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Traditional Supervised Learning
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Utility-based Data Mining
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Utility-based Data Mining

X Y
2?21?22 [?2|?2[2|?2|2|?2|?2[?2
21?21?2222 |?2[2|?2|2|?2|?2[2
21?21?2222 |?2[2|?2|2|?2|?2[?
TrainingData |2 |2 |2 |2 |2 |2 |2 |2 |2 |2 |2|?
~ 2022|212 |2 12|2|2|2|2|2 :
S 2121212121212 12 1212122 o
21?21?2122 |22 |?2]|?2]|?2|?2]?] canreplacea?
202 (2121221221212 ]121|2 at a cost
21?22?22 [2?2|2]|2[2?2[2|?2|?]|?| incorporated by
212222212 [2[2]2]2]2 utilities U
2122?22?22 |?2 2?2?22
~ = Also need either:
Learn model: f <« L(S,U,E) + alearning budget
Application (“Test”) Data * ause model
~
T [zlefelefe]e[2]2[2]2] [[]
A A~ \4
Apply model: Y = f(X) © 2005 Foster Provost




Issue #1: What information may be
missing and acquirable at a cost?
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Utility-based Data Mining - Example 1
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Utility-based Data Mining - Example 2
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Utility-based Data Mining - Example 3
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Issue #1' : What acquisition actions
does the environment support?

a(y;) — traditional active learning
a(x;) — general active feature acquisition (Melvile et al., 2005)
a(x;-) — instance completion (zheng & Padmanabhan 2002) (Melville et al. 2004)
a(x4ly, = ¢) — "budgeted learning” aa (Lizotte et al. 2003)
a(xyy;) — progressive sampling (Provost et al. 1999)
a(x;|y; = c) — “budget-sensitive” progressive samplin
. . . . (Weiss & Provost 2003)
a(y;|x;) — learning with membership queries (Angiuin 1988)

a(xij) (with x,.,, = v;) general active learning (somebody 2006)

Other settings?

a(en) — secondary data access for network learning
. (Macskassy & Provost 2005)

s(i') — costly feature construction (somebody 2007)
s(k) — background knowledge acquisition (somebody 2008)
etc. © 2005 Foster Provost

Issue #2: How to decide what information
should be acquired (next)?

Common strategy: estimate uncertainty
— in order to reduce it
— most common strategy for active learning
* e.g., uncertainty sampling, query by committee, etc.
Limitations?
— why/when does it work?
* e.g., training-set outliers may have high uncertainty
— unclear how to apply with different sorts of information

One general strategy: maximize expected utility
Applies to general setting with different sorts of information
Examples:
— active learning (e.g., (Roy & McCallum 2001) and others)
— active feature acquistion (e.g., this workshop)
Limitations? (Challenges)
— computational expense
— estimation accuracy!
— myopia vs. all possible info combinations
— need to build models of various probabilities (e.g.. fe%%sa@’%otg{gregrovost




Issue #3: Is the acquisition directed by
the (right) goal of the learning?

Examples:

* minimize classification error
* minimize prob. estimation error
* maximize utilility!
— for some specific problem
- need to take decision-making into account
 on-line utility maximization
* learning while acting
« cf. bandit problems, seq. analysis, reinforcement learning
» | won’t have time to talk about today, but Naoki will...?
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prob. estimation error

(Saar-Tsechansky & Provost, 2004a)
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(Saar-Tsechansky & Provost, 2001)
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(Saar-Tsechansky & Provost, 2004a)
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(Saar-Tsechansky & Provost, 2004b)
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(Saar-Tsechansky & Provost, 2004b)
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Issue #4: Maximize utility as compared
to what?

* ignoring missing information
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Utility-based Data Mining:
Traditional Active Learning Revisited
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Issue #4: Maximize utility as compared
to what?

* ignoring missing information
* best alternative treatment for missing
information!

— potential info may look valuable in isolation,
but marginal value may be small

* nobody has done this?

 we don’t even know what are the “best
alternative treatments”
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Utility-based Data Mining:
Traditional Active Learning Revisited
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Should estimate not just the increase in expected value over ignoring
the cases with no labels, but instead the increase in expected value
over (say) the best semi-supervised learning alternative
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One last simple example:

When should we buy the missing value(s)?
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Alternatives to buying missing
values at prediction time

(ignore the case)

estimate the value (imputation)

— mean, mode imputation

— use a predictive model

estimate value distribution and combine
probabilistically

— e.g., C4.5's technique

build a “reduced” model without the missing
values!

— lazy learning

— store multiple models

© 2005 Foster Provost

11



(Saar-Tsechansky & Provost, 2005)
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(Saar-Tsechansky & Provost, 2005)
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Difference in accuracy compared to when values are

known

(Saar-Tsechansky & Provost, 2005)
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which missing-value treatment is used
can make a huge difference

...for many domains, with reduced models no advantage to bu&in information!
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Summary: Issues & Challenges

Issue #1: What information may be missing?

Issue #1' : What are supported acquisition actions?

— proposal: a general UBDM framework

— open question: can a general framework work as well on special cases?

Issue #2: What information should be acquired?
— proposal: general expected-utility estimation
— open question: how to deal with challenges like
+ computational expense
+ estimation accuracy
* myopia vs. all possible info combinations
» need to build models of various probabilities (e.g.. features vs. target)

Issue #3: Is the acquisition directed by the (right) goal?
— proposal: goal should be factored into the utility calculations
— open question: do we know the costs/benefits well enough?

Issue #4: Maximize utility as compared to what?
— proposal: should compare to best alternative

— open question: what is best alternative & can its performance be
estimated? © 2005 Foster Provost
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thanks!
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