOUND” and stop

3 return “NOT FOUND”

How many operations will the linear search algorithm require?

As stated earlier, since the algorithm checks at most n
elements against x , the worst-case complexity requires n
comparisions.

Note that this performance occurs only when x is not in the
list or is the last element in the list.

What is the best-case complexity of the algorithm?

1, which occurs when x is the first item on the list

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Linear Search Algorithm

Linear Search Algorithm

1 repeat as i varies from 1 to n

2 if L[i ] = x then return “FOUND” and stop

3 return “NOT FOUND”

How many operations will the linear search algorithm require?

As stated earlier, since the algorithm checks at most n
elements against x , the worst-case complexity requires n
comparisions.

Note that this performance occurs only when x is not in the
list or is the last element in the list.

What is the best-case complexity of the algorithm?

1, which occurs when x is the first item on the list

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Linear Search Algorithm

Linear Search Algorithm

1 repeat as i varies from 1 to n

2 if L[i ] = x then return “FOUND” and stop

3 return “NOT FOUND”

How many operations will the linear search algorithm require?

As stated earlier, since the algorithm checks at most n
elements against x , the worst-case complexity requires n
comparisions.

Note that this performance occurs only when x is not in the
list or is the last element in the list.

What is the best-case complexity of the algorithm?

1, which occurs when x is the first item on the list

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Linear Search Algorithm

Linear Search Algorithm

1 repeat as i varies from 1 to n

2 if L[i ] = x then return “FOUND” and stop

3 return “NOT FOUND”

How many operations will the linear search algorithm require?

As stated earlier, since the algorithm checks at most n
elements against x , the worst-case complexity requires n
comparisions.

Note that this performance occurs only when x is not in the
list or is the last element in the list.

What is the best-case complexity of the algorithm?

1, which occurs when x is the first item on the list

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Linear Search Algorithm

Linear Search Algorithm

1 repeat as i varies from 1 to n

2 if L[i ] = x then return “FOUND” and stop

3 return “NOT FOUND”

How many operations will the linear search algorithm require?

As stated earlier, since the algorithm checks at most n
elements against x , the worst-case complexity requires n
comparisions.

Note that this performance occurs only when x is not in the
list or is the last element in the list.

What is the best-case complexity of the algorithm?

1, which occurs when x is the first item on the list

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Average Case Complexity

If you know that the element x to be matched is on the list,
what is the average-case complexity of the algorithm?

The average case complexity of the algorithm should be n/2,
since on average you should have to search half of the list

At least for introductory courses on algorithms, the worst-case
complexity is what is reported, since it is generally much
easier to compute than the average case complexity.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Average Case Complexity

If you know that the element x to be matched is on the list,
what is the average-case complexity of the algorithm?

The average case complexity of the algorithm should be n/2,
since on average you should have to search half of the list

At least for introductory courses on algorithms, the worst-case
complexity is what is reported, since it is generally much
easier to compute than the average case complexity.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Average Case Complexity

If you know that the element x to be matched is on the list,
what is the average-case complexity of the algorithm?

The average case complexity of the algorithm should be n/2,
since on average you should have to search half of the list

At least for introductory courses on algorithms, the worst-case
complexity is what is reported, since it is generally much
easier to compute than the average case complexity.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Binary Search Algorithm

The binary search algorithm, which assumes a sorted list,
repeatedly cuts the list to be searched in half

If there is 1 element, it will require 1 comparison
If there are 2 elements, it may require 2 comparisons
If there are 4 elements, it may require 3 comparisons
If there are 8 elements, it may require 4 comparisons

In general, if there are n elements, how many comparisons will
be required?

It will require log2n comparisons

If n is not a power of 2, you will need to round up the number
of comparisons

Thus if there are 3 elements it may require 3 comparisons

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Binary Search Algorithm

The binary search algorithm, which assumes a sorted list,
repeatedly cuts the list to be searched in half

If there is 1 element, it will require 1 comparison
If there are 2 elements, it may require 2 comparisons
If there are 4 elements, it may require 3 comparisons
If there are 8 elements, it may require 4 comparisons
In general, if there are n elements, how many comparisons will
be required?

It will require log2n comparisons

If n is not a power of 2, you will need to round up the number
of comparisons

Thus if there are 3 elements it may require 3 comparisons

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Binary Search Algorithm

The binary search algorithm, which assumes a sorted list,
repeatedly cuts the list to be searched in half

If there is 1 element, it will require 1 comparison
If there are 2 elements, it may require 2 comparisons
If there are 4 elements, it may require 3 comparisons
If there are 8 elements, it may require 4 comparisons
In general, if there are n elements, how many comparisons will
be required?

It will require log2n comparisons

If n is not a power of 2, you will need to round up the number
of comparisons

Thus if there are 3 elements it may require 3 comparisons

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of Binary Search Algorithm

The binary search algorithm, which assumes a sorted list,
repeatedly cuts the list to be searched in half

If there is 1 element, it will require 1 comparison
If there are 2 elements, it may require 2 comparisons
If there are 4 elements, it may require 3 comparisons
If there are 8 elements, it may require 4 comparisons
In general, if there are n elements, how many comparisons will
be required?

It will require log2n comparisons

If n is not a power of 2, you will need to round up the number
of comparisons

Thus if there are 3 elements it may require 3 comparisons

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search Algorithms

The linear search algorithm requires n comparisons worst case

The binary search algorithm requires log2n comparisions worst
case

Which one is faster? Is the difference significant?

The binary search algorithm is much faster, in that it requires
many fewer comparisons

If a list has 1 million elements then linear search requires
1,000,000 comparisons while binary search requires only about
20 comparisons!

But the binary search algorithm requires that the list is sorted,
whereas linear search does not.

Since sorting requires n log2n operations, which is more than n
operations, it only makes sense to sort and then use binary
search if many searches will be made

This is the case with dictionaries, phone books, etc.
This is not the case with airline reservation systems!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search Algorithms

The linear search algorithm requires n comparisons worst case

The binary search algorithm requires log2n comparisions worst
case

Which one is faster? Is the difference significant?

The binary search algorithm is much faster, in that it requires
many fewer comparisons

If a list has 1 million elements then linear search requires
1,000,000 comparisons while binary search requires only about
20 comparisons!

But the binary search algorithm requires that the list is sorted,
whereas linear search does not.

Since sorting requires n log2n operations, which is more than n
operations, it only makes sense to sort and then use binary
search if many searches will be made

This is the case with dictionaries, phone books, etc.
This is not the case with airline reservation systems!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search Algorithms

The linear search algorithm requires n comparisons worst case

The binary search algorithm requires log2n comparisions worst
case

Which one is faster? Is the difference significant?

The binary search algorithm is much faster, in that it requires
many fewer comparisons

If a list has 1 million elements then linear search requires
1,000,000 comparisons while binary search requires only about
20 comparisons!

But the binary search algorithm requires that the list is sorted,
whereas linear search does not.

Since sorting requires n log2n operations, which is more than n
operations, it only makes sense to sort and then use binary
search if many searches will be made

This is the case with dictionaries, phone books, etc.
This is not the case with airline reservation systems!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search Algorithms

The linear search algorithm requires n comparisons worst case

The binary search algorithm requires log2n comparisions worst
case

Which one is faster? Is the difference significant?

The binary search algorithm is much faster, in that it requires
many fewer comparisons

If a list has 1 million elements then linear search requires
1,000,000 comparisons while binary search requires only about
20 comparisons!

But the binary search algorithm requires that the list is sorted,
whereas linear search does not.

Since sorting requires n log2n operations, which is more than n
operations, it only makes sense to sort and then use binary
search if many searches will be made

This is the case with dictionaries, phone books, etc.
This is not the case with airline reservation systems!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search Algorithms

The linear search algorithm requires n comparisons worst case

The binary search algorithm requires log2n comparisions worst
case

Which one is faster? Is the difference significant?

The binary search algorithm is much faster, in that it requires
many fewer comparisons

If a list has 1 million elements then linear search requires
1,000,000 comparisons while binary search requires only about
20 comparisons!

But the binary search algorithm requires that the list is sorted,
whereas linear search does not.

Since sorting requires n log2n operations, which is more than n
operations, it only makes sense to sort and then use binary
search if many searches will be made

This is the case with dictionaries, phone books, etc.

This is not the case with airline reservation systems!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Comparison of Linear and Binary Search Algorithms

The linear search algorithm requires n comparisons worst case

The binary search algorithm requires log2n comparisions worst
case

Which one is faster? Is the difference significant?

The binary search algorithm is much faster, in that it requires
many fewer comparisons

If a list has 1 million elements then linear search requires
1,000,000 comparisons while binary search requires only about
20 comparisons!

But the binary search algorithm requires that the list is sorted,
whereas linear search does not.

Since sorting requires n log2n operations, which is more than n
operations, it only makes sense to sort and then use binary
search if many searches will be made

This is the case with dictionaries, phone books, etc.
This is not the case with airline reservation systems!

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

Analyzing the Bubblesort algorithm means determining the
number of comparisons required to sort a list

Recall that Bubblesort works by repeatedly bubbling up the
largest element in the unsorted part of the list

We can determine the number of comparisons by carefully
analyzing the Bubblesort example we worked through earlier,
when we sorted (9 2 8 4 1 3)

But we need to generalize from this example, so our analysis
holds for all examples

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)

On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)

On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)

On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)

On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)

On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

If we apply Bubblesort to (9 2 8 4 1 3) how many
comparisons do we do each iteration?

On iteration 1 we do 5 comparisons (6 unsorted numbers)
On iteration 2 we do 4 comparisons (5 unsorted numbers)
On iteration 3 we do 3 comparisons (4 unsorted numbers)
On iteration 4 we do 2 comparisons (3 unsorted numbers)
On iteration 5 we do 1 comparison (2 unsorted numbers)
On iteration 6 we do 0 comparisons (1 unsorted number)

So how many total comparisons for a list with 6 items?

Number of comparisons = 5 + 4 + 3 + 2 + 1 = 15

So how many comparisons for a list with n items?

n − 1 + n − 2... + 2 + 1, or

n−1∑
i=1

i

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

We want to know how the number of operations grows with n

This is not obvious with the summation so we need to replace
it with a closed formula

We can do this since it is known that

n∑
i=1

i =
1

2
n(n + 1)

This was proven in the section on induction but is also based
on the sum of n values equaling n times the average value

The average value of 1, 2, ..., n is n+1
2

In this case, we are summing up to n − 1 and not n, so
substituting n − 1 for n we get:

Number Bubblesort comparisons = 1
2
(n − 1)n = 1

2
(n2 − n)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

We want to know how the number of operations grows with n

This is not obvious with the summation so we need to replace
it with a closed formula

We can do this since it is known that

n∑
i=1

i =
1

2
n(n + 1)

This was proven in the section on induction but is also based
on the sum of n values equaling n times the average value

The average value of 1, 2, ..., n is n+1
2

In this case, we are summing up to n − 1 and not n, so
substituting n − 1 for n we get:

Number Bubblesort comparisons = 1
2
(n − 1)n = 1

2
(n2 − n)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

We want to know how the number of operations grows with n

This is not obvious with the summation so we need to replace
it with a closed formula

We can do this since it is known that

n∑
i=1

i =
1

2
n(n + 1)

This was proven in the section on induction but is also based
on the sum of n values equaling n times the average value

The average value of 1, 2, ..., n is n+1
2

In this case, we are summing up to n − 1 and not n, so
substituting n − 1 for n we get:

Number Bubblesort comparisons = 1
2
(n − 1)n = 1

2
(n2 − n)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

We want to know how the number of operations grows with n

This is not obvious with the summation so we need to replace
it with a closed formula

We can do this since it is known that

n∑
i=1

i =
1

2
n(n + 1)

This was proven in the section on induction but is also based
on the sum of n values equaling n times the average value

The average value of 1, 2, ..., n is n+1
2

In this case, we are summing up to n − 1 and not n, so
substituting n − 1 for n we get:

Number Bubblesort comparisons = 1
2
(n − 1)n = 1

2
(n2 − n)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

We want to know how the number of operations grows with n

This is not obvious with the summation so we need to replace
it with a closed formula

We can do this since it is known that

n∑
i=1

i =
1

2
n(n + 1)

This was proven in the section on induction but is also based
on the sum of n values equaling n times the average value

The average value of 1, 2, ..., n is n+1
2

In this case, we are summing up to n − 1 and not n, so
substituting n − 1 for n we get:

Number Bubblesort comparisons = 1
2
(n − 1)n = 1

2
(n2 − n)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

We want to know how the number of operations grows with n

This is not obvious with the summation so we need to replace
it with a closed formula

We can do this since it is known that

n∑
i=1

i =
1

2
n(n + 1)

This was proven in the section on induction but is also based
on the sum of n values equaling n times the average value

The average value of 1, 2, ..., n is n+1
2

In this case, we are summing up to n − 1 and not n, so
substituting n − 1 for n we get:

Number Bubblesort comparisons = 1
2
(n − 1)n = 1

2
(n2 − n)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

We want to know how the number of operations grows with n

This is not obvious with the summation so we need to replace
it with a closed formula

We can do this since it is known that

n∑
i=1

i =
1

2
n(n + 1)

This was proven in the section on induction but is also based
on the sum of n values equaling n times the average value

The average value of 1, 2, ..., n is n+1
2

In this case, we are summing up to n − 1 and not n, so
substituting n − 1 for n we get:

Number Bubblesort comparisons = 1
2
(n − 1)n = 1

2
(n2 − n)

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

So Bubblesort requires 1
2(n2 − n) comparisons

Computer scientists usually focus on the highest order term,
so we say that the number of comparisons in bubblesort grows
as n2 or as the square of the length of the list

Bubblesort can have problems if the list is very long

Analysis of mergesort is beyond the scope of this book, but
the number of comparisons grows proportional to n log2n

As we saw earlier, n log2n grows much more slowly than n2, so
no one would ever use bubblesort unless the lengths of the lists
are guaranteed to be small

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

So Bubblesort requires 1
2(n2 − n) comparisons

Computer scientists usually focus on the highest order term,
so we say that the number of comparisons in bubblesort grows
as n2 or as the square of the length of the list

Bubblesort can have problems if the list is very long

Analysis of mergesort is beyond the scope of this book, but
the number of comparisons grows proportional to n log2n

As we saw earlier, n log2n grows much more slowly than n2, so
no one would ever use bubblesort unless the lengths of the lists
are guaranteed to be small

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

So Bubblesort requires 1
2(n2 − n) comparisons

Computer scientists usually focus on the highest order term,
so we say that the number of comparisons in bubblesort grows
as n2 or as the square of the length of the list

Bubblesort can have problems if the list is very long

Analysis of mergesort is beyond the scope of this book, but
the number of comparisons grows proportional to n log2n

As we saw earlier, n log2n grows much more slowly than n2, so
no one would ever use bubblesort unless the lengths of the lists
are guaranteed to be small

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Analysis of the Bubblesort Algorithm

So Bubblesort requires 1
2(n2 − n) comparisons

Computer scientists usually focus on the highest order term,
so we say that the number of comparisons in bubblesort grows
as n2 or as the square of the length of the list

Bubblesort can have problems if the list is very long

Analysis of mergesort is beyond the scope of this book, but
the number of comparisons grows proportional to n log2n

As we saw earlier, n log2n grows much more slowly than n2, so
no one would ever use bubblesort unless the lengths of the lists
are guaranteed to be small

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8



Big-O Notation

The Big-O notation material is sufficiently advanced that most
instructors will not cover this material in an introductory course
and for this reason slides for this material are not provided at this
time.

Gary M. Weiss CISC 1100, Fall 2010, Chapter 8


