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ABSTRACT
Finding a minimal decision tree consistent with the exam-
ples is an NP-complete problem. Therefore, most of the
existing algorithms for decision tree induction use a greedy
approach based on local heuristics. These algorithms usually
require a fixed small amount of time and result in trees that
are not globally optimal. Recently, the LSID3 contract any-
time algorithm was introduced to allow using extra resources
for building better decision trees. A contract anytime algo-
rithm needs to get its resource allocation a priori. In many
cases, however, the time allocation is not known in advance,
disallowing the use of contract algorithms. To overcome this
problem, in this work we present two interruptible anytime
algorithms for inducing decision trees. Interruptible any-
time algorithms do not require their resource allocation in
advance and thus must be ready to be interrupted and re-
turn a valid solution at any moment. The first interruptible
algorithm we propose is based on a general technique for
converting a contract algorithm to an interruptible one by
sequencing. The second is an iterative improvement algo-
rithm that repeatedly selects a subtree whose reconstruc-
tion is estimated to yield the highest marginal utility and
rebuilds it with higher resource allocation. Empirical eval-
uation shows a good anytime behavior for both algorithms.
The iterative improvement algorithm shows smoother per-
formance profiles which allow more refined control.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept-learning,
Induction; H.2.8 [Database Management]: Applications—
Data Mining

General Terms
Algorithms, Experimentation

Keywords
Decision trees, Anytime algorithms, Anytime learning, Cost-
quality tradeoff, Hard concepts
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1. INTRODUCTION
Despite the recent progress in developing advanced induc-
tion algorithms, such as Support Vector Machines [7], de-
cision trees [6, 22] are still considered attractive for many
real-life applications mostly due to their interpretability [13].
Craven and Shavlik [8] listed several reasons for the impor-
tance of the comprehensibility of learned classifiers. These
reasons include, among others, the possibility to validate the
induced model by human and to generate human-readable
explanations for the classifier predictions.

Another model evaluation criterion that is mentioned in [8]
is the flexibility of the model representation. In this manner,
decision trees have a great advantage: they can be easily
converted into logical rules. When classification cost is an
important factor, decision trees are favored since they test
only values of the features on the path from the root to
the relevant decision leaf. In terms of accuracy, decision
trees were shown to be competitive with other classifiers for
several learning tasks [12, 28, 15, 32].

Based on the Occam’s Razor principle [2], small decision
trees that are consistent with the training examples have
better predictive power than their larger counterparts. Find-
ing the smallest consistent tree, however, was shown to be
NP-complete [16, 19]. For this reason, most existing deci-
sion tree induction algorithms take a greedy approach and
use local heuristics for choosing the best splitting attribute.

The greedy approach indeed performs quite well for many
learning problems, and is able to generate decision trees very
fast. In some cases, however, when the concept to learn is
hard and the user is willing to allocate more time, the exist-
ing greedy algorithms are not able to exploit the additional
resources for generating a better decision tree.

Algorithms that are able to trade resources for the quality of
the output are called anytime algorithms [25, 3]. Recently,
the LSID3 algorithm for anytime induction of decision trees
has been introduced [9]. The algorithm performs repeated
lookahead probes in order to evaluate candidate splitting
attributes. The number of repetitions is determined in ad-
vance according to the allocated time.

LSID3 requires that the allocated time will be known ahead
and does not guarantee any solution if the allocation is not
honored, and hence is called a contract anytime algorithm.
As such, LSID3 has two shortcomings. First, in many real-
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life applications the time allocated for the learning phase is
not known a priori. One example for such a setup is when
the user is willing to allow the induction algorithm to run
until the classifier is needed, and the time for this event is
not known in advance. Another example is an application
where the user wants the induction algorithm to run until
it reaches some expected accuracy on a set-aside validation
set. A second problem is that LSID3 assumes a mapping
from the time allocation to the contract parameter, i.e., to
the number of lookahead probes the algorithm can afford.
In many cases, however, such a mapping is not possible.

To overcome the above problems, we need to come up with
an interruptible anytime algorithm, which does not require
the allocated time in advance and can therefore be inter-
rupted anytime. In this work we present two interrupt-
ible anytime algorithms for decision tree induction, that can
trade off the learning cost for the quality of the produced hy-
pothesis and allow queries for solution at any moment. We
start with a method that converts LSID3 to an interruptible
algorithm using the general sequencing method described in
[26]. This conversion, however, uses the contract algorithm
as a black-box and hence cannot take into account specific
aspects of decision tree induction. Next, we present a new
repair-based algorithm, IIDT, that repeatedly replaces sub-
trees of the current hypothesis by subtrees generated with
higher resource allocation and are therefore expected to be
better. The two methods are empirically tested on datasets
representing difficult concepts. Note that in this paper we
assume a batch setup where all the training examples are
given at the beginning of the learning process, unlike the
incremental setup in which the induced tree is restructured
when a new training instance becomes available [30].

2. CONTRACT INDUCTION OF DECISION
TREES

The interruptible algorithms presented in the next sections
both use a contract algorithm as a component. Specifically,
in this paper we use the LSID3 algorithm. This section gives
a short overview of this algorithm.

LSID3 adopts the top-down induction of decision trees (TDIDT)
scheme. Under this framework, an attribute is chosen to par-
tition the entire dataset into subsets, each of which is used
to recursively build a subtree.

In ID3 each candidate split is evaluated by the information
gain it yields and the attribute that maximizes this measure
is selected. In LSID3 we measure the usefulness of a candi-
date split by the expected size of the subtree it results in.
One can estimate this size by calling ID3 itself. Nevertheless,
this results in a fixed time algorithm rather than in an any-
time one. Moreover, ID3 might be insufficient to correctly
predict the size. Therefor, in order to produce a better es-
timation of the tree size, instead of calling ID3 once, LSID3
samples the space of “good” trees by repeatedly invoking a
stochastic version of ID3 (SID3). In SID3, instead of choos-
ing the attribute that maximizes the information gain, the
splitting attribute is drawn randomly with a likelihood that
is proportional to the attribute’s information gain. Since
SID3 is not a deterministic algorithm, different runs of it
might return different trees of different sizes. The size of
each tree is an upper bound on the optimal tree size and

Procedure LSID3-Choose-Attribute(E, A, r)
If r = 0

Return ID3-Choose-Attribute(E, A)
Foreach a ∈ A

Foreach vi ∈ domain(a)
Ei ← {e ∈ E | a(e) = vi}
mini ←∞
Repeat r times

T ← SID3(Ei, A− {a})
mini ← min (mini,Size(T ))

totala ←
P|domain(a)|

i=1 mini

Return a for which totala is minimal

Figure 1: Attribute selection in LSID3.

Procedure Sequenced-LSID3(E, A)
T ← ID3(E, A)
i ← 0
While not-interrupted

r ← 2i

T ← LSID3(E, A, r)
i ← i + 1

Return T

Figure 2: Conversion of LSID3 to an interruptible
algorithm by sequenced invocations.

hence we consider the minimal one as the estimator.

Given an attribute a, LSID3 partitions the set of examples
according to the different values a can take and calls SID3
several times for each subset. a is evaluated by summing up
the estimated size of each subtree. For each subtree there
are several estimations obtained from several calls to SID3.
The algorithm considers the minimal one.

LSID3 is a contract algorithm parameterized by r, the num-
ber of times SID3 is called for each candidate. LSID3 with
r = 0 is defined to be ID3. Figure 1 formalizes the choice
of splitting attributes as made by LSID3. The runtime of
LSID3 grows linearly with r. Let m be the number of exam-
ples and n = |A| be the number of attributes. The worst-
case time complexity of ID3 is O(mn2) [30]. It is easy to see
that SID3 has the same worst-case complexity. LSID3(r)
invokes SID3 r times for each candidate split. Recall the
analysis in [30] for the time complexity of ID3, we can write
the runtime of LSID3(r) as

Pn
i=1 r · i ·O(mi2). An empirical

based average-case analysis for ID3 showed that the com-
plexity of ID3 is actually linear in n rather than quadratic
i.e., O(nm) [29]. Hence, we derive that the average case
complexity of LSID3 is

nX
i=1

r · i ·O(mi) =

nX
i=1

O(rmi2) = O(rmn3). (1)

3. SEQUENCING CONTRACT ANYTIME AL-
GORITHMS

By definition, every interruptible algorithm can serve as a
contract one. Russell and Zilberstein [26] showed that any
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contract algorithm A can be converted into an interrupt-
ible algorithm B with a constant penalty. B is constructed
by running A repeatedly with exponentially increasing time
limits τ, 2τ, . . . , 2iτ, . . . where τ is a free parameter that af-
fects the granularity of the composed algorithm. Smaller
values of τ will yield more frequent improvements, but there
is no benefit in setting it to a too low value for which the
improvement in quality is insignificant. It can be shown that
the above sequence of runtimes is optimal when the different
runs are scheduled on a single processor [26].

This general approach can be used to convert LSID3 into
an interruptible algorithm. LSID3 gets its contract time in
terms of r, the number of samplings per node. When r = 0,
LSID3 is defined to be identical to ID3 which requires much
less time than LSID3 with r = 1. Therefore, we slightly
modify the sequencing method by first calling LSID3 with
r = 0 and then continue according to the original method
with exponentially increasing values of r, starting from r =
1. Figure 2 formalizes the resulting algorithm.

One problem with the sequencing approach is the exponen-
tial growth of the gaps between the points of time at which
an improved result can be obtained. This is due to the gen-
erality of the algorithm that views the contract algorithm
as a black-box. Thus, in the case of LSID3 at each iteration
the whole decision tree is rebuilt. In Section 4 we present
an interruptible anytime algorithm that instead of trying to
rebuild the whole tree, iteratively improves subtrees.

4. INTERRUPTIBLE INDUCTION BY IT-
ERATIVE IMPROVEMENT

In this section we present IIDT, an interruptible algorithm
for decision-tree learning. As in LSID3, IIDT exploits ad-
ditional resources in attempt to produce better trees. The
key difference between the algorithms is that LSID3 uses
the available resources to induce a decision tree top-down,
where each decision made at a node is final and does not
change. IIDT, on the contrary, does not get its resource al-
location in advance and might be queried for a solution at
any moment.

IIDT first performs a quick induction of an initial tree by
calling ID3. It then iteratively attempts to improve the cur-
rent tree by choosing a node, computing its next resource
allocation and rebuilding the subtree below it. If the newly
induced subtree is better than the existing one, a replace-
ment takes place. We formalize IIDT in Figure 3.

Figure 4 illustrate the way IIDT works. The target concept
is a1(x) ⊕ a2(x) with additional two irrelevant attributes
a3 and a4. The leftmost tree was constructed using ID3.
In the first iteration the subtree rooted at the bolded node
is selected for improvement and replaced by a smaller tree
(surrounded by a dashed line). Next, the root is selected for
improvement and the whole tree is replaced by a tree that
perfectly describes the concept.

IIDT is designed as a general framework for interruptible
learning of decision trees that allows using different approaches
for choosing the node to improve, for allocating resources for
an improvement iteration, for rebuilding a subtree and for
deciding whether an alternative subtree is better or not. In

Procedure IIDT(E, A)
T ← ID3(E, A)
While not-interrupted

node ← Choose-Node(T, E, A)
t ← subtree of T rooted at node
Anode ← {a ∈ A | a /∈ ancestor of node}
Enode ← {e ∈ E | e reaches node}
r ← Next-R(node)
t′ ← Rebuild-Tree(Enode, Anode, r)
If Evaluate(t) > Evaluate(t′)

replace t with t′

Return T

Figure 3: Interruptible learning of decision trees.

the remainder of this section we focus on the components of
IIDT and suggest a possible implementation that is based
on LSID3.

4.1 Reconstructing a Subtree
After deciding upon the amount of resources allocated for
the reconstruction process, the problem becomes a task for
a contract algorithm. A good candidate for such an algo-
rithm is LSID3 which exhibited good anytime performance
in the empirical study reported in [9]. We expect that call-
ing LSID3 with higher resource allocation will result in a
better subtree.

4.2 Choosing a Subtree to Improve
Intuitively, the next node we would like to improve is the
one with the highest expected marginal utility, i.e., the one
with the highest ratio of expected benefit and expected cost
[14, 24]. Estimating the expected cost and expected gain of
rebuilding a subtree is a difficult problem. There is no ap-
parent way for estimating the expected improvement either
in terms of tree size or generalization accuracy. In addi-
tion, precise prediction of the resources to be consumed by
LSID3 is not an easy task. In the remainder of this sub-
section we show how to approximate these values, and how
to incorporate these approximations into the node selection
algorithm.

4.2.1 Resource Allocation
The LSID3 algorithm receives its resource allocation in terms
of r, the number of samplings devoted for each attribute.
We adopt here the above mentioned strategy that doubles
the amount of resource allocation at each iteration. Thus,
if the resources allocated for the last improvement attempt
of node were r = Last-R(node), the next allocation will be
2r.1

4.2.2 Expected Cost
The expected cost can be approximated using the aver-
age time complexity of LSID3 as expressed by Equation
1. For each node, we estimate the expected runtime of
LSID3(r) to rebuild the subtree below it by Cost(node) =
Next-R(node) ·m · n3.

1Note that Last-R can be inherited from an ancestor of
node, in case the subtree rooted at node was reproduced as
a part of a containing tree.
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Figure 4: Iterative improvement of the decision tree produced for the 2-XOR concept a1(x) ⊕ a2(x) with
additional two irrelevant attributes a3 and a4.

We observe that in terms of expected cost, subtrees rooted
in deeper levels are preferred since they have less examples
and attributes to consider and thus have shorter expected
runtime. We also observe that since for each node the next
time allocation doubles the previous one, nodes that were
previously selected for improvement a large number of times,
will have higher associated costs and thus are less likely to
be chosen again.

4.2.3 Expected benefit
The whole framework of decision trees induction rests on
the assumption that smaller consistent trees are better than
large ones. Therefore the size of a subtree can serve as a
measure for its quality. We cannot, however, know or es-
timate the size of the reconstructed subtree before actually
building it. Therefore, we use instead an upper limit on the
reduction in size that can be achieved.

The minimal size possible for a decision tree is obtained
when all examples are labelled with the same class. Such
cases are easily recognized by the greedy ID3 and by LSID3.
Similarly if a subtree was replaceable by another subtree of
depth 1, i.e., consists of a single split, ID3 (and LSID3)
would have chosen the smaller subtree. Thus, the maximal
reduction of the size of an existing subtree is to the size of
a tree of depth 2. Assuming that the maximal number of
values per attribute is b, the maximal size of such a tree
(measured by the number of leaves) is b2. Hence, an upper
bound on the benefit from reconstructing a tree t that was
previously induced is Size(t)− b2.

Ignoring the expected costs, and relying solely on the ex-
pected benefit results in always giving the highest score to
the root node. This makes sense: assuming we have infinite
resources, we would attempt to improve the whole decision
tree rather than parts of it.

4.2.4 Granularity
Considering the cost and benefit approximations described
above, the selection procedure would prefer deep nodes (that
are expected to have low costs) with large subtrees (that are
expected to yield large benefits). When no such large sub-
trees exist, our algorithm may repeatedly attempt to im-

prove smaller trees rooted at deep nodes due to their low
associated costs. In the short term, such a behavior would
indeed be beneficial but in the long term it can be harmful
since when the algorithm later improves subtrees in upper
levels, the resources spent on deeper nodes are wasted. On
the other hand, if the algorithm would have first selected
the upper level trees, this waste would be avoided, but the
time gaps between potential improvements would have been
increased.

To allow control of the tradeoff between the efficiency of re-
source usage and the flexibility of anytime control we add a
granularity parameter 0 ≤ g ≤ 1 that serves as a threshold
for the minimal time allocation to an improvement phase.
A node can be selected for improvement only if its normal-
ized expected cost is above g. To compute the normalized
expected cost, we divide the expected cost by the expected
cost of the root node. Note that by this definition, it is pos-
sible to have nodes with cost which is higher than the cost of
the root node, and therefore with relative cost higher than
one. Such nodes, however, can never be selected for im-
provement since their expected benefit is necessarily lower
than the expected benefit of the root node. Hence, when
g = 1, IIDT is forced to choose the root node and its behav-
ior becomes identical to the sequencing algorithm described
in Section 3.

Figure 5 formalizes the procedure for choosing a node for
reconstruction.

4.3 Evaluating a Subtree
Although LSID3 was shown to produce better trees when
allocated more resources, an improved result is not guar-
anteed. Thus, to avoid a degradation in the quality of the
induced tree, we replace an existing subtree only if the al-
ternative is expected to improve the quality of the complete
decision tree. Following Occam’s Razor, we measure the
usefulness of a subtree by its size. Only if the reconstructed
subtree is of a smaller size, would it replace an existing sub-
tree. This guarantees that the size of the complete decision
tree is monotonically decreasing.

Another possible measure is the accuracy of the decision
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Procedure Choose-Node(T, E, A)
Foreach node ∈ T

Anode ← {a ∈ A | a /∈ ancestor of node}
Enode ← {e ∈ E | e reaches node}
rnode ← Next-R(node)
costnode ← rnode · |Enode| · |Anode|3
max-cost ← Next-R(root) · |E| · |A|3
If (costnode/max-cost) > g

l-bound ← (mina∈Anode |Domain(a)|)2
∆q ← Leaves(node)− l-bound
unode ← ∆q/costnode

best ← node that maximizes unode

Return 〈best, rbest〉

Procedure Next-R(node)
If Last-r(node) = 0

Return 1
Else

Return 2 · Last-R(node)

Figure 5: Choosing a node for reconstruction.

tree on a set-aside validation set of examples. Only if the
accuracy on the validation set increases, the modification
is applied. This measure suffers from two drawbacks. The
first is that putting aside a set of examples for validation
results in a smaller set of training examples and thus makes
the learning process harder. The second is the bias towards
overfitting the validation set, that might reduce the gener-
alization abilities of the tree.

5. EXPERIMENTAL EVALUATION
A variety of experiments were conducted to test the per-
formance and anytime behavior of IIDT. We compare two
versions of IIDT to the fixed time algorithms ID3 and C4.5.
Both versions of IIDT use the components described in Sec-
tion 4. IIDT(1) is parameterized with a granularity factor
1 and thus behaves exactly as the sequencing method de-
scribed in Section 3, while in IIDT(0.1) the granularity fac-
tor is set to 0.1. In addition, we tested a version of IIDT
that evaluates subtrees by their accuracy on a validation set
rather than their size. However, this modification did not
help and in some cases a degradation in the performance
was observed. Thus, in what follows we describe the results
for the size-based estimation.

The behavior of anytime learners on easy concepts is not
interesting since the greedy algorithms are able to produce
good trees with small allocation of resources. Therefore, we
present here the results for more complex concepts that can
benefit from larger resource allocation: the Glass and the
Tic-Tac-Toe UCI datasets [1], the 20-Multiplexer dataset
[23] and the 10-XOR dataset, generated with additional 10
irrelevant attributes. Table 1 summarizes the basic charac-
teristics of the used datasets.

The performance of the different algorithms is compared
both in terms of generalization accuracy and size of the in-
duced trees, measured by the number of leaves. Following
the recommendations of Bouckaert [4], 10 runs of 10-fold
cross-validation experiment were conducted for each dataset.

Instances Attributes

Dataset Nominal Numeric Classes

Glass 214 10 9 7

Tic-Tac-Toe 958 9 0 2

Multiplexer-20 500 20 0 2

XOR-10 10000 20 0 2

Table 1: Characteristics of the datasets used.
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Figure 6: Anytime behavior on the Glass dataset.

Figures 6, 7, 8 and 9 show the anytime graphs for both tree
size and accuracy for the 4 datasets. Each graph represents
an average of 100 runs (for the 10× 10 cross validation). In
all cases the both anytime versions indeed exploit the ad-
ditional resources and produce better trees, both in terms
of size and accuracy.2 Since our algorithm replaces a sub-
tree only if the new one is smaller, all size graphs decrease
monotonically. The most interesting anytime behavior is for
the difficult 10-XOR problem. There, the tree size decreases
from 4000 leaves to almost the optimal size 210, and the ac-
curacy is increased from 50% (which is the accuracy achieved
by ID3 and C4.5) to almost 100%. The shape of the graphs
is typical to anytime algorithms with diminishing returns.
The difference between the performance of the two anytime
algorithms is interesting. IIDT(0.1) with the lower granu-

2Note that in some cases C4.5 produces smaller (yet less
accurate) trees since it allows inconsistency with the training
data by post-pruning the tree.
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Figure 7: Anytime behavior on the 10-XOR dataset.

larity parameter indeed produces smoother anytime graphs
(with lower volatility) which allows for better control and
better predictability of return. Moreover, in large portions
of the time axis, the IIDT(0.1) graph dominates the one for
IIDT(1) due to its more sophisticated node selection.

The smoothness of the IIDT(0.1) graph is somehow mis-
leading since it represents an average of 100 step graphs
with steps occurring in different time points (vs. the graph
for IIDT(1) where the steps are roughly at the same time
points). Figure 10 shows one anytime graph (out of the
100). We can see that although the IIDT(0.1) graph is less
smooth than the average, it is still much smoother than the
corresponding IIDT(1) graph.

6. RELATED WORK
While, to our knowledge, no other work tried specifically to
design an anytime interruptible algorithm for decision tree
induction, there are several related works that need to be
discussed here. Opitz introduced an anytime approach for
theory refinement [20]. This approach starts by generating a
knowledge-base neural network from a set of rules, and then
it uses the training data and the additional time resources
in an attempt to improve the resulted hypothesis.

Lizotte et al. [18] presented a model for a budgeted learn-
ing task. In their work the term budgeted learning refers
to the problem of collecting a data sample under budget
constraints for the total cost of the tests that can be taken.
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Figure 8: Anytime behavior on the Tic-Tac-Toe
dataset.

Although this notation is equivalent to anytime contract al-
gorithms the problem dealt by Lizotte et al. is different
than this faced by our anytime approach: while the first at-
tempts to find the best way to spend a budget for collecting
a sample of data, we assume that the dataset has already
been obtained and address the question of how to exploit
our budget to learning a better hypothesis from this data.

Pruning techniques also attempt to obtain smaller decision
trees, but their goals and their search space are different.
The main goal of pruning is to avoid overfitting the data.
Pruning techniques are orthogonal to our approach and tackle
different problems. We intend to integrate pruning phases
in IIDT and thus allow handling overfitting problems.

Ensemble-based methods can also be viewed as anytime al-
gorithms. The boosting method [27] iteratively refines the
constructed ensemble by increasing the weight of misclassi-
fied instances and adding a new hypothesis learned based
on the updated weights. This process can continue as long
as the time allocation allows. In bagging [5] a committee
of trees is formed by making bootstarp replicates of the
training set and using each such replication to learn a deci-
sion tree. Additional resources can be exploited to generate
larger committees. Unlike the problem we face in this work,
the classifiers constructed by the boosting and bagging al-
gorithms consist of ensembles of decision trees rather than
a single tree. A major problem with ensemble-based meth-
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Figure 9: Anytime behavior on the 20-Multiplexer
dataset.

ods is that in many cases the induced ensemble is large,
complex and difficult to interpret [11]. Another problem is
that when the concept to learn is hard, greedy trees are un-
able to discover any knowledge about the target concept and
hence their combination cannot improve the performance.
To experimentally test this, we examined the performance
of Bagging on the XOR10 dataset. Our results indicate that
the committee failed to learn the concept and performed no
better than a random guesser, even for a large number of
tree-members (up to 1000). In the future, we intend to em-
pirically compare the anytime behavior of of other ensemble
methods such as Boosting and Random Decision Tree [10]
to IIDT, as well as examining committees of trees produced
by more expensive algorithms such as LSID3.

Papagelis and Kalles [21] presented GATree, an algorithm
that uses genetic algorithms to evolve decision trees. When
tested on several UCI datasets, GATree was reported to pro-
duce trees as accurate as C4.5 but of significantly smaller
size. GATree can be viewed as an anytime interruptible
algorithm that uses additional time to produce more and
more generations. We conducted several experiments with
GATree, with its default parameters as reported in [21]. For
this purpose we used the free GATree version available in
http://www.GATree.com. The results indicate that the any-
time behavior of GATree is problimatic. Although improve-
ments were observed, they were not consistent and the re-
sults suffered from considerable fluctuations. In addition,
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Figure 10: Time steps for an arbitrary run on 10-
XOR.

we tested our IIDT on the parity concepts used to evalu-
ate GATree. Although we could not use exactly the same
datasets, we followed the same method to create them and
the results show that IIDT achieved better results than those
reported for GATree. For example, for the 4 attributes par-
ity problem with 6 additional irrelevant attributes, IIDT was
able to reach 99% accuracy while GATree was reported to
have 85% average accuracy.

Utgoff [31] presented DMTI, an induction algorithm that
uses a direct measure of tree quality instead of greedy heuris-
tic to evaluate the possible splits. Several possible tree mea-
sure were examined and the MDL (Minimum Description
Length) measure had the best performance. DMTI can use
a fixed amount of additional resources and hence cannot
serve as interruptible anytime algorithm. Further, DMTI
uses the greedy approach to produce the lookahead trees
and that might be insufficient to well-estimate the useful-
ness of a split.

Last et al. [17] introduced an interruptible anytime algo-
rithm for feature selection. Their proposed method selects
features by constructing an information-theoretic connec-
tionist network, which represents interactions between the
input attributes and the target class.

7. CONCLUSIONS
In this work explored the problem of how to produce bet-
ter decision trees when more time resources are available.
Unlike the contract setup that was addressed in a previous
study, this work does not assume a priori knowledge of the
amount of the resources available and allows the user to in-
terrupt the learning phase at any moment.

The major contribution of this paper is the IIDT frame-
work that can be adjusted to use any contract algorithm
for reproducing a decision tree and any measure for choos-
ing the subtree to rebuild. We studied an instantiation of
this framework that bases the decision of what subtree to
rebuild next on the expected cost and expected benefit and
uses LSID3 for rebuilding subtrees.

The reported experimental study shows that IIDT exhibits
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a good anytime behavior allowing a tradeoff between the
cost of the learning process and the quality of the induced
hypothesis. The smoothness of the performance profiles was
shown to be flexibly controlled by the granularity parameter.

In the future we, intend to apply monitoring techniques for
optimal scheduling of IIDT. In addition, we plan to integrate
pruning phases in the IIDT framework as well as examining
several different strategies for choosing nodes and improving
subtrees.
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