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Abstract Prior research on class distribution and classifier learning
o has focused on cases where large amounts of data are avail-
Many of today's large data sets must be reduced in size be- able but where the class distribution is highly skewed and it
fore invoking inductive agorithms, due to the costs associ- is very costly to misclassify minority instances. In these

ated with procuring/processing the data, and because most of
these algorithms cannot handle enormous amounts of data.
In these cases it is important to select the training data care-

cases the training distribution is modified by oversampling
the minority class or by undersampling the majority class,

fully so the impact on classifier performance is minimized. because the learning algorithm either cannot accept explicit
A tacit assumption behind much research on classifier in- cost information or cannot use this information effectively
duction is that the class distribution of the training data [Breiman, et al., 1984; Drummond and Holte, 2000; Kubat

should match the “natural” distribution of the data. In this and Matwin, 1997]. Our research is not restricted to highly
paper we analyze the relationship between training class dis- skewed data sets and consequently one of the things we are
tribution and classifier performance on 25 data sets and show gple to show is that even when a data set's natural class
:::;t ftgfle”gr‘ﬁ% d':té'i?f‘étr'g;‘t ‘éf:i%i"g:igﬁ‘;o?leigﬁgg’:r;er distribution is nearly balanced, it still often is not best for
ally be chosen when the data set size must be limited. We It'earnr;r_lg. bot\txr/]er Stéjd!efs exalmlnedslotmbe ?Spectsd oflthe.fr_ela-
also explain how changing the class distribution of the lonship between training class distribution and classitier
training set affects classifier learning and why one training Performancebuthavebeenlimited (e.g.,examineonly afew
distribution might be better than another. data sets, do not correct for training skew when using the
resultant classifier) [Catlett, 1991; Chan and Stolfo, 1998].

1 Introduction 2 Evaluating Classifier Performance with
Many issues arise when classifier learning is applied to to- Different Training-set Distributions

day’g large-scale datal seths, sor?te of which are megsu:jeddi\/en a fixed amount of training data, different class distri-
terabytes. For example, there often are costs associate ions will cause an induction algorithm to generate differ-

procuring the data, storing the data, cleaning the data, aRgl; cjassifiers. What class distribution will yield the best
transforming the data into a form suitable for leaming. FOfagsifier? In order to answer this question a performance
example, a common question at the start of a data miningeaqre first must be chosen. In this research we use two

project is: how many data records and in what proportionge tormance measures. We consider only two-class prob-

Furthermoremostexistinglearningalgorithmscannothandle o s o the performance of a classifier can be described

: gsing the "confusion matrix" shown belowClassification
sets must be (relatively) small. For all of these reasons, Sror rate is defined as 1.0 - (TP+TN)/(TP+FP+FN+TN).

often is "!eceffa_ry to I|m|]E T_he_ Size rc]n‘ a training set. In Ord&{ste that throughout this paper we consider the minority
to minimize the impact of limiting the training-Set size, it is qjasc o be the positive class,

essential that the training data be chosen carefully. . )
The common assumption that the naturally occurring class | Actual Positive _ Actual Negative
distribution (i.e., the relative frequency of examples of each Predict Positive | True Positive (TP)  False Positive (FP)
class in the data set) is best for learning is now being ques- Predict Negative | False Negative (FN) True Negative (TN)
tioned. This is occurring because of the increasingly com- Error rate is the standard evaluation metric in machine-
mon need to limit the size of large data sets and becausarning research. However, using this form of error rate
classifiers built from data sets with highly unbalanced clasassumes that the target class distribution is known and un-
distributions perform poorly on minority-class examples (ashanging and, more importantly, that the error costs—the
we will show). In this paper we describe and present theost of a false positive and false negative—are equal. These
results from a comprehensive set of experiments designed &gsumptions have been criticized as being unrealistic [Pro-
analyze the effect of training class distribution on classifievostet al., 1998]. Error rate is particularly suspect as a per-
performance. We show that the naturally occurring clasformance measure when studying the effects of class
distribution usually isiot best for training and, consequently, distribution since error rate is heavily biased to favor the
when the training-set size needs to be restricted, a class digaajority class. However, highly unbalanced problems gen-
tribution other than the natural class distribution should berally have highly non-uniform error costs that favor the
used. We also provide an explanation for how the trainingminority class, which is often the class of primary interest
set class distribution affects classifier learning and why on¢consider medical diagnosis or fraud detection); classifiers
training distribution might be better than another. that optimize error rate are of questionable value in these
cases since they rarely will predict the minority class.




An dternative method for evaluating classifier perform- the AUC values for the four curves. It should be kept in mind
ance is Receiver Operating Characteristic (ROC) analysis, that, as shown by this figure, fgpecific cost and class dis-
which represents the false-positive rate on the x-axis of a  tributions the best model may be not be the one that maxi-
graph and the true-positive rate on the y-axis. Using the  mizes AUC. If there is not a single dominating ROC curve,
terminology introduced in the confusion matrix, the true-  multiple modelscanbe combined so as to perform well for
positive rate is defined as TP/(TP+FN) and the false-positive  all costs and distributions [Provost and Fawcett, 1998]. We
rate as FP/(FP+TN). ROC curves are produced by varying  use AUC because we are interested in drawing conclusions
the threshold on a classification model's numeric output—icross a variety of data sets as to what training distributions
our case by varying the threshold on the class-probabilitgenerally perform best.
estimate at the leaves of a decision tree. ROC analysis and its
use for machine learning are described in detail elsewhei® Experimental Setup

[Suvrve(';zeet fﬂ]e Zgaoérpg)a’\?as:‘tgng (I):favRv(c)egt,erQV%S]._ 'zr?r t(ilrjlrWe assessed the effect of class distribution on 25 data sets
purpose, the primary 9 D% cUrves 1S hat tedsing both classification error rate and AUC. These data sets
illustrate the performance of a classifier without regard tqare described in Table 1. Of these data sets. 20 were ob-
cIanis Srlztrllbsur?(?vr\]/sofroirrr(l)?r(():gséurves each ge ted f ttained from the UCI repository [Blake and Merz, 1998] and
Iette?—vowel data set using the sarﬁ % ner? te from ha‘e(identified with an asterisk) fromesearcherat AT&T .

. . g the same number of raiNiNg €Xpe gata sets are listed in order of decreasing class imbal-
amplgs, bqt with d'ffefe”t training class d|str|bqt|ons. ASance, a convention we use throughout this paper. In order to
described in the previous paragraph, each point on theﬁ?mplify the presentation and analysis, data sets with more
ROC.: curves corresponds to an induced de.C'S'On tree .plustrff‘an two classes were mapped into two-class problems. This
particular output threshold. In ROC analysis, a classkier was accomplished by designating one of the original classes

is better than a classifi& if it is located to the northwest of ; P

) . enerally the least frequently occurring) as the minority
B in ROC space. The point (0,0) corresponds to the Strat.eégass and then mapping all of the remaining classes into a
of never making a positive/minority prediction and the POING o\ class—the majority class

(1,1) to always predicting the positive/minority class.

M9+ % Minority| Dataset % Minority| Dataset
50% Minority P # |Dataset Examples| Size | # |Dataset Examples| Size
e 1 [letter-a 3.9 20000 ([14|networkl* 29.2 3577
o 0.8 2 [pendigits 8.3 13821 ||15|car 30.0 1728
T 3 [abalone 8.7 4177 ||16|german 30.0 1000
% 0.6 1 i o 4 |sick-euthyroid 9.3 3163 ([17|breast-wisc 34.5 699
= 2N 90% Minority 19% Minority/Natural 5 |connect-4 9.5 11258 ||18|blackjack* 35.6 | 15000
G |/ 6 |optdigits 9.9 5620 |[19|weather* 40.1 5597
goad ¢ 7 [solar-flare 15.7 1389 ((20]|bands 42.2 538
o ; 2% Minority: 59.9% AUC g Ietteir—vowiz'l ;gg 210407030 2; market1* 3‘312 3181
E ool 255 Minori 19% Minority: 79.5% AUC contraceptive : crx : 690
oy 6 Minority 50% Minority: 86.2% AUC 10 adglt ' ' 23.6 21281 |([23[kr-vs-kp 47.8 3196
5 90% Minority: 85.5% AUC 11|splice-junction 24.1 3175 ([24|move* 49.9 3029
0ot ‘ ‘ ; ; 12|network2 27.9 3826 ([25|coding 50.0 20000
) 13]yeast 28.9 1484
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Table 1: Description of Data sets
Figure 1: ROC Curves for the Letter-Vowel Data set The experiments in this paper use C4.5, a program for in-

Observe that different training distributions perform betterducing decision trees from labeled data [Quinlan, 1993]. In
in different areas of ROC space. Specifically note thaorder to produce ROC curves we use the Laplace correction
training with 90% minority-class examples performs sub-at the leaves [Provost al., 1998]. All experiments are run
stantially better than training with the natural distribution for10 times, and, except for the ROC curves in Figure 1 which
high true-positive rates. To our knowledge such differencewere generated from a single run, all results in this paper are
in performance with class distribution have never befordased on the averages over the 10 runs. Each run involves
been shown convincingly or analyzed. Unfortunately spaceandomly selecting 25% of the minority and majority classes
limitations prevent us from discussing all these differencefor testing and reserving the remaining data for training.
(such as why the ROC curves cross). An essential thing tdost experiments vary the class distribution of the training
note in Figure 1 is that the curve generated with the balancegt so that the minority class accounts for between 2% and
training setdominates the curve generated with the natural 95% of the training data.
distribution. This means that there is no set of target costs We take two additional steps in order to ensure that the re-
and class distribution for which the natural distribution is asults can be compared fairly as the training distribution
better choice than the balanced distribution (in some casebanges. First, the training-set si&,for each data set is
they are almost indistinguishable). made equal to the total number of minority-class examples

To assess theverall quality of an ROC curve we use the available for training (i.e., 75% of the total number of mi-
area under the ROC curve (AUC), which is equivalent taority examples). Thus it is possible to genematg class
several other statistical measures for classification andistribution for training-set siz8. Each data set selected for
ranking [Hand, 1997]. AUC effectively averages the per-our study is required to contain a minimum of 200 minority-
formance over all costs and distributions. Figure 1 includeslass examples in order to ensure sufficient training data.



The second step involves accounting for the differences  than half of the examples. The coverage column shows the
between the training- and test-set distributions when meas- average number ofraining examples that eaciminority-
uring error rate—changing the training distribution will /majority-labeled leafclassifies. This column shows that
result in biased posterior class-probability estimates at theaveslabeled with the minority class usually are formed
leaves of the tree and therefore may lead to inaccurate clasbiem fewer training examples than those labeled with the
fications (the ROC curves will not be affected). To remedymajority class (this is not surprising since there are more
this, the probability estimate at each leaf is recomputed tmajority-class examples).
take into account the difference between the training ang % Errs | Coverage | [eaf ER [Example ER] Recal
testing distributions. The class label is then reassigned basgdataset| Min. [Min. Maj. [Min. Maj.|Min. Maj. | Min. Maj.
on whether the new estimated probability of an example a 652 1 61 121172 051126 0.3 |874 997

; N : [ 322 | 286 3339(220 11118 22 |882 97.8
the leaf belonging to the minority class is greater than or less
than 50%. The revised estimates are computed as followg.
Let A (B) represent the number of minority (majority) class
examples at LeafLet c represent the fraction of minority-
class examples in the training set divided by the fraction of
minority-class examples in the test set. The revised, estit o | 297 | 54 19 |330 123|415 86 |585 911

mated probability of an example at Leéklonging to the 11 551 | 7.0 122129 48153 4.0 [847 96.0
positive/minority class is: 12 60.0 4.7 12.7 |44.4 19.7| 545 14.0| 455 86.0
o 13 70.7 | 11.8 356 (37.1 21.0/59.0 10.0 | 41.0 90.0
P(Minority|Leaf) = A/ (A+cB) () 14 | 596 | 47 12.0(41.2 19.7|508 14.3|49.2 85.7

Our results indicate that adjusting the leaf labels assigneql 71g 552 | 21 1.8 |55.9 249|609 213|391 787
by C4.5 yields considerable improvements in classifier errof 17 537 | 11.8 29.0(8.0 4995 42 (905 958
rate for training distributions other than the natural distribu-| 74 87 151 75 |a0s _ _ _
tion (classification error rate for the natural distribution will 20 | 863 | 1.6 05 |225 338|650 7.5 |350 925
not be affected). For example, when the training distribution| 21 55.4 | 6.0 3.3 126.6 22.4131.0 19.0169.0 81.0
is modified to contain 50% minority-class examples (and, of §§ 23:2 43(5?5 72&;?7 201.‘54 109_'65 20?‘75 106_‘52 ;gjg 332
course, the natural distribution is used for testing), the relaj 24 | 629 | 2.7 06 |21.2 27.6/31.3 184|687 81.6
beling process results in a decrease in error rate for 17 da szse. gg:é 12:3-74 4li.78 ggj’ il‘:g 353 29%1 g‘z‘é ;8;2
sets, an increase for 5 data sets and no change for 3 data S@tSedian| 59.6 | 47 7.2 |239 139|359 75 |641 925
Moreover, if we restrict our attention to those 16 data sets . o
where the natural class ratio is greater than 3:1, then the Table2: Resultsof Learning with the Natural Distribution
relabeling process results in a decrease in error rate for 15 of Table 2 also provides detailed, class-specific error-rate
the 16 data sets and an average decrease in error rate over(EiR) statistics for the classifiers. The “Leaf ER” column
16 data sets of 14.3%. Also, over the classifiers associatspecifies the error rates for theaves that predict the minor-
with the 16 (25) data sets, the relabeling process causes 1786 and majority classes and the “Example ER” column the
(15%) of the class labels originally assigned by C4.5 teerror rates for theest examples belonging to the minority
change. Prior research on the effect of class distribution cend majority classes. The “Recall” column shows the per-
learning has not utilized this correction [Catlett, 1991; Charentage of the total minority- and majority-class examples
and Stolfo, 1998]. that are correctly classified. This same information is pre-

One final issue concerns pruning. C4.5's pruning strategyented graphically in Figure 2 using a scatter plot.
may be adversely affected because it does not take into ac- 100 . . o ®
count the differences in class distribution between the train- ° % o °e
ing and test sets. Consequently, the results in this paper are g | °
based on C4.5 without pruning. Nonetheless, all experimentsg

were repeated with pruning and exhibit similar trends. 8 60 1

- - Leaf ER
4 Results: Natural vs. Balanced Distributions 5 w0 + Example ER
In this section we analyze the classifiers generated from the > Recal
25 data sets listed in Table 1 using the natural and balanced 20 - + .
class distributions. Our purpose is to show the effect of class oy .
imbalance on learning and then to contrast this to learning o =t4F t : : + ‘
with no class imbalance (on the same data sets). 0 20 40 60 80 100

. . . . . Minority Class
4.1 Learningwith the Natural Class Distribution Figure 2: Results using Natural Class Distribution

The results of learning with the natural class distribution are Examination of the error-rate results shows that classifiers

shown in Table 2. The second column shows that in almo brform much worse on the minority class than on the ma-
all cases more than half of all errors are the result of miscla Srity class.  Further, note that on average the classifiers

sifying minority-class examples, even though, as shown iy rectly classify 62.3% of the minority examples but 90.5%
Table 1, the minority class typically accounts for far fewerqs the majority.” The results can be summarized as follows:



although the classifier leaves generally are less accurate at
predicting the minority class (based on Leaf ER), the classi-
fier performs even worse at classifying the minority exam-
ples (based on Example ER). This is possible because the
leaves predict the minority class far less often (cf. Recall).

4.2 Learningwith a Balanced Class Distribution

For comparison we next removed the class imbalance from
al data sets, by including equal numbers of minority- and
majority-class examples in the training and test sets. (The
"minority" classrefers to the class that occurs less frequently
in the natural distribution.) The results are depicted in Fig-
ure 3.
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Figure 3: Results using Balanced Class Distribution
Comparing the results from Figure 3 with those from Fig-
ure 2 shows that the minority and magjority values for all
three measures become more similar when the class imbal-
ance is removed. However, even without any training and

test imbalance there is a striking pattern when comparing the

minority- and majority-class results. Namely, for 21 of 25

data sets the minority-class examples have the higher error

rate, for 19 of 25 data sets the leaves predicting the minority

class have the lower error rate, and for 21 of 25 data sets the

minority class has the higher recall. In summary, when

learning from a balanced class distribution the classifiers

generally come up with fewer but more accurate classifica-

tion rules for the minority class than for the majority class.
Although it certainly deserves further analysis, we believe

this surprising difference exists because the minority class

often comprises a more homogeneous set of entities, while

the majority class often corresponds to “everything else.” For

example, in fraud detection the minority class corresponds to

illicit activities while the majority class corresponds to all

other activities.

5 Results: What Training Distribution is Best?

Next we varied the training-set distributions for all 25 data

sets, so that the minority class accounted for the following
percentages of the data: 2%, 5%, 10%, 20%, ... 80%, 90%,
and 95%. Due to space limitations only the results for some
of these training distributions are shown in Table 3. For

each distribution the average error rate and AUC value over
the 10 runs are shown. The optimal values (minimum for
error rate and maximum for AUC) are underlined and dis-

played in bold; the vertical bars indicate the relative position
of the natural distribution. By comparing the position of the

optimal values with the vertical bars one can see the relation-
ships between the optimal and natural training-set distribu-
tions.

Error Rate using Specified Training Distribution AUC when Training using Specified Distribution || Relative

Nat (expressed as % minority) (expressed as % minority) Improv. (%)

Dataset Distr.| Nat| 2 5 10 20 30 40 50 60 |[Nat| 2 5 10 30 50 70 90 95 || ER | AUC
letter-a 39| 28[29]25 29 31 36 53 53 67|793][745]81.9 86.4 927 942 948 951 93.2|/11.4] 19.9
pendigits 831|37]|58 40|37 35 36 37 41 42/(96.3[90.6 957|972 978 97.7 97.8 97.2 95.7| 3.0 | 16
abalone 8.7 [|10.7] 9.0 9.2 |11.6 12.8 159 19.6 20.7 22.3((69.4(59.5 60.5|71.6 759 76.4 73.8 71.2 67.0|/16.0| 10.1
sick-euthyroid | 93 || 45169 54 (38 44 72 64 91 11.0{/926]|80.1 91.8|93.8 94.2 95.6 95.3 929 93.3(14.3| 3.2
connect-4 9.5 |/10.7] 7.7 8.8 109 15.0 19.1 235 27.4 31.8([72.3(66.2 68.4|73.8 76,9 78.8 79.3 76.5 74.3|28.1| 9.7
optdigits 99149]91 72|56 31 25 29 33 37|(77.8[60.0 68.6|76.5 926 957 96.5 96.4 97.1|/49.6| 24.0
solar-flare 15.7)119.2| 16.2 17.5 195|21.4 21.6 27.2 27.6 29.9|/66.3|61.1 63.2 61.7|645 62.9 64.1 64.6 63.9|15.4( 0.0
letter-vowel 19.4)111.8|16.5 14.2 12.8(11.7 12.2 12.8 14.4 15.7|/79.7|62.0 68.5 74.1|82.3 85.3 86.6 85.6 84.0| 0.3 | 8.7
contraceptive | 22.6||31.7123.9 26.1 25.8 28.7|31.3 34.9 39.3 42.3||59.0|54.5 59.1 61.9|/64.0 63.4 65.2 65.3 61.2([24.8( 10.7
adult 23.6((18.2|19.2 18.3 17.5 17.8|18.8 19.7 20.6 22.8//82.5/80.2 79.6 80.9(82.0 83.6 83.9 839 82.1| 3.6 | 1.7
splice-junction| 24.1| 8.3 |20.5 142 115 9.0 9.2 83 8.2 10.6{/91.0|75.7 834 855|91.6 93.8 94.0 955 93.2| 1.0 [ 4.9
network2 27.9|(27.1|27.6 26.4 26.3 25.9]|27.1 27.8 30.0 33.4|70.7|62.7 69.3 69.0(70.6 70.5 70.9 69.2 69.2| 46| 0.3
yeast 28.9((27.028.7 28.7 27.3 27.1|25.9 27.1 28.3 30.0//69.8|52.2 52,5 63.0(70.9 71.6 71.9 69.3 60.1| 3.9 | 3.0
networkl 29.2|(27.6|27.1 27.3 26.9 26.7|27.8 28.9 29.9 32.7|70.9|66.6 67.9 69.9(/69.2 70.1 68.8 685 68.8| 3.3 | 0.0
car 300 9.5|23.0 193 154 11.2| 85 80 7.6 7.7|87.1|72.1 76,5 78.4(89.7 925 91.9 93.1 90.1(19.8] 6.9
german 30.0((33.8/29.8 29.8 31.7 30.1|33.3 36.2 35.8 41.0//62.9|57.4 61.0 63.0 64.5]|67.0 65.3 63.9 65.2(10.9| 6.5
breast-wisc 345| 74191 144 91 74 74|67 68 7.0/96.2|884 927 943 96.2|96.4 97.5 951 95.0(/10.0| 1.4
blackjack 35.6((28.1|31.1 30.4 29.9 29.1 28.2|28.2 28.2 29.0//70.2|58.2 60.2 62.8 69.6]|72.1 70.0 59.4 545| 00| 2.7
weather 40.1((33.0138.8 36.8 35.3 33.3 33.3 34.5|34.6 36.1|74.3(67.8 72.2 72.0 735|735 73.7 72.2 70.5| 0.0 | 0.0
bands 42.2(32.3]36.3 36.2 36.2 32.3 33.8 31.0(34.2 32.7([61.9|/60.6 55.8 54.8 59.8|59.9 60.3 51.3 52.5| 4.0 | 0.0
marketl 43.0((26.7]|35.9 32.8 295 27.0 25.8 26.1|26.4 28.0((80.9(71.7 76.1 79.4 80.7|81.2 81.1 80.8 77.3| 3.3 | 0.4
crx 445(21.0136.0 31.4 29.1 224 21.6 20.5(21.2 19.4([85.4(77.1 76.4 77.2 83.4|83.3 84.3 843 86.3|| 78| 1.1
kr-vs-kp 478 1.3]|115 64 35 19 17 11|12 13(99.8(94.6 97.7 99.0 99.8|99.9 99.7 98.9 98.8|/12.0| 0.1
move 49.9((27.5|45.2 42.3 37.6 329 304 29.4(28.6 29.3|74.8(56.1 61.8 65.2 70.5 74.0|74.4 71.0 67.7| 0.0 | 0.0
coding 50.0[33.5/46.0 43.2 39.8 36.4 34.5 33.5/33.1 33.5|68.5]|61.7 61.9 63.5 67.1 69.0]/69.4 676 655| 1.2 | 1.3
Ave. 27.5((18.5[22.9 21.3 20.1 19.0 19.4 20.1 21.0 22.5|77.6/68.5 72.1 75.0 79.2 80.3 80.4 78.8 77.1| 7.3 | 4.7
Median 28.4|/18.8/23.0 20.3 19.8 20.2 20.5 22.0 23.8 25.4|/74.8|66.2 68.6 73.8 76.9 78.8 79.3 765 743[ 48] 1.7

Table 3: Optimal Training Distributions for Error rate and AUC



The results in Table 3 show that, for both error rate and have a higher error rate because they suffer from this

AUC, training with the natural distribution seldom is opti- “problem of small disjuncts.”

mal.” Furthermore, as indicated by the last two columns, We can gain a better understanding of the problem of
training using the optimal distribution instead of the natural small disjuncts by relating it to the class distribution. Sur-
distribution leads to a substantial improvement for most of prisingly, the reason why small disjuncts have a higher error
the data sets with large class imbalances. Inspection of the rate than large disjuncts is due only partly to the fact that
error-rate results shows that the optimal distribution does not small disjuncts are based on a smaller number of training

differ from the natural distribution in any consistent way— examplegi.e.,the third reason)As it turnsout, thefirst and

sometimes it includes more minority examples and some- second reasons described in this section are also factors.

times fewer. There is some correlation between the optimal That is, part of the reason small disjuncts have a higher

and natural distributions, but far less than one might expect. error rate than large disjuncts is because they over-represent
The results for AUC show that the optimal distribution is the minority class—which tends to have a higher error rate

shifted to include more minority-class examples than the than the majority class. We quantify the impact of each of

natural distribution. Since, unlike error rate, AUC is not these factors in the expanded version of this paper.

affected by the test set class distribution, and because it L

averages oveall distributions, this shift is not surprising— 6.2 Why Isn’t the Natural Class Distribution Best?

one might expect the optimal distribution to be near the 50- |n Section 5 we saw that the natural distribution is often not

50 distribution. The results indicate the shift goes past the best for learning, for either error rate or AUC. We are now

50-50 point, something we discuss in the next section. able to provide some insight into why one training class
) . distribution is better than another and why the natural dis-
6 Discussion tribution is often not best (although a thorough explanation

In this section we explain the main results from Sections 4 'equires further study). . .
and 5 and try to provide a better understanding of the rela- W& begin by looking at the learning curves for the mi-

tionship between class distribution and classifier learning. M0ty and maority classes. The learning curves for the
contraceptive and optdigits data sets are shown below in

6.1 Why isthe Minority-class Error Rate Higher? Figure 4. For these data sets, as for al 25 data sets, the

The results from Section 4.1 clearly demonstrate that classi- 1€&Ming curve for the minority class is on top, the overall

fiers tend to have a higher error rate on the minority class CUrve in the middie and the mgjority-class learming curve on

than on the majority class. We provide several component POtom. Thus, the test examples belonging to the minority
reasons for this behavior. The first reason, although simple, ¢/@S dways have a higher error rate than those belonging

is subtle and often overlooketiere are many more major- to the majority class. Because the training set sizes for

ity than minority-class test instances. Thus, false-positive ;experlments that vary the class distributions are set to equal
predictions are (implicitly) given more weight in error-rate- 7+ Of the number of minority class examples (as described
based assessments. For example, imagine a randomly gen! Sectlon_3), the training set sizes for the optdigits and
erated and labeled decision tree that is evaluated on a tesfontraceptive datasets correspond to a value of x=7% and
set with two classes, where the class ratio is 9:1. In this 1/ 70, respectively, in Figure 4. Note that at around these

situation the leaves predicting the minority class will have Vvalues the minority-class learning curve for the optdigits
an expected error rate of 90% while the majority-class data set shows dramatic improvement, while for the contra-

leaves will have an expected error rate of only 10%! ceptive data set it shows only a slight improvement..

The second reason that the minority class has a higher er- 70 1
ror rate is that the class "priors" in the natural training dis- 60

tribution are biased strongly in favor of the majority class. S , , —

. . . e . . =501 Bold Lines: Contraceptive |® Minority Class
Thus, with equivocal evidence many classifiers will predict 2wl ™ Dotted Lines: Optdigits 4 Overall
the majority class, which leads to higher error rates on \‘_m x Majority Class
minority-class examples. S 301

The third reason is also related to the minority class “ 20 X\Nf

havingfewertrainingexampleghanthe majority class. The 10 *u, B
coverage statistics in Table 2 show that a consequence of o0 L
having fewer minority-class examples is that each rule that 0% 10% 20% 30% 40% 50% 60% 70%  80%

predicts the minority class is formed from many fewer Amount of Data Used for Training

training examples, on average, than the rules that predict the  Figure 4: Learning Curves for Contraceptive and Optdigits

][‘najotrlty_ class. Sﬂalll d|$3ungtshare trtl)ose rurlles th‘? crc])ver The dramatic improvement in optdigits’ minority-class
hewh raining e):aTﬁ eslan dga\_/e teenH Slu?\;lvn 1%896_“"9 Qlearning curve explains why, for error rate, its optimal
igher error rate than large disjuncts [Hokeal., : training distribution (30% minority) includes famore mi-

Weiss and Hirsh, 2000]. Thus, the minority-class rules |,y examples than its natural distribution (4.9% minor-
ity); the slight improvement in the contraceptive data set’s
minority-class learning curve explains why its optimal
t For readers concerned with the multiple-comparisons problem, distribution (2% minority) includes faiewer minority ex-

notethatin almostevery case there is a clear trend across the rows, gmples than its natural distribution (31.7% minority).
with a single minimum for error rate and maximum for AUC.




More specifically, for most of the data sets we studied,
the minority-class learning curves begin with a much higher
error rate than the majority-class learning curves; they show
more rapid improvement, but still plateau at a later point.
One practical consequence of this behavior is that once the
majority class has enough training data so its learning curve
flattens, it makes sense to then begin adding only minority-
class examples, until itslearning curve also flattens.

Note that for AUC the optimal distribution for the con-
traceptive data set includes more minority-class examples
than the natural distribution (in contrast to the error-rate
case). This is because with AUC the mgjority class does
not have greater weight than the minority class, and while
the improvement in the minority-class learning curve may
appear dight, at times it shows more improvement than the
improvement in the majority-class learning curve.

We have just provided a qualitative analysis of why one
training distribution is better than another, but a quantitative
analysis is also possible. Imagine that the training-set size
for the optdigits data set corresponds to the value at x=10%
in Figure 4 and one example can be added to the training
set. If the ratio of mgjority- to minority-class test examples
is X:1 and error rate is the performance measure, then a
minority-class example should be added only if the slope
(i.e., improvement) of the minority-class curve at this point
is at least X times that of the majority-class curve. For
other performance metrics asimilar analysisis possible.

7 Conclusion and Future Work

In this paper we showed that, and explained why, classifiers
perform much worse on minority-class examples than ma-
jority-class examples. We also showed that by modifying

the training-set class distribution one can usually improve

the overall performance of the classifier—sometimes dra-
matically. We showed this for two quite different classifier

We hope these results help researchers and practitioners
to understand better the relationship between the training
class distribution and classifier performance, and to learn
more effectively from large data sets in situations where the
training-set size must be limited.
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