
Technical Report ML-TR-43, Department of Computer Science, Rutgers University
January 11, 2001

The Effect of Class Distribution on Classifier Learning

Gary M. Weiss
Rutgers University/AT&T Labs

30 Knightsbridge Rd., Piscataway, NJ 08854
gmweiss@att.com

Foster Provost
Stern School of Business, New York University

44 W. 4th St., New York, NY 10012
fprovost@stern.nyu.edu

Abstract

Many of today’s large data sets must be reduced in size be-
fore invoking inductive algorithms, due to the costs associ-
ated with procuring/processing the data, and because most of
these algorithms cannot handle enormous amounts of data.
In these cases it is important to select the training data care-
fully so the impact on classifier performance is minimized.
A tacit assumption behind much research on classifier in-
duction is that the class distribution of the training data
should match the “natural” distribution of the data.  In this
paper we analyze the relationship between training class dis-
tribution and classifier performance on 25 data sets and show
that the natural distribution usually is not the best distribu-
tion for learning—a different class distribution should gener-
ally be chosen when the data set size must be limited. We
also explain how changing the class distribution of the
training set affects classifier learning and why one training
distribution might be better than another.

1   Introduction
Many issues arise when classifier learning is applied to to-
day’s large-scale data sets, some of which are measured in
terabytes.  For example, there often are costs associated with
procuring the data, storing the data, cleaning the data, and
transforming the data into a form suitable for learning.  For
example, a common question at the start of a data mining
project is: how many data records and in what proportion?
Furthermore, most existing learning algorithms cannot handle
huge data sets at all, and in order to run quickly the training
sets must be (relatively) small.  For all of these reasons, it
often is necessary to limit the size of a training set.  In order
to minimize the impact of limiting the training-set size, it is
essential that the training data be chosen carefully.

The common assumption that the naturally occurring class
distribution (i.e., the relative frequency of examples of each
class in the data set) is best for learning is now being ques-
tioned.  This is occurring because of the increasingly com-
mon need to limit the size of large data sets and because
classifiers built from data sets with highly unbalanced class
distributions perform poorly on minority-class examples (as
we will show). In this paper we describe and present the
results from a comprehensive set of experiments designed to
analyze the effect of training class distribution on classifier
performance. We show that the naturally occurring class
distribution usually is not best for training and, consequently,
when the training-set size needs to be restricted, a class dis-
tribution other than the natural class distribution should be
used.  We also provide an explanation for how the training-
set class distribution affects classifier learning and why one
training distribution might be better than another.

Prior research on class distribution and classifier learning
has focused on cases where large amounts of data are avail-
able but where the class distribution is highly skewed and it
is very costly to misclassify minority instances.  In these
cases the training distribution is modified by oversampling
the minority class or by undersampling the majority class,
because the learning algorithm either cannot accept explicit
cost information or cannot use this information effectively
[Breiman, et al., 1984; Drummond and Holte, 2000; Kubat
and Matwin, 1997].  Our research is not restricted to highly
skewed data sets and consequently one of the things we are
able to show is that even when a data set’s natural class
distribution is nearly balanced, it still often is not best for
learning.  Other studies examine some aspects of the rela-
tionship between training class distribution and classifier
performance, but have been limited (e.g., examine only a few
data sets, do not correct for training skew when using the
resultant classifier) [Catlett, 1991; Chan and Stolfo, 1998].

2   Evaluating Classifier Performance with
Different Training-set Distributions

Given a fixed amount of training data, different class distri-
butions will cause an induction algorithm to generate differ-
ent classifiers.  What class distribution will yield the best
classifier?  In order to answer this question a performance
measure first must be chosen.  In this research we use two
performance measures.  We consider only two-class prob-
lems, so the performance of a classifier can be described
using the "confusion matrix" shown below.  Classification
error rate is defined as 1.0 - (TP+TN)/(TP+FP+FN+TN).
Note that throughout this paper we consider the minority
class to be the positive class.

 Actual Positive Actual Negative
Predict Positive  True Positive (TP)  False Positive (FP)
Predict Negative  False Negative (FN)  True Negative (TN)

Error rate is the standard evaluation metric in machine-
learning research.  However, using this form of error rate
assumes that the target class distribution is known and un-
changing and, more importantly, that the error costs—the
cost of a false positive and false negative—are equal.  These
assumptions have been criticized as being unrealistic [Pro-
vost et al., 1998].  Error rate is particularly suspect as a per-
formance measure when studying the effects of class
distribution since error rate is heavily biased to favor the
majority class.  However, highly unbalanced problems gen-
erally have highly non-uniform error costs that favor the
minority class, which is often the class of primary interest
(consider medical diagnosis or fraud detection); classifiers
that optimize error rate are of questionable value in these
cases since they rarely will predict the minority class.
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An alternative method for evaluating classifier perform-
ance is Receiver Operating Characteristic (ROC) analysis,
which represents the false-positive rate on the x-axis of a
graph and the true-positive rate on the y-axis.  Using the
terminology introduced in the confusion matrix, the true-
positive rate is defined as TP/(TP+FN) and the false-positive
rate as FP/(FP+TN).  ROC curves are produced by varying
the threshold on a classification model's numeric output—in
our case by varying the threshold on the class-probability
estimate at the leaves of a decision tree. ROC analysis and its
use for machine learning are described in detail elsewhere
[Swets et al., 2000; Provost and Fawcett, 1998].  For our
purpose, the primary advantage of ROC curves is that they
illustrate the performance of a classifier without regard to
class distribution or error cost.

Figure 1 shows four ROC curves, each generated from the
letter-vowel data set using the same number of training ex-
amples, but with different training class distributions.  As
described in the previous paragraph, each point on these
ROC curves corresponds to an induced decision tree plus a
particular output threshold.  In ROC analysis, a classifier A
is better than a classifier B if it is located to the northwest of
B in ROC space. The point (0,0) corresponds to the strategy
of never making a positive/minority prediction and the point
(1,1) to always predicting the positive/minority class.
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Figure 1: ROC Curves for the Letter-Vowel Data set

Observe that different training distributions perform better
in different areas of ROC space.  Specifically note that
training with 90% minority-class examples performs sub-
stantially better than training with the natural distribution for
high true-positive rates.  To our knowledge such differences
in performance with class distribution have never before
been shown convincingly or analyzed.  Unfortunately space
limitations prevent us from discussing all these differences
(such as why the ROC curves cross).  An essential thing to
note in Figure 1 is that the curve generated with the balanced
training set dominates the curve generated with the natural
distribution.  This means that there is no set of target costs
and class distribution for which the natural distribution is a
better choice than the balanced distribution (in some cases
they are almost indistinguishable).

To assess the overall quality of an ROC curve we use the
area under the ROC curve (AUC), which is equivalent to
several other statistical measures for classification and
ranking [Hand, 1997].  AUC effectively averages the per-
formance over all costs and distributions. Figure 1 includes

the AUC values for the four curves. It should be kept in mind
that, as shown by this figure, for specific cost and class dis-
tributions the best model may be not be the one that maxi-
mizes AUC. If there is not a single dominating ROC curve,
multiple models can be combined so as to perform well for
all costs and distributions [Provost and Fawcett, 1998].  We
use AUC because we are interested in drawing conclusions
across a variety of data sets as to what training distributions
generally perform best.

3   Experimental Setup
We assessed the effect of class distribution on 25 data sets
using both classification error rate and AUC. These data sets
are described in Table 1.  Of these data sets, 20 were ob-
tained from the UCI repository [Blake and Merz, 1998] and
5 (identified with an asterisk) from researchers at AT&T .
The data sets are listed in order of decreasing class imbal-
ance, a convention we use throughout this paper.  In order to
simplify the presentation and analysis, data sets with more
than two classes were mapped into two-class problems.  This
was accomplished by designating one of the original classes
(generally the least frequently occurring) as the minority
class and then mapping all of the remaining classes into a
new class—the majority class.

% Minority Dataset % Minority Dataset
# Dataset Examples  Size # Dataset Examples  Size 
1 letter-a 3.9 20000 14 network1* 29.2 3577
2 pendigits 8.3 13821 15 car 30.0 1728
3 abalone 8.7 4177 16 german 30.0 1000
4 sick-euthyroid 9.3 3163 17 breast-wisc 34.5 699
5 connect-4 9.5 11258 18 blackjack* 35.6 15000
6 optdigits 9.9 5620 19 weather* 40.1 5597
7 solar-flare 15.7 1389 20 bands 42.2 538
8 letter-vowel 19.4 20000 21 market1* 43.0 3181
9 contraceptive 22.6 1473 22 crx 44.5 690
10 adult 23.6 21281 23 kr-vs-kp 47.8 3196
11 splice-junction 24.1 3175 24 move* 49.9 3029
12 network2 27.9 3826 25 coding 50.0 20000
13 yeast 28.9 1484

Table 1: Description of Data sets

The experiments in this paper use C4.5, a program for in-
ducing decision trees from labeled data [Quinlan, 1993].  In
order to produce ROC curves we use the Laplace correction
at the leaves [Provost, et al., 1998].  All experiments are run
10 times, and, except for the ROC curves in Figure 1 which
were generated from a single run, all results in this paper are
based on the averages over the 10 runs.  Each run involves
randomly selecting 25% of the minority and majority classes
for testing and reserving the remaining data for training.
Most experiments vary the class distribution of the training
set so that the minority class accounts for between 2% and
95% of the training data.

We take two additional steps in order to ensure that the re-
sults can be compared fairly as the training distribution
changes.  First, the training-set size, S, for each data set is
made equal to the total number of minority-class examples
available for training (i.e., 75% of the total number of mi-
nority examples).  Thus it is possible to generate any class
distribution for training-set size S.  Each data set selected for
our study is required to contain a minimum of 200 minority-
class examples in order to ensure sufficient training data.
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The second step involves accounting for the differences
between the training- and test-set distributions when meas-
uring error rate—changing the training distribution will
result in biased posterior class-probability estimates at the
leaves of the tree and therefore may lead to inaccurate classi-
fications (the ROC curves will not be affected).  To remedy
this, the probability estimate at each leaf is recomputed to
take into account the difference between the training and
testing distributions.  The class label is then reassigned based
on whether the new estimated probability of an example at
the leaf belonging to the minority class is greater than or less
than 50%.  The revised estimates are computed as follows.
Let A (B) represent the number of minority (majority) class
examples at Leafi. Let c represent the fraction of minority-
class examples in the training set divided by the fraction of
minority-class examples in the test set.  The revised, esti-
mated probability of an example at Leafi belonging to the
positive/minority class is:

P(Minority|Leafi) = A / (A+cB)                                 (1)
Our results indicate that adjusting the leaf labels assigned

by C4.5 yields considerable improvements in classifier error
rate for training distributions other than the natural distribu-
tion (classification error rate for the natural distribution will
not be affected).  For example, when the training distribution
is modified to contain 50% minority-class examples (and, of
course, the natural distribution is used for testing), the rela-
beling process results in a decrease in error rate for 17 data
sets, an increase for 5 data sets and no change for 3 data sets.
Moreover, if we restrict our attention to those 16 data sets
where the natural class ratio is greater than 3:1, then the
relabeling process results in a decrease in error rate for 15 of
the 16 data sets and an average decrease in error rate over the
16 data sets of 14.3%.  Also, over the classifiers associated
with the 16 (25) data sets, the relabeling process causes 17%
(15%) of the class labels originally assigned by C4.5 to
change.  Prior research on the effect of class distribution on
learning has not utilized this correction [Catlett, 1991; Chan
and Stolfo, 1998].

One final issue concerns pruning. C4.5's pruning strategy
may be adversely affected because it does not take into ac-
count the differences in class distribution between the train-
ing and test sets.  Consequently, the results in this paper are
based on C4.5 without pruning. Nonetheless, all experiments
were repeated with pruning and exhibit similar trends.

4   Results: Natural vs. Balanced Distributions
In this section we analyze the classifiers generated from the
25 data sets listed in Table 1 using the natural and balanced
class distributions.  Our purpose is to show the effect of class
imbalance on learning and then to contrast this to learning
with no class imbalance (on the same data sets).

4.1     Learning with the Natural Class Distribution
The results of learning with the natural class distribution are
shown in Table 2.  The second column shows that in almost
all cases more than half of all errors are the result of misclas-
sifying minority-class examples, even though, as shown in
Table 1, the minority class typically accounts for far fewer

than half of the examples. The coverage column shows the
average number of training examples that each minority-
/majority-labeled leaf classifies.  This column shows that
leaves labeled with the minority class usually are formed
from fewer training examples than those labeled with the
majority class (this is not surprising since there are more
majority-class examples).

% Errs.
Dataset  Min.  Min.  Maj. Min. Maj. Min. Maj.  Min.  Maj. 

1 65.2 6.1 12.1 7.2 0.5 12.6 0.3 87.4 99.7
2 32.2 28.6 333.9 22.0 1.1 11.8 2.2 88.2 97.8
3 72.0 4.0 49.1 56.8 7.1 77.4 2.9 22.6 97.1
4 49.2 8.1 53.9 16.2 1.6 16.0 1.7 84.0 98.3
5 51.0 2.0 6.4 48.1 5.2 49.1 5.0 50.9 95.0
6 60.8 6.8 7.0 7.0 1.2 11.5 0.7 88.6 99.3
7 69.4 2.2 6.8 66.2 13.9 81.7 6.8 18.3 93.2
8 59.3 3.8 1.4 15.9 5.1 21.7 3.6 78.3 96.4
9 51.1 2.2 4.0 64.1 18.8 64.9 18.2 35.1 81.8

10 59.1 3.4 1.9 33.0 12.3 41.5 8.9 58.5 91.1
11 55.1 7.0 12.2 12.9 4.8 15.3 4.0 84.7 96.0
12 60.0 4.7 12.7 44.4 19.7 54.5 14.0 45.5 86.0
13 70.7 11.8 35.6 37.1 21.0 59.0 10.0 41.0 90.0
14 59.6 4.7 12.0 41.2 19.7 50.8 14.3 49.2 85.7
15 70.4 4.4 13.1 5.7 5.2 12.6 2.3 87.4 97.7
16 55.2 2.1 1.8 55.9 24.9 60.9 21.3 39.1 78.7
17 53.7 11.8 29.0 8.0 4.9 9.5 4.2 90.5 95.8
18 80.2 159.1 359.0 29.8 27.7 63.3 8.7 36.7 91.3
19 48.7 5.1 7.2 40.8 26.9 39.6 27.9 60.5 72.1
20 86.3 1.6 0.5 22.5 33.8 65.0 7.5 35.0 92.5
21 55.4 6.0 3.3 26.6 22.4 31.0 19.0 69.0 81.0
22 55.3 3.6 2.2 21.4 19.5 25.5 16.2 74.5 83.8
23 67.4 40.5 78.7 0.5 0.6 0.7 0.5 99.3 99.5
24 62.9 2.7 0.6 21.2 27.6 31.3 18.4 68.7 81.6
25 64.1 2.7 1.7 23.9 31.0 35.9 20.1 64.1 79.9

Ave. 60.6 13.4 41.8 29.1 14.3 37.7 9.5 62.3 90.5
Median 59.6 4.7 7.2 23.9 13.9 35.9 7.5 64.1 92.5

Coverage Leaf ER Example ER Recall

Table 2: Results of Learning with the Natural Distribution

Table 2 also provides detailed, class-specific error-rate
(ER) statistics for the classifiers.  The “Leaf ER” column
specifies the error rates for the leaves that predict the minor-
ity and majority classes and the “Example ER” column the
error rates for the test examples belonging to the minority
and majority classes. The “Recall” column shows the per-
centage of the total minority- and majority-class examples
that are correctly classified.  This same information is pre-
sented graphically in Figure 2 using a scatter plot.
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Figure 2: Results using Natural Class Distribution

Examination of the error-rate results shows that classifiers
perform much worse on the minority class than on the ma-
jority class.  Further, note that on average the classifiers
correctly classify 62.3% of the minority examples but 90.5%
of the majority.  The results can be summarized as follows:
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although the classifier leaves generally are less accurate at
predicting the minority class (based on Leaf ER), the classi-
fier performs even worse at classifying the minority exam-
ples (based on Example ER).  This is possible because the
leaves predict the minority class far less often (cf. Recall).

4.2     Learning with a Balanced Class Distribution
For comparison we next removed the class imbalance from
all data sets, by including equal numbers of minority- and
majority-class examples in the training and test sets. (The
"minority" class refers to the class that occurs less frequently
in the natural distribution.)  The results are depicted in Fig-
ure 3.
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Figure 3: Results using Balanced Class Distribution

Comparing the results from Figure 3 with those from Fig-
ure 2 shows that the minority and majority values for all
three measures become more similar when the class imbal-
ance is removed.  However, even without any training and

test imbalance there is a striking pattern when comparing the
minority- and majority-class results.  Namely, for 21 of 25
data sets the minority-class examples have the higher error
rate, for 19 of 25 data sets the leaves predicting the minority
class have the lower error rate, and for 21 of 25 data sets the
minority class has the higher recall.  In summary, when
learning from a balanced class distribution the classifiers
generally come up with fewer but more accurate classifica-
tion rules for the minority class than for the majority class.

Although it certainly deserves further analysis, we believe
this surprising difference exists because the minority class
often comprises a more homogeneous set of entities, while
the majority class often corresponds to “everything else.” For
example, in fraud detection the minority class corresponds to
illicit activities while the majority class corresponds to all
other activities.

5  Results: What Training Distribution is Best?
Next we varied the training-set distributions for all 25 data
sets, so that the minority class accounted for the following
percentages of the data: 2%, 5%, 10%, 20%, … 80%, 90%,
and 95%.  Due to space limitations only the results for some
of these training distributions are shown in Table 3.  For
each distribution the average error rate and AUC value over
the 10 runs are shown.  The optimal values (minimum for
error rate and maximum for AUC) are underlined and dis-
played in bold; the vertical bars indicate the relative position
of the natural distribution.  By comparing the position of the
optimal values with the vertical bars one can see the relation-
ships between the optimal and natural training-set distribu-
tions.

Nat
Dataset Distr. Nat 2 5 10 20 30 40 50 60 Nat 2 5 10 30 50 70 90 95 ER AUC
letter-a 3.9 2.8 2.9 2.5 2.9 3.1 3.6 5.3 5.3 6.7 79.3 74.5 81.9 86.4 92.7 94.2 94.8 95.1 93.2 11.4 19.9
pendigits 8.3 3.7 5.8 4.0 3.7 3.5 3.6 3.7 4.1 4.2 96.3 90.6 95.7 97.2 97.8 97.7 97.8 97.2 95.7 3.0 1.6
abalone 8.7 10.7 9.0 9.2 11.6 12.8 15.9 19.6 20.7 22.3 69.4 59.5 60.5 71.6 75.9 76.4 73.8 71.2 67.0 16.0 10.1
sick-euthyroid 9.3 4.5 6.9 5.4 3.8 4.4 7.2 6.4 9.1 11.0 92.6 80.1 91.8 93.8 94.2 95.6 95.3 92.9 93.3 14.3 3.2
connect-4 9.5 10.7 7.7 8.8 10.9 15.0 19.1 23.5 27.4 31.8 72.3 66.2 68.4 73.8 76.9 78.8 79.3 76.5 74.3 28.1 9.7
optdigits 9.9 4.9 9.1 7.2 5.6 3.1 2.5 2.9 3.3 3.7 77.8 60.0 68.6 76.5 92.6 95.7 96.5 96.4 97.1 49.6 24.0
solar-flare 15.7 19.2 16.2 17.5 19.5 21.4 21.6 27.2 27.6 29.9 66.3 61.1 63.2 61.7 64.5 62.9 64.1 64.6 63.9 15.4 0.0
letter-vowel 19.4 11.8 16.5 14.2 12.8 11.7 12.2 12.8 14.4 15.7 79.7 62.0 68.5 74.1 82.3 85.3 86.6 85.6 84.0 0.3 8.7
contraceptive 22.6 31.7 23.9 26.1 25.8 28.7 31.3 34.9 39.3 42.3 59.0 54.5 59.1 61.9 64.0 63.4 65.2 65.3 61.2 24.8 10.7
adult 23.6 18.2 19.2 18.3 17.5 17.8 18.8 19.7 20.6 22.8 82.5 80.2 79.6 80.9 82.0 83.6 83.9 83.9 82.1 3.6 1.7
splice-junction 24.1 8.3 20.5 14.2 11.5 9.0 9.2 8.3 8.2 10.6 91.0 75.7 83.4 85.5 91.6 93.8 94.0 95.5 93.2 1.0 4.9
network2 27.9 27.1 27.6 26.4 26.3 25.9 27.1 27.8 30.0 33.4 70.7 62.7 69.3 69.0 70.6 70.5 70.9 69.2 69.2 4.6 0.3
yeast 28.9 27.0 28.7 28.7 27.3 27.1 25.9 27.1 28.3 30.0 69.8 52.2 52.5 63.0 70.9 71.6 71.9 69.3 60.1 3.9 3.0
network1 29.2 27.6 27.1 27.3 26.9 26.7 27.8 28.9 29.9 32.7 70.9 66.6 67.9 69.9 69.2 70.1 68.8 68.5 68.8 3.3 0.0
car 30.0 9.5 23.0 19.3 15.4 11.2 8.5 8.0 7.6 7.7 87.1 72.1 76.5 78.4 89.7 92.5 91.9 93.1 90.1 19.8 6.9
german 30.0 33.8 29.8 29.8 31.7 30.1 33.3 36.2 35.8 41.0 62.9 57.4 61.0 63.0 64.5 67.0 65.3 63.9 65.2 10.9 6.5
breast-wisc 34.5 7.4 19.1 14.4 9.1 7.4 7.4 6.7 6.8 7.0 96.2 88.4 92.7 94.3 96.2 96.4 97.5 95.1 95.0 10.0 1.4
blackjack 35.6 28.1 31.1 30.4 29.9 29.1 28.2 28.2 28.2 29.0 70.2 58.2 60.2 62.8 69.6 72.1 70.0 59.4 54.5 0.0 2.7
weather 40.1 33.0 38.8 36.8 35.3 33.3 33.3 34.5 34.6 36.1 74.3 67.8 72.2 72.0 73.5 73.5 73.7 72.2 70.5 0.0 0.0
bands 42.2 32.3 36.3 36.2 36.2 32.3 33.8 31.0 34.2 32.7 61.9 60.6 55.8 54.8 59.8 59.9 60.3 51.3 52.5 4.0 0.0
market1 43.0 26.7 35.9 32.8 29.5 27.0 25.8 26.1 26.4 28.0 80.9 71.7 76.1 79.4 80.7 81.2 81.1 80.8 77.3 3.3 0.4
crx 44.5 21.0 36.0 31.4 29.1 22.4 21.6 20.5 21.2 19.4 85.4 77.1 76.4 77.2 83.4 83.3 84.3 84.3 86.3 7.8 1.1
kr-vs-kp 47.8 1.3 11.5 6.4 3.5 1.9 1.7 1.1 1.2 1.3 99.8 94.6 97.7 99.0 99.8 99.9 99.7 98.9 98.8 12.0 0.1
move 49.9 27.5 45.2 42.3 37.6 32.9 30.4 29.4 28.6 29.3 74.8 56.1 61.8 65.2 70.5 74.0 74.4 71.0 67.7 0.0 0.0
coding 50.0 33.5 46.0 43.2 39.8 36.4 34.5 33.5 33.1 33.5 68.5 61.7 61.9 63.5 67.1 69.0 69.4 67.6 65.5 1.2 1.3
Ave. 27.5 18.5 22.9 21.3 20.1 19.0 19.4 20.1 21.0 22.5 77.6 68.5 72.1 75.0 79.2 80.3 80.4 78.8 77.1 7.3 4.7
Median 28.4 18.8 23.0 20.3 19.8 20.2 20.5 22.0 23.8 25.4 74.8 66.2 68.6 73.8 76.9 78.8 79.3 76.5 74.3 4.8 1.7

Error Rate using Specified Training Distribution
(expressed as % minority)

AUC when Training using Specified Distribution
(expressed as % minority) Improv. (%)

Relative

Table 3: Optimal Training Distributions for Error rate and AUC
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The results in Table 3 show that, for both error rate and
AUC, training with the natural distribution seldom is opti-
mal.†  Furthermore, as indicated by the last two columns,
training using the optimal distribution instead of the natural
distribution leads to a substantial improvement for most of
the data sets with large class imbalances.  Inspection of the
error-rate results shows that the optimal distribution does not
differ from the natural distribution in any consistent way—
sometimes it includes more minority examples and some-
times fewer.  There is some correlation between the optimal
and natural distributions, but far less than one might expect.

The results for AUC show that the optimal distribution is
shifted to include more minority-class examples than the
natural distribution. Since, unlike error rate, AUC is not
affected by the test set class distribution, and because it
averages over all distributions, this shift is not surprising—
one might expect the optimal distribution to be near the 50-
50 distribution.  The results indicate the shift goes past the
50-50 point, something we discuss in the next section.

6   Discussion
In this section we explain the main results from Sections 4
and 5 and try to provide a better understanding of the rela-
tionship between class distribution and classifier learning.

6.1  Why is the Minority-class Error Rate Higher?
The results from Section 4.1 clearly demonstrate that classi-
fiers tend to have a higher error rate on the minority class
than on the majority class.  We provide several component
reasons for this behavior. The first reason, although simple,
is subtle and often overlooked: there are many more major-
ity than minority-class test instances.  Thus, false-positive
predictions are (implicitly) given more weight in error-rate-
based assessments.  For example, imagine a randomly gen-
erated and labeled decision tree that is evaluated on a test
set with two classes, where the class ratio is 9:1.  In this
situation the leaves predicting the minority class will have
an expected error rate of 90% while the majority-class
leaves will have an expected error rate of only 10%!

The second reason that the minority class has a higher er-
ror rate is that the class "priors" in the natural training dis-
tribution are biased strongly in favor of the majority class.
Thus, with equivocal evidence many classifiers will predict
the majority class, which leads to higher error rates on
minority-class examples.

The third reason is also related to the minority class
having fewer training examples than the majority class.  The
coverage statistics in Table 2 show that a consequence of
having fewer minority-class examples is that each rule that
predicts the minority class is formed from many fewer
training examples, on average, than the rules that predict the
majority class.  Small disjuncts are those rules that cover
few training examples and have been shown to have a
higher error rate than large disjuncts [Holte, et al., 1989;
Weiss and Hirsh, 2000].  Thus, the minority-class rules

                                                          
† For readers concerned with the multiple-comparisons problem,
note that in almost every case there is a clear trend across the rows,
with a single minimum for error rate and maximum for AUC.

have a higher error rate because they suffer from this
“problem of small disjuncts.”

We can gain a better understanding of the problem of
small disjuncts by relating it to the class distribution. Sur-
prisingly, the reason why small disjuncts have a higher error
rate than large disjuncts is due only partly to the fact that
small disjuncts are based on a smaller number of training
examples (i.e., the third reason).  As it turns out, the first and
second reasons described in this section are also factors.
That is, part of the reason small disjuncts have a higher
error rate than large disjuncts is because they over-represent
the minority class—which tends to have a higher error rate
than the majority class.  We quantify the impact of each of
these factors in the expanded version of this paper.

6.2  Why Isn’t the Natural Class Distribution Best?
In Section 5 we saw that the natural distribution is often not
best for learning, for either error rate or AUC. We are now
able to provide some insight into why one training class
distribution is better than another and why the natural dis-
tribution is often not best (although a thorough explanation
requires further study).

We begin by looking at the learning curves for the mi-
nority and majority classes.  The learning curves for the
contraceptive and optdigits data sets are shown below in
Figure 4.  For these data sets, as for all 25 data sets, the
learning curve for the minority class is on top, the overall
curve in the middle and the majority-class learning curve on
bottom.  Thus, the test examples belonging to the minority
class always have a higher error rate than those belonging
to the majority class.  Because the training set sizes for
experiments that vary the class distributions are set to equal
¾ of the number of minority class examples (as described
in Section 3), the training set sizes for the optdigits and
contraceptive datasets correspond to a value of x=7% and
17%, respectively, in Figure 4.  Note that at around these
values the minority-class learning curve for the optdigits
data set shows dramatic improvement, while for the contra-
ceptive data set it shows only a slight improvement..
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Figure 4: Learning Curves for Contraceptive and Optdigits

The dramatic improvement in optdigits’ minority-class
learning curve explains why, for error rate, its optimal
training distribution (30% minority) includes far more mi-
nority examples than its natural distribution (4.9% minor-
ity); the slight improvement in the contraceptive data set’s
minority-class learning curve explains why its optimal
distribution (2% minority) includes far fewer minority ex-
amples than its natural distribution (31.7% minority).
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More specifically, for most of the data sets we studied,
the minority-class learning curves begin with a much higher
error rate than the majority-class learning curves; they show
more rapid improvement, but still plateau at a later point.
One practical consequence of this behavior is that once the
majority class has enough training data so its learning curve
flattens, it makes sense to then begin adding only minority-
class examples, until its learning curve also flattens.

Note that for AUC the optimal distribution for the con-
traceptive data set includes more minority-class examples
than the natural distribution (in contrast to the error-rate
case).  This is because with AUC the majority class does
not have greater weight than the minority class, and while
the improvement in the minority-class learning curve may
appear slight, at times it shows more improvement than the
improvement in the majority-class learning curve.

We have just provided a qualitative analysis of why one
training distribution is better than another, but a quantitative
analysis is also possible.  Imagine that the training-set size
for the optdigits data set corresponds to the value at x=10%
in Figure 4 and one example can be added to the training
set.  If the ratio of majority- to minority-class test examples
is X:1 and error rate is the performance measure, then a
minority-class example should be added only if the slope
(i.e., improvement) of the minority-class curve at this point
is at least X times that of the majority-class curve.  For
other performance metrics a similar analysis is possible.

7   Conclusion and Future Work
In this paper we showed that, and explained why, classifiers
perform much worse on minority-class examples than ma-
jority-class examples.  We also showed that by modifying
the training-set class distribution one can usually improve
the overall performance of the classifier—sometimes dra-
matically.  We showed this for two quite different classifier
performance measures, error rate and AUC.  Thus, in cases
where the training-set size must be limited, one can build
better-performing classifiers by using a distribution other
than the natural distribution.  In practice, we suggest that a
progressive, adaptive, sampling strategy be developed that
incrementally requests new examples based on the im-
provement in classifier performance due to the recently
added minority- and majority-class examples.  This infor-
mation can be estimated by using cross-validation.

Another progressive sampling strategy suggested by our
analysis involves selecting training data based on the current
error rate for each rule, so that more data is provided to the
rules/disjuncts with higher error rates.  As shown in this
paper, this would typically provide more data for the mi-
nority-class examples and small disjuncts. Thus, this strategy
would combat the problem with small disjuncts and move
the training set toward a more balanced class distribution.
It would be interesting to see how much of the effect of
techniques such as boosting and active sampling can be
explained by their modifying the training class distribution.

Due to space limitations we have presented only our
main results.  We have observed similar results with prun-
ing, when using a third classifier performance metric, and
when using a more sophisticated leaf probability estimate
that factors in the class imbalance.

We hope these results help researchers and practitioners
to understand better the relationship between the training
class distribution and classifier performance, and to learn
more effectively from large data sets in situations where the
training-set size must be limited.
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