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Abstract

Activity recognition allows ubiquitous mobile devices like

smartphones to be context-aware and also enables new appli-

cations, such as mobile health applications that track a user’s

activities over time. However, it is difficult for smartphone-

based activity recognition models to perform well, since only

a single body location is instrumented. Most research fo-

cuses on universal/impersonal activity recognition models,

where the model is trained using data from a panel of repre-

sentative users. In this paper we compare the performance

of these impersonal models with those of personal models,

which are trained using labeled data from the intended user,

and hybrid models, which combine aspects of both types

of models. Our analysis indicates that personal training

data is required for high accuracybut that only a very small

amount of training data is necessary. This conclusion led us

to implement a self-training capability into our Actitracker

smartphone-based activity recognition system[1], and we be-

lieve personal models can also benefit other activity recog-

nition systems as well.

1 Introduction.

Activity recognition (AR) on mobile devices is a rapidly
growing field. The ability of a device to recognize its
user’s activity is important because it enables context-
aware applications and behavior. Activity recognition
also makes it possible to develop mobile health appli-
cations that track a user’s activities, such as our Acti-
tracker app [1], which can help address the many health
concerns that arise due to inactivity, including child-
hood obesity [11]. The work described in this paper
relies on Android smartphones, but the tri-axial ac-
celerometer present in these smartphones is very similar
to those found in other smartphones and mobile devices.

In this paper we employ a straightforward approach
for implementing AR. We collect accelerometer data
from users as they walk, jog, climb stairs, sit, stand,
and lie down, and then aggregate each 10 seconds of
data into a single labeled example. We then induce an
AR model by applying common classification algorithms
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to the generated training examples. The work in this
paper includes data from our set of 59 test subjects [24],
as well as data from 414 subjects in the HASC 2010 and
2011 data sets [9].

There has been much prior work on AR [4, 12,
13, 23], and a smaller but growing body of work on
smartphone-based AR [5, 10, 15, 28]. While some
work has used personal models [19, 28], which are
built exclusively using labeled training data from the
intended user, most work has focused on impersonal
models [5, 8, 16, 20], which are built using data from
a panel of users who are not the intended users of
the model. Although newer work [16] has aimed at
tailoring impersonal models to individuals, little work
has compared personal and impersonal models on a
reasonably-sized population, and no work has carefully
analyzed the relative performance of these types of
models. In this paper we provide a thorough analysis of
the relative performance of these models and we view
this as one of our main contributions. We conclude that
personal AR models are extraordinarily effective and
vastly superior to impersonal models even when built
from a very small amount of personal training data.

Personalized AR models are quite feasible for
smartphone-based AR since a smartphone typically is
used by a single user and because little training data
is required. Thus, we advocate for the development of
personal AR models. We have in fact incorporated the
ability to generate such models into our publically avail-
able AR app, Actitracker [1]. This app allows a user to
quickly perform self-training and then replaces the de-
fault impersonal model with an automatically generated
personal one.

2 The Activity Recognition Task.

The activity recognition task involves mapping time-
series accelerometer data to a single physical user ac-
tivity. We formulate this as a standard classification
problem by aggregating the time-series data into exam-
ples. We consider six common activities that collectively
cover much of the time in a typical user’s day: walking,
jogging, stair climbing (up and down), sitting, stand-
ing, and lying down. We assume the smartphone is in
the user’s pocket. However, we believe that an AR sys-
tem could easily learn the body location either in order



Figure 1: Orientation of accelerometer axes

to use a position-specific model, or as an implicit part
of the original learning problem. The axes associated
with the smartphone are aligned as indicated in Figure
1. The accelerometer measures the acceleration due to
gravity, about 9.8m/s2, and this is incorporated into the
y-axis values for activities where the phone is upright.

3 Experiment Methodology.

In this section we describe the methodology for generat-
ing AR models. We discuss data collection procedures,
the method for transforming the accelerometer data into
examples, and the model induction process. We also
describe the methodology for generating and evaluat-
ing personal and impersonal models, as well as a hybrid
model that combines elements of these two models.

3.1 Data Collection. We collected data by having
59 users carry an Android-based smartphone in their
pocket while performing the six everyday activities men-
tioned previously. Our research team members directed
the participants to perform the various activities and in-
put the activity labels into our data collection app. The
sensor data is stored on the phone and also transmitted
to our server. For this study, we use a sampling rate
of 20Hz. We used fifteen different Android smartphone
models in our study and all of their accelerometers ap-
peared to generate similar results.

Additionally, we analyzed the data from the HASC
2010 and 2011 data sets [9]. In order to apply the same
methods to this data, we selected only the accelerome-
ter data from pocket or waist located sensors and down-
sampled the readings from 100Hz to 20Hz. The resul-
tant subset included 414 people performing 4 activities
(standing, walking, running, and skipping). The results
for the two data sets are presented separately, since they
represent different activities and are recorded with dif-
ferent hardware/software.

3.2 Data Transformation. Our classification algo-
rithms cannot directly handle time-series data, so we
begin by transforming the raw accelerometer data into
examples following the procedure described in our prior
work [15]. Each example summarizes 10 seconds of data,

Total Walk Jog Stair Sit Stand Lie
n = 9291 3397 1948 1549 1143 689 565
100% 36.6 21.0 16.7 12.3 7.4 6.1

Table 1: Number of examples per activity over the data
we collected from 59 users

an interval sufficient to capture several repetitions of pe-
riodic motions and empirically shown to perform well.
Each example contains 43 features that are variations
of 6 basic statistics.

Table 1 shows the number and distribution of
the transformed examples, per activity, for our data.
Walking is the most common activity. The time spent
jogging and stair climbing was limited because these
activities are strenuous, and we limited the time spent
on the static activities because we found they were
easy to learn. By comparison, after transformation the
HASC set contains 10,718 examples from 414 users, with
the following distribution: Walk - 59.9%, Run - 13.0%,
Stand - 15.1%, and Skip - 13.0%. This is a different and
smaller set of activities than in our data, and the class
distribution is much more skewed.

3.3 Model Induction and Experiments. Our AR
models are induced from the labeled examples using the
following WEKA [25] classification algorithms: decision
trees (J48 and Random Forest, RF), instance-based
learning (IBk), neural networks (Multilayer Perceptron,
NN), rule induction (J-Rip), Näıve Bayes (NB), and
Logistic Regression (LR). Default settings from WEKA
are used for all learning methods except NB, where
kernel estimation is enabled, and IBk, where we set k=3
(IB3) so we use 3 nearest neighbors.

We induce three types of models: impersonal, per-
sonal, and hybrid. Each model addresses a slightly
different learning problem and makes different assump-
tions about how the model is applied. The type of model
impacts how we partition the data into training and test
data. The different models are defined below:

Definition 3.1. Impersonal models use training data
from a panel of users that will not subsequently use the
model (thus the training and test sets have no common
users). These models are applied to a new user without
additional labeled training data or model regeneration.

Definition 3.2. Personal models use training data
from only the user for whom the model is intended.
These models require a training phase to collect labeled
data from each user. The training and test data come
from the same user, but contain distinct examples.

Definition 3.3. Hybrid models are a mixture of im-
personal and personal models. The training set has data



from both the test subject and other users, but the test
set’s examples are distinct.

Impersonal models have the advantage that they
can be built once for all users and can include data from
many users for training purposes. These models can be
viewed as universal, although technically they should
only be used for users not in the training set. Personal
models have the advantage that they may match the
idiosyncrasies of the intended user, but require each
user to provide training data, limiting the amount of
data available. The hybrid model also requires training
data and model generation for each user, but can
potentially outperform the personal model because it
utilizes additional training data from other users.

The experiments associated with each model vary
in how they are set up. For impersonal models, data
from 58 users is placed into the training set and data
from 1 user is placed into the test set. This process is
repeated 59 times, which allows us to generate reliable
performance metrics and characterize the performance
on a per-user basis. For personal models, 10-fold cross
validation is applied to each user’s data and thus 590
(59 ∗ 10) personal models are evaluated. Since each
user has a very limited amount of data (on average
160 examples), 10-fold cross validation is essential.
The confusion matrices from both types of models are
created by summing the counts in each cell over all 59
runs. The setup for the hybrid models is much simpler:
we place all of the user data into a single file and then
apply 10-fold cross validation. Thus, the hybrid training
and test sets have overlapping sets of users.

To generate the learning curves for personal and hy-
brid models, we generate k folds for each user (where k is
the total number of examples a user has divided by the
number of examples we want in the training set). This
required the generation of tens of thousands of models.
The results for all folds of each user are combined, and
then the results for all of the users are averaged. To
generate the learning curves for impersonal models, it
was impractical to generate every possible combination.
Instead, we randomly selected the required number of
users and then randomly selected the required number
of examples from each selected user to build training
sets. This process was repeated 50 times, and the re-
sults are averaged. The results we present for the HASC
data set were generated using the same methodology.

4 Results.

In this section we present the results of our analysis for
the two data sets (ours and HASC). We focus primarily
on the results for our data because it represents a
more complex set of activities and because it includes

RF NB LR IB3 NN J48 J-Rip Avg.
Personal 98.4 97.6 97.7 98.3 98.7 96.5 95.1 97.4
Hybrid 95.0 82.8 84.6 96.5 92.1 91.8 91.1 88.7
Impersonal 75.9 74.5 72.7 68.4 67.8 69.1 70.2 70.9

Average 89.8 85.0 85.0 87.7 86.2 85.8 85.5 85.7

Table 2: Predictive accuracy of activity recognition

more detailed information about the participants. In
key places, such as where we evaluate the effect of an
increased number of users, we present more detailed
findings for the HASC data.

The predictive accuracy associated with the per-
sonal, hybrid, and impersonal models on our data set
is displayed in Table 2. These results make it quite
clear that for every classification algorithm the personal
models perform best, the hybrid models perform second
best, and the impersonal models perform worst. Fur-
thermore, the personal models always achieve a very
high level of accuracy and perform dramatically better
than the impersonal models. While this result may seem
easy to justify, since people move differently from one
another, the result is far from obvious since the personal
models are trained from dramatically less data.

The hybrid models typically perform closer to the
personal models than the impersonal models. Given
how well the personal models do, this is a bit surprising.
It implies that the hybrid models can make effective use
of the personal data in the data set, even though only a
small fraction of the data (on average 1/59) is personal
data. This means that the classification algorithms can
effectively identify the movement patterns of a particu-
lar user from among a host of users. In retrospect this
is not so surprising, since our recent work has shown
that biometric models induced from accelerometer data
can identify a user from a set of users with near per-
fect accuracy [14]. Because the hybrid model performs
more poorly than the personal model, but still requires
the acquisition of labeled training data from the tar-
get user, there seems little reason to utilize the hybrid
model. The only exception might be when the amount
of personal data is extraordinarily small, thus increas-
ing the importance of the relatively common impersonal
data. But as we see later in this section, even when there
is very little personal data the personal models outper-
form the impersonal models. This result surprised us,
but the real surprise is just how effective personal data
is, even in extremely small quantities.

The main focus of this paper is on the comparative
performance of the three types of AR models, but our
results also suggest which classification methods may
be best suited to AR, given our formulation of the
problem (see the underlined values in Table 2). For
personal models, NN does best, although RF and IB3



% of Examples Correctly Classified
Personal Impersonal Base

IB3 RF NN IB3 RF NN Line
Walk 99.1 98.9 99.0 65.2 73.0 56.8 36.6
Jog 99.5 99.6 99.8 89.0 95.2 92.1 21.0
Stairs 96.4 96.8 98.0 65.1 61.5 68.0 16.7
Sit 98.2 98.7 98.1 67.6 81.5 66.7 12.3
Stand 86.4 97.8 97.5 75.2 91.9 88.0 7.4
Lie 95.9 95.0 97.5 34.0 45.1 45.5 6.1

Overall 98.3 98.4 98.7 68.4 75.9 67.8 36.6

Table 3: Predictive accuracy on a per-activity basis

also perform competitively; for hybrid models IB3 does
best but RF performs competitively; for impersonal
models, RF does best. Averaged over the three types
of models, RF does best. Due to space considerations,
many of our detailed results focus only on RF, IB3, and
NN, the three best performers.

The personal results in Table 2 are mirrored by our
results on the HASC data (results not shown). Using
RF, the personal accuracy is 97.2%. However, the
impersonal accuracy is higher than for our data set, at
85%. We examine the causes of this discrepancy more
thoroughly throughout this section.

4.1 Accuracy by Activity. Table 3 shows the AR
performance for the personal and impersonal models for
each activity, using the three best-performing classifica-
tion algorithms and a baseline strategy. The baseline
strategy always predicts the specified activity, or, when
assessing overall performance, the most common activ-
ity. The baseline allows us to consider class imbalance.
Personal models outperform impersonal models for ev-
ery activity, usually by a substantial amount, although
impersonal models still outperform the baseline.

Table 4 provides the confusion matrices associated
with the Random Forest learner for the impersonal and
personal models. These results show that most of the
errors, for both the impersonal and personal models,
are the result of confusing walking with stairs and lying
down with sitting.

The confusion between walking and stairs may be
due to the similar time between footsteps and exacer-
bated by the differences that individual people exhibit
when performing these activities (jogging probably does
not exhibit this problem due to the shorter time between
footsteps and the more extreme acceleration values). It
is easy to see why lying down and sitting are confused,
since the orientation of one’s pocket will be similar for
both of these stationary activities. While the results for
personal models in Table 4b show that these activities
are still confused the most, the frequency of such errors

(a) Impersonal Predicted Class
Actual
Class

Walk Jog Stairs Sit Stand Lie

Walk 2480 66 819 22 8 2
Jog 51 1845 41 1 0 1
Stairs 518 69 593 2 4 3
Sit 7 5 3 931 19 178
Stand 3 0 12 19 633 22
Lie 7 0 5 284 14 255

(b) Personal Predicted Class
Actual
Class

Walk Jog Stairs Sit Stand Lie

Walk 3359 3 30 1 3 1
Jog 5 1940 3 0 0 0
Stairs 40 5 1500 2 2 0
Sit 3 0 1 1128 2 9
Stand 5 0 8 2 674 0
Lie 3 2 4 18 1 537

Table 4: Per-activity confusion matrices

is reduced by more than a factor of 10. This indicates
that it is possible to learn the user-specific differences
in these two sets of activities and that these differences
are not the same for all people. This is a key argument
for the use of personal models and perhaps the most
important conclusion of this paper.

The confusion between sitting and lying down is
not a factor with the HASC data set, where standing is
the only stationary activity. This strongly contributes
to the increased performance of impersonal models on
the HASC set; the most difficult to identify classes are
missing. For this reason, we focus more on our own,
more challenging, data set than on the HASC set.

4.2 Accuracy by User. The results presented thus
far are averages over all users. However, it is informative
to see how AR performance varies between users. Figure
2 provides this information for the personal models and
shows that these models perform consistently well for
almost all users. The minor outliers that do show poor
performance are primarily due to the high levels of class
imbalance in those users’ data. For example, the user
with the second highest error rate has 59 examples of
walking data but only between 5 and 8 examples for
each of the other activities. The user with the worst
accuracy had a similar class distribution, and also had
a leg injury. Thus, the few problems that do occur for
the personal models appear to be due to high levels of
class imbalance or due to an injury.

Figure 3 shows a much broader distribution of
performance for the impersonal models. There are
still some users with classification accuracies in the



Figure 2: Personal model accuracy distribution across
users

Figure 3: Impersonal model accuracy distribution
across users

95-100% range, but the accuracies vary widely and
there are some users with extremely low accuracies.
Our detailed analysis showed that most of these very
poor-performing users performed quite well when using
personal models. These results further support the
view that there are many users who move differently
from other users, which confuses the impersonal models,
while the personal models can learn these user-specific
differences to achieve consistently good results.

As part of our data collection protocol, we collect
information about the physical characteristics of each
user (height, weight, sex, shoe size, etc.). We analyzed
this information to determine if people with particular
or extreme characteristics are especially hard to predict
for impersonal models, but partly due to the limited
number of users, we could find only suggestive patterns.
For example, of the 10 users that were hardest to predict
using the impersonal RF models, 3 were among the
oldest users in the study. In the future we plan to collect
data from substantially more users so that we can better
assess the impact of such factors.

4.3 Augmented Impersonal Models. In an effort
to better understand the relationship between these
traits and the performance of our models, we re-
peated the experiments for the impersonal models sev-
eral times, each time augmenting the training and test-
ing sets with an additional attribute of personal infor-
mation (viz. height, weight, shoe size, and sex). Such
information requires less effort to obtain than labeled

training data, and thus presents the possibility of build-
ing more targeted impersonal models, which may have
some of the benefits of personal models, but without
the cost. Additionally, we matched users based on the
similarity of their transformed accelerometer data and
constructed another set of models using data from the
most similar users. These are alternate versions of the
protocols used in prior research [16].

Where the prior work showed improvement by re-
stricting impersonal models to similar users, this im-
provement was limited and only brought the models’
accuracies per activity to rates similar to those of our
impersonal models in Table 3 [16]. Because our users are
already very similar (primarily college students), while
other studies’ subjects are less homogenous, it is not
very surprising that on our data set these techniques
do not improve accuracy. This suggests the poor per-
formance of models that are not trained from labeled
personal data is the result of differences that cannot
be explained entirely by differences in user demograph-
ics, or compensated for by the similarity of unlabeled
data. We conclude that simple demographic informa-
tion, or even unlabeled data, is no substitute for labeled
accelerometer data from that user, which may encode
idiosyncrasies with the subject’s movements.

4.4 Accuracy by Quantity of Training Data.
In the context of this paper, learning curves can be
particularly insightful because the varying amount of
training data may impact model types differently and
acquiring labeled personal data can be quite costly. We
begin by analyzing the learning curves for the personal
and hybrid models, presented in Figures 5 and 6. Thes
figures show that personal and hybrid models improve
their performance rapidly. Figure 5 shows that with
only 20 seconds (2 examples) of personal data, all three
classifiers clearly outperform impersonal models.

Furthermore, our results show that after 2 minutes
(only 12 examples) of labeled data for each activity
from a user, RF models reach 98.7% accuracy. With
3 minutes of data, this increases to 99.2% and at 5
minutes we reach 99.6%. But the key takeaway here
is that we need only a miniscule amount of personal
data—one example per activity—in order to outperform
an impersonal model built using far more data.

To generate the same curves for hybrid models, we
used the impersonal model training sets as a base and
added in the data from the personal model training sets
used to generate Figure 5. The resulting training sets
included all available impersonal data and the amount of
personal data specified on the x-axis. Figure 6 shows a
similar, though less dramatic pattern for hybrid models
as we saw with personal models. With 10 seconds of



Figure 4: Learning curve for impersonal random forest models

Figure 5: Learning curves for personal models

Figure 6: Learning curves for hybrid models

labeled personal data for each activity, two out of our
three hybrid models outperform personal models, and
all outperform impersonal ones. From 20-30 seconds
and beyond, personal models dramatically outperform
hybrid ones. Impersonal models have an additional
factor to consider, however: we can vary both the
amount of data from each user and the number of users
in the training set. Figure 4 shows these two factors

plotted with classifier accuracy in 3–dimensions. The
surface is shaded to make its accuracy dimension clearer.

Figure 4 allows us to make several important obser-
vations, although some of these may be difficult to see
at a quick glance, given that there are three dimensions
involved. Like with personal and hybrid models, there
is little to no improvement in accuracy from including
more than two minutes of training data from each user.
However, when there are few users in the training set,
including more data per user (up to 2 minutes) dramat-
ically improves performance. As the number of users in
the training set increases, the value of additional data
from each user decreases. With 58 users in the training
set, there is little difference between using 10 seconds or
5 minutes of data per user per activity. Thus, the best
way to improve the accuracy of impersonal models is to
increase the number of users in the training set, rather
than increasing the amount of data per user—this is
another key lesson. This tradeoff is dramatic: a model
generated from 5 users with 10 seconds of data per ac-
tivity outperforms one generated from 2 users with 60
seconds of data per activity—even though the first data
set has less than half the total data. Figure 4 also shows
us that accuracy has not reached a plateau, and hence
having data from more than 58 users will yield improve-
ments in accuracy.

In order to understand this trend better, we gen-
erated the same curves for the HASC data set, which
has seven times as many users. The three-dimensional
chart for this set has the same shape as Figure 4, ex-



Figure 7: Learning curves for impersonal random forest models on data from our set and the HASC set

cept shifted slightly up due to the simpler activity set
and greater class imballance. For ease of comparison,
we show the HASC curve side by side with our own
in Figure 7. Beyond 210, the increase in accuracy of
impersonal models from additional users is negligible.

We also find that the performance gap between the
same algorithms on the two data sets decreases as we
increase the number of users in the set. With only one
user, the gap is 10 points (46% to 56%), but at 55 users
the gap is only 5 points (73% to 78%). Further, we fitted
a logarithmic function, f(x) = 6.53∗ ln(x)+47.75, with
R2 = 0.97, to the accuracy of impersonal models on
our data set so we could compare it to the HASC set
for greater numbers of users. The fitted curves for each
set are shown as the thinner, smooth lines in Figure 7.
Based on this function, increasing the number of users
from 58 to 200 would bring the average accuracy to 82%,
while the accuracy on the HASC set at 200 users is only
83%. Of course, these projections may not hold.

In any case, it is clear that personal and even hybrid
models will substantially outperform impersonal mod-
els, while using dramatically less data. We anticipate
that no number of users would allow an impersonal
model to outperform our personal models, which are
based on about 24 minutes of data divided over six ac-
tivities. One of our key findings is that even impersonal
models using data from a homogenous group are lim-
ited by the diversity of gait patterns, an obstacle easily
overcome by building personal models.

5 Related Work.

There has been prior work related to personal, imper-
sonal, and hybrid models of AR, although in virtually all
cases the work has not had these topics as their primary
focus. Several AR studies only analyze impersonal mod-
els, with limited results [5, 8, 20]. Other AR systems
using smartphones have achieved relatively higher ac-
curacy, but used only personal models [5, 19, 28]. One

paper described personal models that could be incre-
mentally trained to adapt to changes in a user’s gait
[2]. However, their results were similar to those of our
impersonal models, indicating that feature selection and
choice of algorithms is still an important part of AR.

The majority of other smartphone-based systems
only evaluate hybrid models [3, 7, 15, 27], and a number
of other studies [6, 10] do not provide enough informa-
tion in their methodology to determine the model type.
We view this as problematic because of the dramatic
difference in performance and applications between dif-
ferent model types. In one study of Parkinson’s disease
patients, the researchers conclude that models trained
on healthy people perform more poorly on people with
Parkinson’s disease [27]. However, their methodology
shows that they used hybrid models when evaluating
their accuracy on healthy subjects and impersonal mod-
els when evaluating their accuracy on Parkinson’s pa-
tients. Our work shows that the discrepancy in their
results is likely due, at least in part, to their mixing of
model types and not due to differences between Parkin-
son’s patients and healthy people.

There has been relatively little comparative analy-
sis of the different types of AR models. Two studies did
compare personal and impersonal models, but both em-
ployed five accelerometers—thus any conclusions would
not necessarily apply to a smartphone–based system.
The first of these studies concluded that impersonal
models always outperform personal ones, due to the ad-
ditional training data; it further showed that when the
impersonal and personal training set sizes are equal-
ized, personal models only slightly outperform imper-
sonal ones [4]. Our results clearly and dramatically con-
tradict this result (but for smartphone-based systems).
In the second study the personal models outperform the
impersonal models but there is virtually no analysis or
discussion of this, as it is not the paper’s focus [23].

One paper we have already discussed [16] recognizes



the poor performance of some impersonal models and
develops methods for improving their accuracy by se-
lectively training on similar users. However, our results
show that beyond a certain point (i.e., the point they
[16] reached and the point we start from with our set
of similar users), user similarity is not able to compen-
sate for the differences in gait. Further, our analysis of
the learning curves for various model types shows that
very small amounts of personal data dramatically out-
perform these best-case impersonal models, and that
no amount of data for impersonal models will perform
competitively with personal models. Thus our paper is
the most comprehensive study on the impact of model-
type on AR—especially as it relates to single accelerom-
eter, smartphone-based systems. Furthermore, we addi-
tionally evaluate hybrid models and include many more
users in our study than prior studies, as well as more ac-
tivities which are more challenging to distinguish, lead-
ing to more reliable, and general, results.

Many studies use very limited datasets, often with
fewer than 5 users [17, 28] or 10 users [2, 7, 10].
Compounding the issue, the most widely used AR
datasets, COSAR and OPPORTUNITY, have data
from only 4 and 12 users, respectively [21, 22]. Larger
sets, such as HASC 2010 and 2011, contain simplified
sets of activities and smaller amounts of data. This
motivated us to release our AR dataset [24].

6 Conclusion and Future Work.

In this paper we describe and evaluate a data mining
approach for implementing activity recognition, using
only smartphones. We demonstrate that nearly perfect
results can be achieved if a personalized model is
constructed, even using only a very small amount
of user-specific training data. We further show that
impersonal models perform much worse than personal
models, even under the best conditions where they are
trained on similar users. Analysis of the data shows
that impersonal models cannot effectively distinguish
between certain activities, whereas personal models
can effectively learn the user-specific differences that
confound impersonal models. We also show that while
the poor performance of impersonal models is affected
by some idiosyncratic users, whose activities cannot be
accurately predicted, the problem is widespread and
not restricted to a few problem users. Although there
appears to be room for marginal improvement in the
accuracy of impersonal models by increasing the number
of people in the training set up to about 210, and
related work [16] shows that selecting similar subsets of
users also increases the accuracy of impersonal models
to a point, it is clear that the personal models are
able to substantially outperform impersonal ones while

using only a very small amount of personal data. We
also showed that if one does want to improve the
performance of impersonal models, it is far better to
obtain more users than to obtain more data per user.

In this paper we also evaluated the performance of
hybrid models and showed that their performance was
generally inferior to personal models but consistently
better than that of even best-case impersonal models
constructed with similar users. Given that hybrid
models require user-specific training data, and personal
models with the same amount of data generally perform
better, one is better off using personal models. The one
exception is the extreme case where we have only 10
seconds of data from a user, but that case is unlikely,
since anyone already gathering personal data would
easily be able to gather more than 10 seconds of it from
healthy people. Thus we conclude that, hybrid models
will never realistically outperform personal models.

This study provides the most thorough analysis
of the relative performance of personal, impersonal,
and hybrid AR models, and we view this as a key
contribution of the paper (along with the various lessons
learned that we listed above). This is also the first
study to examine in great detail the effect of training
set size on AR performance, as it varies by number of
unique users and quantity of data per user. This work
should greatly influence the design of future AR systems
and the higher level activity and context representation
systems which rely on them.

One of our key achievements is making this AR
research available to smartphone users and researchers
alike, via our downloadable app, Actitracker [1]. Our
AR system tracks a user’s activities and provides reports
via a secure account and web interface. This mobile
health application helps people ensure that they and
their children are sufficiently active to maintain good
health and avoid the many health conditions associated
with inactivity. Because of the results of this research,
we have included a self-training mode in our system,
so one can quickly generate personal labeled activity
data to achieve good predictive performance. This
data is uploaded to our server, which automatically
generates a personalized AR model that then replaces
the impersonal model for that user.

In the future, we plan to extend our activity recog-
nition work in several ways. We continue to collect data
and will add many more users. We also plan to collect
labeled data from users weeks and months after their
personal models are built, to evaluate the impact that
time and different clothes and footwear have on activ-
ity recognition. We will also cover additional activities
and utilize additional sensors, especially the gyroscope,
which is becoming standard in most smartphones.
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